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Abstract—An approach to the problem of solution 

prediction of arithmetic and logical operations on the 

basis of the mathematical model of cognitive digital 

automata (CDA) is proposed. A particular advantage of 

the proposed approach is that the training procedure can 

be performed on limited (minimum) training sets. 

Prediction or generation of solutions is performed on the 

basis of the mathematical model of CDA which is formed 

in the course of training. As a testbed for the approach, 

the modeling of an n-bit parallel adder was implemented. 

The mathematical model of the adder was formed, which 

made it possible to reproduce the entire truth table for the 

n-bit parallel adder. The results obtained could be useful 

as an alternative solution to a number of problems known 

for conventional feed-forward neural networks, e.g. on-

the-fly learning and catastrophic forgetting. 
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I. INTRODUCTION 
Recently, the concept of cognitive digital automata has 

been developed by one of the authors [1]. The mathematical 
model of CDA, in fact, represents a further development of the 
theory of digital automata and, accordingly, is based on the 
methods of mathematical modeling of conventional digital 
automata [2-4]. A particular advantage of the proposed 
mathematical model of CDA is that the training procedure can 
be performed on limited (minimum) training sets. The 
cognitivity of the digital automaton is determined by the 
possibility of generating solutions that have not been provided 
during the training procedure.  

The mathematical model is constructed on the basis of a 
representation of CDA in the form of the state equation of 
Petri nets (PNs) from the class of Murata equations (matrix 
equations) [4] or a system of linear algebraic equations 
(SLAE). The mathematical apparatus of PNs [5] has been 
proposed as a tool for constructing the mathematical model of 
CDA: marked graphs, inhibitory PNs [6], and PNs with 
programmable logic (PNPL) [7]. Unlike in inhibitory PNs, the 
firing logic of the transitions of the PNPL is not pre-set, and 
any input arc of the transition can be inhibitory, and the 
transition can be programmed to perform any logical function. 
In this case, the logic of the components of the initial structure 
of an automaton in the incidence matrix is given implicitly.  

The formation of the configuration of the initial structure 
of an automaton is implemented as a result of the cluster 
analysis of training sets. Based on the results of the cluster 
analysis or classification of training sets, one can determine 
the number of inputs and outputs, the number of layers of 
initial structure, the number of components in each layer, the 
structure of connections between components . The regression 
analysis of the data of training sets is performed in the process 
of training or synthesis of the logic of the initial structure of 
automaton.  

The initial structure of an automaton is represented as a 
universal matrix, where the connections between the 
components are built on the “all with all” principle. Various 
multi-level configurations of the initial structure are also 
possible where the “all with all” connections between the 
components are only created between different levels of the 
initial structure similar to that in feed-forward neural 
networks. 

The possibility of generating a formula (or network 
algorithm) of CDA depends on the critical mass of elements 
of the training set and the training algorithms. Hence, the task 
of generating the training sets with a minimum number of 
elements for a given CDA function or experimentally 
determined function is of particular importance. Prediction or 
generation of solutions, in its turn, is performed on the basis 
of the mathematical model of CDA obtained in the course of 
training. 

II. CONSTRUCTION OF THE MATHEMATICAL MODEL  
The initial structure of CDA is represented in the form of 

a marked graph (structure diagram) by interpreting the inputs 
and outputs of the structure and structural components by the 
positions of the marked graph, and the components 
themselves and the connection lines as composite and simple 
transitions, respectively. The set of inputs and outputs of the 
structure diagram is interpreted as a set of input and output 
positions of the network. The availability of information is 
interpreted as a token in the network position. At the logical 
presentation level, a token in a network position is interpreted 
as a logical unit, and its absence is interpreted as the logical 
zero. The movement of information is interpreted as the 
movement of tokens. 

As the minimum set of training sets (highlighted in gray), 
those rows are selected from the truth table which give ‘1’ in 
only one output of the adder taking account of the transfer to 
the senior (third) class. Thus, for each output  of the adder, the 
corresponding class of training sets is formed. Further, from 
the selected sets for each output class, only sets with one ‘1’  
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at the inputs of the adder, with two ‘1’, etc., were selected. 
According to this principle, the corresponding subclasses of 
training sets have been formed. 

