
Prediction of solutions of arithmetic and logical
operations on the basis of the mathematical model

of cognitive digital automata

Valeriy Kozhevnikov
S.P. Kapitsa Technological Research Institute

Ulyanovsk State University

Ulyanovsk, Russia
vvk28061955@mail.ru

Victor Prikhodko
S.P. Kapitsa Technological Research Institute

Ulyanovsk State University

Ulyanovsk, Russia
vp@kapitsa.tech

Abstract—An approach to the problem of solution

prediction of arithmetic and logical operations on the

basis of the mathematical model of cognitive digital

automata (CDA) is proposed. A particular advantage of

the proposed approach is that the training procedure can

be performed on limited (minimum) training sets.

Prediction or generation of solutions is performed on the

basis of the mathematical model of CDA which is formed

in the course of training. As a testbed for the approach,

the modeling of an n-bit parallel adder was implemented.

The mathematical model of the adder was formed, which

made it possible to reproduce the entire truth table for the

n-bit parallel adder. The results obtained could be useful

as an alternative solution to a number of problems known

for conventional feed-forward neural networks, e.g. on-

the-fly learning and catastrophic forgetting.

Keywords—cognitive digital automata, prediction, Petri

nets, state equation, arithmetic operations, logical

operations, mathematical modeling, solution generation,

logic synthesis

I. INTRODUCTION
Recently, the concept of cognitive digital automata has

been developed by one of the authors [1]. The mathematical
model of CDA, in fact, represents a further development of the
theory of digital automata and, accordingly, is based on the
methods of mathematical modeling of conventional digital
automata [2-4]. A particular advantage of the proposed
mathematical model of CDA is that the training procedure can
be performed on limited (minimum) training sets. The
cognitivity of the digital automaton is determined by the
possibility of generating solutions that have not been provided
during the training procedure.

The mathematical model is constructed on the basis of a
representation of CDA in the form of the state equation of
Petri nets (PNs) from the class of Murata equations (matrix
equations) [4] or a system of linear algebraic equations
(SLAE). The mathematical apparatus of PNs [5] has been
proposed as a tool for constructing the mathematical model of
CDA: marked graphs, inhibitory PNs [6], and PNs with
programmable logic (PNPL) [7]. Unlike in inhibitory PNs, the
firing logic of the transitions of the PNPL is not pre-set, and
any input arc of the transition can be inhibitory, and the
transition can be programmed to perform any logical function.
In this case, the logic of the components of the initial structure
of an automaton in the incidence matrix is given implicitly.

The formation of the configuration of the initial structure
of an automaton is implemented as a result of the cluster
analysis of training sets. Based on the results of the cluster
analysis or classification of training sets, one can determine
the number of inputs and outputs, the number of layers of
initial structure, the number of components in each layer, the
structure of connections between components . The regression
analysis of the data of training sets is performed in the process
of training or synthesis of the logic of the initial structure of
automaton.

The initial structure of an automaton is represented as a
universal matrix, where the connections between the
components are built on the “all with all” principle. Various
multi-level configurations of the initial structure are also
possible where the “all with all” connections between the
components are only created between different levels of the
initial structure similar to that in feed-forward neural
networks.

The possibility of generating a formula (or network
algorithm) of CDA depends on the critical mass of elements
of the training set and the training algorithms. Hence, the task
of generating the training sets with a minimum number of
elements for a given CDA function or experimentally
determined function is of particular importance. Prediction or
generation of solutions, in its turn, is performed on the basis
of the mathematical model of CDA obtained in the course of
training.

II. CONSTRUCTION OF THE MATHEMATICAL MODEL
The initial structure of CDA is represented in the form of

a marked graph (structure diagram) by interpreting the inputs
and outputs of the structure and structural components by the
positions of the marked graph, and the components
themselves and the connection lines as composite and simple
transitions, respectively. The set of inputs and outputs of the
structure diagram is interpreted as a set of input and output
positions of the network. The availability of information is
interpreted as a token in the network position. At the logical
presentation level, a token in a network position is interpreted
as a logical unit, and its absence is interpreted as the logical
zero. The movement of information is interpreted as the
movement of tokens.

As the minimum set of training sets (highlighted in gray),
those rows are selected from the truth table which give ‘1’ in
only one output of the adder taking account of the transfer to
the senior (third) class. Thus, for each output of the adder, the
corresponding class of training sets is formed. Further, from
the selected sets for each output class, only sets with one ‘1’

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.3

Volume 14, 2020

ISSN: 1998-0159 16

at the inputs of the adder, with two ‘1’, etc., were selected.
According to this principle, the corresponding subclasses of
training sets have been formed.

When forming the initial structure of the adder, sets of
subclasses constitute the first layer of the structure diagram,
where one component is given to each subclass. The set of
classes constitutes the second layer of the structure diagram,
where one component also corresponds to each class. As a
result, the initial structure of the adder consists of two layers.
The number of components of the first layer is equal to the
number of subclasses. The number of components of the
second layer is equal to the number of classes. In the case
when a class consists of one subclass, only one component is
formed in the first or second layer. The structure of
connections between the inputs of the structure diagram and
the inputs of the components of the first layer, the outputs of
the components of the first layer and the inputs of the
components of the second layer is formed according to the
principle of “all with all”.

