
Mobile Robot Simulation and Navigation in ROS and Gazebo  

  Denis Chikurtev  
Institute of Information and Communication Technologies   Bulgarian Academy of Sciences 

Sofia, Bulgaria 
dchikurtev@gmail.com

Received: April 30, 2020. Revised: September 17, 2020. Accepted: September 28, 2020. Published: September 30, 2020. 

 

Abstract— mobile robots are entering our daily lives as well 

as in the industry. Their task is usually associated with carrying 

out transportation. This leads to the need to perform 

autonomous movement of mobile robots. On the other hand, 

modern practice is that the planning of most processes is done 

through simulations. Thus, various future production problems 

can be anticipated and remedied or improved. The article 

describes the creation of a mobile robot model in the Gazebo 

simulation environment. Specific settings and features for 

running a mobile robot in autonomous navigation mode under 

the robot operating system are presented. The steps for creating 

a map, localization and navigation are presented. Experiments 

have been conducted to optimize and tune the parameters of 

both the robot model itself and the simulation control 

parameters. 

Keywords— mobile robot, simulation model, autonomous 

navigation, ROS, Gazebo 

I. INTRODUCTION 
Service robotics is a very popular area that has undergone 

significant development in recent years. Service robots are 
widely used. They are becoming more and more 
commonplace in our daily lives as well as in various fields of 
industry, healthcare, medicine, education, construction, 
entertainment and more [1, 2, 3]. Most service robots are 
mobile because they can perform their tasks related to 
assisting humans and / or machines [4, 6]. The mobility of the 
robots enables them to perform the tasks for which they are 
intended without difficulty [2]. 

Nowadays there is a very wide variety of mobile robots. 
The main types of mobile robots, according to their 
locomotion, are divided into wheeled, chain, walking and 
floating. The subject of research in the article are wheeled 
mobile robots. They are among the most common and are 
relatively easy to operate, unlike walking robots. Wheeled 
mobile robots are equipped with different types of wheels - 
standard, omni wheels, mecanum wheels and more. There are 
different configurations of mobile platforms according to the 
location and number of wheels. Thus, we have differentially 
positioned wheels (such as tank-type platform) with one or 
two caster wheels, triangular omni-wheel platforms, standard 
four-wheel platforms with mecanum wheels and other specific 
and unique types. 

All these varieties and configurations of mobile platforms 
are characterized by specific kinematic and dynamic 
characteristics. These specifics are at the heart of managing a 
mobile robot. They determine the behavior of the platform and 
controllers. In a simulation model, these characteristics must 

be correctly set in order to get as close as possible to the real 
model. 

Simulating a mobile robot can be of great benefit. On the 
one hand, having a robot model in a simulation environment 
can be used by many people without the need for everyone to 
own a physical robot. On the other hand, a number of 
experiments and studies can be conducted in this way without 
compromising the security of humans, the robot or the objects 
that the robot handles and interacts with. Last but not least, 
running time through simulation can be greatly reduced, since 
many activities such as preparing for experiments or restoring 
the robot's initial parameters and the characteristics of the 
environment in which it operates are eliminated. 

Another major problem with mobile robots is their 
autonomous movement. Autonomous navigation involves 
localization, path planning, and motion control of the mobile 
platform [8]. All these problems have a number of solutions 
and can be investigated in a simulation environment. The 
article describes the creation of a simulation model of a 
differential drive mobile platform equipment with a laser 
sensor and a simulation controller in a Gazebo environment. 
Then describes the use of the navigation package ROS and the 
necessary tools and programs for its implementation. 

II. ROS AND GAZEBO 
The robotics operating system is widespread and used by 

all those involved in robotics. The system allows the use of 
numerous ready-made packages, tools, models and libraries 
for robots [6]. And because it is open source each user has the 
ability to use and modify the right one for him pack, tool or 
library. 

The Gazebo simulator can connect directly to the ROS 
through special packages. These packages provide the 
necessary interfaces to simulate a Gazebo robot using ROS 
messages, services, and dynamic reconfigure. 