When forming the initial structure of the adder, sets of 
subclasses constitute the first layer of the structure diagram, 
where one component is given to each subclass. The set of 
classes constitutes the second layer of the structure diagram, 
where one component also corresponds to each class. As a 
result, the initial structure of the adder consists of two layers. 
The number of components of the first layer is equal to the 
number of subclasses. The number of components of the 
second layer is equal to the number of classes. In the case 
when a class consists of one subclass, only one component is 
formed in the first or second layer. The structure of 
connections between the inputs of the structure diagram and 
the inputs of the components of the first layer, the outputs of 
the components of the first layer and the inputs of the 
components of the second layer is formed according to  the 
principle of “all with all”. 

The representation  of the CDA structure diagram in the 
form of a marked graph allows one to go from the description 
of the structure diagram to its mathematical representation in 
the form of the incidence matrix: A = A+ - A–. Constructing a 
complex mathematical model of CDA is done on the basis of 
the fundamental state equation of Petri nets from the class of 
Murata equations [2]: 

 ∆μ = A ∙ τ , (1) 

where ∆μ = μ − μ0 , μ0 is the initial network marking vector, 
μ  is the finite network marking vector, τ  is the network 
transition coverage vector, which only determines the 
composition and does not determine the sequence of transition 
firings.  The vector  ∆μ  is defined on a set of network 
positions Р. The vector τ  is defined on a set of network 
transitions Т. A set of vectors  ∆μ   forms a set of   ΔM, where  
Δμ ∈ ΔM.  A set of transition coverage vectors τ  forms 
network coverage S, where  τ ∈ S. 

The set ΔM  specified on the set of input and output 
positions of the network is interpreted as the initial truth table 
or the transition table of CDA states. As a set of training sets, 
either all elements of the truth table can be used, or only the 
minimum set. 

On the set of training sets, the CDA network model can be 
represented as a system of matrix equations of Petri nets: 

 ∆M𝑚𝑖𝑛 = A ∙ S𝑚𝑖𝑛   () 

The marking of the internal positions of the set ∆M is not 
determined. The composition of the coverage transitions S is 
also not determined. Only the initial incidence matrix А is 
completely determined. 

III. LOGIC SYNTHESIS  
To solve the CDA logic synthesis problem, the methods of 

calculating the invariants of the state equation of the marked 
graph of the automaton structure diagram are used. Marked 
graph invariants are a powerful tool for studying the structural 
properties of networks and are solutions of homogeneous 
systems of equations.  

The projection of implicitly defined input logic of 
composite transitions of components and output logic of 

simple transitions of connection lines to the initial structure 
diagram of an automaton is reduced to solving a system of 
homogeneous equations (2) with an undetermined incidence 
matrix: 

 ∆M𝑚𝑖𝑛 = Aα  ∙ S𝑚𝑖𝑛   , (3) 

where Aα = A+α −  A−α is an undetermined incidence matrix 
for which aij = { 0,1,-1, α,- α }. 

Relevant unknowns are introduced in the incidence matrix 
A in (1) for the input arcs of composite transitions in 
accordance with the expression: aij = -1 → aij= -α    and for the 
output arcs of simple transitions in accordance with the 
expression: aij = 1 → aij = α , where α ={0,1}. 

The corresponding matrix A is calculated for each 
vector τ . The values of the unknowns for inhibitor arcs are 
defined implicitly and are equal to zero, which provides a 
solution to the problem of the matrix representation of 
inhibitory Petri nets. At the same time, for each compound 
transition that is a part of the vector  τ  , the corresponding 
simple transition and its structural connections characteristic 
only for the given vector τ are determined. As a result of the 
union of the matrices A, the inhibitor incidence matrix is 
formed:  AI = ⋃ A. 

Practically, the projection of implicitly defined logic onto 
the initial structure diagram of the automaton is reduced to 
zeroing the rows of the original incidence matrix for each 
vector τ on a set of network positions that are not part of the 
corresponding coverage R with the subsequent combination 
of the matrices for each R. Null rows in the incidence matrix 
AI are deleted. 

The logic of the components (compound transitions) of the 
initial CDA structure diagram in the synthesis process 
(training) of each learning step may vary, i.e. the truth tables 
of network components do not have a fixed size and, 
accordingly, a fixed logic function. The process of forming the 
logic of components is limited only by the number of 
component inputs or the exhaustive search through possible 
combinations of signals at the inputs of each component. 
When there is a sufficiently large number of inputs of each 
component, the process of forming the logic of components 
and the network as a whole is almost endless. 