The representation of the CDA structure diagram in the
form of a marked graph allows one to go from the description
of the structure diagram to its mathematical representation in
the form of the incidence matrix: A = A+ - A–. Constructing a
complex mathematical model of CDA is done on the basis of
the fundamental state equation of Petri nets from the class of
Murata equations [2]:

 ∆μ = A ∙ τ , (1)

where ∆μ = μ − μ0 , μ0 is the initial network marking vector,
μ is the finite network marking vector, τ is the network
transition coverage vector, which only determines the
composition and does not determine the sequence of transition
firings. The vector ∆μ is defined on a set of network
positions Р. The vector τ is defined on a set of network
transitions Т. A set of vectors ∆μ forms a set of ΔM, where
Δμ ∈ ΔM. A set of transition coverage vectors τ forms
network coverage S, where τ ∈ S.

The set ΔM specified on the set of input and output
positions of the network is interpreted as the initial truth table
or the transition table of CDA states. As a set of training sets,
either all elements of the truth table can be used, or only the
minimum set.

On the set of training sets, the CDA network model can be
represented as a system of matrix equations of Petri nets:

 ∆M𝑚𝑖𝑛 = A ∙ S𝑚𝑖𝑛 ()

The marking of the internal positions of the set ∆M is not
determined. The composition of the coverage transitions S is
also not determined. Only the initial incidence matrix А is
completely determined.

III. LOGIC SYNTHESIS
To solve the CDA logic synthesis problem, the methods of

calculating the invariants of the state equation of the marked
graph of the automaton structure diagram are used. Marked
graph invariants are a powerful tool for studying the structural
properties of networks and are solutions of homogeneous
systems of equations.

The projection of implicitly defined input logic of
composite transitions of components and output logic of

simple transitions of connection lines to the initial structure
diagram of an automaton is reduced to solving a system of
homogeneous equations (2) with an undetermined incidence
matrix:

 ∆M𝑚𝑖𝑛 = Aα ∙ S𝑚𝑖𝑛 , (3)

where Aα = A+α − A−α is an undetermined incidence matrix
for which aij = { 0,1,-1, α,- α }.

Relevant unknowns are introduced in the incidence matrix
A in (1) for the input arcs of composite transitions in
accordance with the expression: aij = -1 → aij= -α and for the
output arcs of simple transitions in accordance with the
expression: aij = 1 → aij = α , where α ={0,1}.

The corresponding matrix A is calculated for each
vector τ . The values of the unknowns for inhibitor arcs are
defined implicitly and are equal to zero, which provides a
solution to the problem of the matrix representation of
inhibitory Petri nets. At the same time, for each compound
transition that is a part of the vector τ , the corresponding
simple transition and its structural connections characteristic
only for the given vector τ are determined. As a result of the
union of the matrices A, the inhibitor incidence matrix is
formed: AI = ⋃ A.

Practically, the projection of implicitly defined logic onto
the initial structure diagram of the automaton is reduced to
zeroing the rows of the original incidence matrix for each
vector τ on a set of network positions that are not part of the
corresponding coverage R with the subsequent combination
of the matrices for each R. Null rows in the incidence matrix
AI are deleted.

The logic of the components (compound transitions) of the
initial CDA structure diagram in the synthesis process
(training) of each learning step may vary, i.e. the truth tables
of network components do not have a fixed size and,
accordingly, a fixed logic function. The process of forming the
logic of components is limited only by the number of
component inputs or the exhaustive search through possible
combinations of signals at the inputs of each component.
When there is a sufficiently large number of inputs of each
component, the process of forming the logic of components
and the network as a whole is almost endless.

To develop the formula (or network algorithm) of the
original function defined on the basis of training sets,
operations of relational algebra and more complex relational
calculus over A sets can be used. Eventually, the set of
generated matrices A make up the combined matrix of a non-
uniform inhibitory Petri net or a network algorithm (logical
circuit model) of CDA. Further, the network algorithm
obtained in the form of the incidence matrix АI is used as the
initial information to solve the problems of the reachability
analysis and generation of reachable stable states of CDA.

IV. SOLUTION GENERATION
The mathematical model of CDA makes it possible to

reproduce both the set of solutions specified in the training
process and the set of solutions that were not set in the training
process. The task of generating solutions of the mathematical
model of CDA is reduced to solving the problem of
reachability of inhibitory Petri nets.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.3

Volume 14, 2020

ISSN: 1998-0159 17

The analysis of reachability of inhibitory Petri nets, in its
turn, is reduced to solving a system of equations (2) with the
incidence matrix AI:

 M𝑚𝑎𝑥 = AI ∙ S𝑚𝑎𝑥 . (4)

If each vector Δµ ∈ ΔM is fully defined on the set of input
and output positions of the network, the analysis of
reachability of stable states of automaton is performed
(verification of the structural diagram of automaton). The
system of equations (4) can have only one solution for each
vector Δµ.