In order to work correctly with a robot, PAC needs a 
description of the kinematics of the robot. In this way, 
trajectories, navigation, and more can be planned and 
executed. ROS way of describing a robot is by specifying its 
properties in URDF (Universal Robot Description Format) 
files. URDF supports XML and xacro (XML macro) 
languages. Xacro code is easier to implement, maintain and 
has better readability. To use a URDF file in Gazebo, some 
additional simulation-specific tags must be added to work 
properly with Gazebo. 

The relationship between ROS and Gazebo is the same as 
that between ROS and the hardware of a real robot. The 
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controller in ROS receives data on one topic from both models 
and publishes data on another topic to both models. 
Simulation and real robot control can be performed at the 
same time. This way, their behavior and work can be easily 
compared. In fact, ROS makes no difference whether it 
controls a real robot or a simulation model of a robot. The 
important thing here is to implement the correct nodes and to 
have the necessary topics for communication. 

Figure 1 shows the structure of the Gazebo simulation 
model. It consists of a model with a description of the robot, 
its plugins and Gazebo libraries. The model receives data from 
the Joint Command Interface, and as a feedback sends data 
through the Joint State Interface. The same applies to the 
hardware model (Figure 2), which is connected to the ROS 
controller via the same interfaces. The difference between the 
two models is that the hardware model includes components 
such as an embedded controller, actuators and sensors, which 
in Gazebo are replaced by simulated ones by plugins and 
libraries. The ROS controller is shown in Figure 3. It 
processes the data received from any model and sends control 
commands accordingly [13]. 

 
Fig. 1. Principal Robot Simulation in Gazebo. 

 
Fig. 2. Principal Robot Hardware. 

 
Fig. 3. ROS Contrrller Manager. 

III. DESIGN OF A MOBILE ROBOT IN GAZEBO 
Robot simulation is at the heart of creating and testing 

robot models [5]. A well-designed simulation model enables 
testing algorithms, controllers, robot design, artificial 
intelligence training, and more. The Gazebo platform offers 
the ability to accurately and effectively simulate robots in 
complex environments, both outdoors and indoors. Gazebo 
offers physics simulation at a much higher degree of fidelity, 
a suite of sensors, and interfaces for both users and programs. 

A few key features of Gazebo include: 

• multiple physics engines, 

• a rich library of robot models and environments, 

• a wide variety of sensors, 

• convenient programmatic and graphical interfaces 

Creating a robot simulation model can happen by using 
Gazebo's graphical user interface or by directly programming 
the robot's parameters and properties in files. In both cases, the 
features and rules for creating a robot and describing the 
parameters of its units are the same. There are a number of 
steps that can be taken to create a mobile platform. The article 
describes the minimum number of steps required to create a 
working model of a mobile robot. 

• creation on the basis of the platform: the following 
properties are defined - shape, dimensions, mass, 
moment of inertia (according to the form: cylinder, 
cube, parallelepiped), type of unit: parent unit; 

• creation of the driving wheels: according to the type 
of platform, the required number of wheels are 
created with the following properties - shape, 
dimensions, mass, moment of inertia, type of unit: 
child unit; 

• creation of caster wheels: they are set in the shape of 
a ball with defined radius and positioning; 

• set joints between the base and the driven wheels: set 
the type of joint, set the type of units - the base is the 
parent, the rest are children, set the axis of rotation of 
the wheel, positioning the child units relative to the 
base; 

• fixing joints between the base and the caster wheels: 
because they rotate in all directions, we choose the 
type of the joint to be ball, then position them against 
the base; 

• adding sensors: Sensors are described like other units 
and the most important thing for them is to determine 
the connection to the joint to the base. Then a 
description of the sensor properties is added such as: 
update rate, resolution, range, scan angle; 

• adding plugins: in our case we add a gazebo plugins 
to control the differential platform and scanning the 
area with the lidar. Gazebo controllers set a number 
of parameters such as update rate, connection names, 
wheel diameter, wheel spacing, torque, range, 
scanning angle, input and output topics. 

The dimensions and parameters of all robot components 
are presented in Table 1. There are two files in which the robot 
model information is programmed and stored. One file is of 
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type xacro and contains information about the size and 
location of all links and joints of the robot. Each individual 
element of the robot is represented as a link with a specific 
name. The link is described with the following properties: 
collision, visual and inertial. After all the links have been 
described, the joints should be described in order to obtain the 
connection between the links.  