To develop the formula (or network algorithm) of the 
original function defined on the basis of training sets, 
operations of relational algebra and more complex relational 
calculus over A sets can be used. Eventually, the set of 
generated matrices A make up the combined matrix of a non-
uniform inhibitory Petri net or a network algorithm (logical 
circuit model) of CDA. Further, the network algorithm 
obtained in the form of the incidence matrix АI is used as the 
initial information to solve the problems of the reachability 
analysis and generation of reachable stable states of CDA. 

IV. SOLUTION GENERATION  
The mathematical model of CDA makes it possible to 

reproduce both the set of solutions specified in the training 
process and the set of solutions that were not set in the training 
process. The task of generating solutions of the mathematical 
model of CDA is reduced to solving the problem of 
reachability of inhibitory Petri nets. 
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The analysis of reachability of inhibitory Petri nets, in its 
turn, is reduced to solving a system of equations (2) with the 
incidence matrix AI:  

 M𝑚𝑎𝑥 = AI  ∙ S𝑚𝑎𝑥   . (4) 

If each vector Δµ ∈ ΔM is fully defined on the set of input 
and output positions of the network, the analysis of 
reachability of stable states of automaton is performed 
(verification of the structural diagram of automaton). The 
system of equations (4) can have only one solution for each 
vector Δµ. 

The generation of reachable steady states of CDA is 
performed in the case, if each vector Δµ is undefined totally 
on a set of input and output positions of the network. In case 
of an uncertainty or incomplete definition of the vector Δµ, 
the system of equations (4) has a set of solutions for each 
vector Δµ ∈ ΔM. The entire set of solutions can be obtained 
even in the case of complete uncertainty of the set  ΔM. The 
number of solutions corresponds to the number of possible 
switchings of the automaton or the number of sets of the truth 
table (switching table). 

The problem is that the well-known methods for 
generating solutions of linear systems of equations in 
nonnegative integer numbers have asymptotically exponential 
computational complexity, which makes it difficult to use 
them to analyze real systems. The time of generation of the 
minimum generating set of solutions (MGSS) on the set of 
unexpressed variables is critical from the point of view of 
efficiency. The solution to the problem can be obtained as a 
result of taking into account the specifics of CDA logic 
circuits. The MGSS generation of the CDA state equation is 
performed proceeding from the principle of component 
activity (composite transitions of the network model) for each 
state of the automaton. In the network model of each 
component, only one simple transition can be activated at a 
time (a set from the component truth table). Accordingly, the 
number of units in the combination is equal to the number of 
active transitions of the circuit components. This constraint is 
determined by the specificity of the CDA firing and is 
necessary to minimize the iteration of transition combinations, 
as well as to eliminate possible invalid solutions. Practically, 
the set of solutions obtained in the process of training for CDA 
for the minimum number of training sets can be used as the 
MGSS. 

V. MODEL TESTING  
The mathematical model of CDA was tested on an n-bit 

parallel adder. In the course of the training prcedure, the 
mathematical model of CDA was formed which made it 
possible to reproduce the entire set of the truth table of the n-
bit parallel adder. With an increase in the bit depth of the adder 
(which leads to an exponential growth of the total training set), 
almost a linear dependence of the number of elements in the 
minimum training sets was achieved. This results in an 
acceptable time of learning. The maximum bit depth of the 

adder is only limited by the memory capacity and the speed of 
the computer. 

VI. CONCLUSION 
The development of the ideas underlying the concept of a 

cognitive digital automaton has been proposed. The 
construction of the mathematical model has been described 
together with the logic synthesis and solution generation 
procedures. 

The proposed approach has a number of benefits 
compared to conventional feed-forward neural networks. 
First, the CDA demonstrates the capability of being trained on 
incomplete training sets, which has been confirmed by the 
example of arithmetic and logical operations. It has been 
shown that the minimum number of rows of the truth table 
required for training grows linearly with the bit depth while 
the total size of the training set increases exponentially. 

Second, the consequence of the proposed training 
algorithm is an “on the fly” learning mode of the network that 
could be useful in various applications, e.g. robotics. 

Third, the results obtained could help outline an alternative 
solution to the problem of catastrophic forgetting known for 
feed-forward neural networks [8]. In the case of CDA, 
knowledge fusion is a simple combination of separate 
matrices which form a non-uniform inhibitory Petri net. 
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