The generation of reachable steady states of CDA is
performed in the case, if each vector Δµ is undefined totally
on a set of input and output positions of the network. In case
of an uncertainty or incomplete definition of the vector Δµ,
the system of equations (4) has a set of solutions for each
vector Δµ ∈ ΔM. The entire set of solutions can be obtained
even in the case of complete uncertainty of the set ΔM. The
number of solutions corresponds to the number of possible
switchings of the automaton or the number of sets of the truth
table (switching table).

The problem is that the well-known methods for
generating solutions of linear systems of equations in
nonnegative integer numbers have asymptotically exponential
computational complexity, which makes it difficult to use
them to analyze real systems. The time of generation of the
minimum generating set of solutions (MGSS) on the set of
unexpressed variables is critical from the point of view of
efficiency. The solution to the problem can be obtained as a
result of taking into account the specifics of CDA logic
circuits. The MGSS generation of the CDA state equation is
performed proceeding from the principle of component
activity (composite transitions of the network model) for each
state of the automaton. In the network model of each
component, only one simple transition can be activated at a
time (a set from the component truth table). Accordingly, the
number of units in the combination is equal to the number of
active transitions of the circuit components. This constraint is
determined by the specificity of the CDA firing and is
necessary to minimize the iteration of transition combinations,
as well as to eliminate possible invalid solutions. Practically,
the set of solutions obtained in the process of training for CDA
for the minimum number of training sets can be used as the
MGSS.

V. MODEL TESTING
The mathematical model of CDA was tested on an n-bit

parallel adder. In the course of the training prcedure, the
mathematical model of CDA was formed which made it
possible to reproduce the entire set of the truth table of the n-
bit parallel adder. With an increase in the bit depth of the adder
(which leads to an exponential growth of the total training set),
almost a linear dependence of the number of elements in the
minimum training sets was achieved. This results in an
acceptable time of learning. The maximum bit depth of the

adder is only limited by the memory capacity and the speed of
the computer.

VI. CONCLUSION
The development of the ideas underlying the concept of a

cognitive digital automaton has been proposed. The
construction of the mathematical model has been described
together with the logic synthesis and solution generation
procedures.

The proposed approach has a number of benefits
compared to conventional feed-forward neural networks.
First, the CDA demonstrates the capability of being trained on
incomplete training sets, which has been confirmed by the
example of arithmetic and logical operations. It has been
shown that the minimum number of rows of the truth table
required for training grows linearly with the bit depth while
the total size of the training set increases exponentially.

Second, the consequence of the proposed training
algorithm is an “on the fly” learning mode of the network that
could be useful in various applications, e.g. robotics.

Third, the results obtained could help outline an alternative
solution to the problem of catastrophic forgetting known for
feed-forward neural networks [8]. In the case of CDA,
knowledge fusion is a simple combination of separate
matrices which form a non-uniform inhibitory Petri net.

ACKNOWLEDGMENT
The work was supported by the Russian Fund for Basic

Research and the Government of the Ulyanovsk region under
Grants No. 18-47-732015 and No. 19-47-730016.

REFERENCES
[1] V. V. Kozhevnikov, “Fundamentals of Mathematical Modeling of

Cognitive Digital Automata”, J. Num. Anal., Industr. and Appl. Math.,
vol. 13, No. 1-2, pp.15-27, 2019.

[2] V. V. Kozhevnikov, “The method of mathematical modeling of the
logic circuits of digital automata”, Automation of Control Processes,
No. 1(30), pp. 97–101, 2012 (in Russian).

[3] V. V. Kozhevnikov, “Reachability analysis method for the stable states
of the logic circuits of digital automata”, Automation of Control
Processes, No. 1(35), pp. 99–108, 2014 (in Russian).

[4] T. Murata, “Petri nets. Properties, analysis and applications”, Proc.
IEEE, Vol. 77, Issue 4, pp. 541–580, 1989.

[5] J. L. Peterson, Petri Net Theory and The Modeling of Systems.
Prentice-Hall, 1981.

[6] V. V. Kozhevnikov, “Reachability analysis method for inhibitory Petri
nets”, Automation of Control Processes, No. 3(33), pp. 29–34, 2013 (in
Russian).

[7] V. V. Kozhevnikov, “The concept of Petri Nets with programmable
logic”, Scientific Notes of Ulyanovsk State University: Math. and Inf.
Tech. Series, Vol. 1, No 6, pp. 150-155, 2014 (in Russian).

[8] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.
A. Rusu, et al., “Overcoming catastrophic forgetting in neural nets”,
Proc. Nat. Acad. Sci., Vol. 114 (13), pp. 3521-3526, Mar 2017.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.3

Volume 14, 2020

ISSN: 1998-0159 18