TABLE I.  ROBOT’S PARTS DIMENTIONS. 

 

The other file is a gazebo extension, it contains 
information about how each element looks in the simulation, 
the plugins used and their settings, as well as the properties 
and settings of all the sensors. The 
differential_drive_controller plugin is used to drive the mobile 
robot. The controller parameters are: 

<legacyMode>false; <alwaysOn>true; <updateRate>30; 
<leftJoint>left_wheel_hinge; 
<rightJoint>right_wheel_hinge; <wheelSeparation>0.4; 
<wheelDiameter>0.16; <torque>15; 
<commandTopic>cmd_vel; <odometryTopic>odom; 
<odometryFrame>odom; <robotBaseFrame>chassis. 

Wheel and platform color references have been added. The 
following is a reference for the laser scanner and its features: 

<pose>0 0 0.06 0 0 0; <visualize>false; <update_rate>40;  
<scan> <horizontal><samples>720; <resolution>1; 
<min_angle>-3.14159265; <max_angle>3.14159265; 
<range><min>0.2; <max>25.0; <resolution>0.01; 
<noise><type>gaussian; <mean>0.0; <stddev>0.01. 

Finally, we use the gazebo_ros_head_rplidar_controller 
plugin to publish the scanned data into a topic: <topicName> 
/ mybot / laser / scan; <frameName> laser. 

There is another way to describe the elements is to import 
a mesh file with dae extension. Such a file can be exported 
from a drawing in Blender. This type of file describes the 
characteristics of the element in great detail. In our case, the 
description of the RPLidar A2 laser sensor is inserted [11].  

After completing all these steps, the mobile platform is 
ready for use. Figure 4 shows the platform designed in 
Gazebo. After launching the robot model in ROS and Gazebo, 
we can check what the active nodes and topics are. So far, we 
have two output topics - odom of odometry, LaserScan of 
lidar, and one input topic (cmd_vel) for wheel control. 

 
Fig. 4. 3D Simulated Model of Differential Drive Mobile Robot. 

The final stage of modeling in Gazebo is to create a model 
of a simulated world. Thus, the robot will be located in a 
certain environment with its properties. To make it easier for 
developers, Gazebo offers a significant range of ready-to-use 
items and even buildings. Therefore, we can easily create our 
world and save it. The created world information is saved in a 
.world file. Finally, in order to launch the robot in the world 
we create, we must start together the robot model and the 
world file in a .launch file (Figure 5). 

 
Fig. 5. Robot Model in Simulated World. 

IV. ROS NAVIGATION STACK 
Once we have made a simulation model of the robot, we 

can configure it to operate at autonomous navigation. Several 
new steps should be taken to achieve this. These steps are 
determined by the navigation package requirements.  

The principle of operation of the navigation package is 
presented in Figure 6. Autonomous navigation is performed at 
the move_base node [12]. This node receives the desired 
destination data from the moce_base_simple / goal topic. 
Then move_base reads the data from the odom, LaserScan, tf 
- transform library [7], and GetMap topics, processes the data 
and plans the path. Finally, the necessary commands are 
published in the cmd_vel topic for controlling the mobile 
platform. 

Element Shape, Dimensions Parameters 

base cylinder, radius = 0.2 m, length 
= 0.05 m 

mass = 10 kg 

driving wheels cylinder, radius = 0.08 m, length 
= 0.03 m 

mass = 2 kg 

caster wheels sphere, radius = 0.04 m mass = 0.5 kg 
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Fig. 6. ROS Navigation Stack Configuration. 

In order for navigation to work correctly, both the mapping 
and localization packages must be configured [8]. These two 
packages are part of the packages in the ROS and can be used 
ready-made. The Mapping package is used to create and 
retrieve map information [9]. The AMCL package provides 
self-localization algorithms [10]. In addition, some global and 
local planer parameters, as well as global_costmap and 
local_costmap parameters can be set. When the entire 
navigation system is already configured, we move on to 
experiments. 

Initially, a map of the work environment should be 
created. The map creation process is done manually. The 
following programs and nodes are started: 

• launch the model of the robot in the simulated world; 

• slam_gamapping node that reads odometry and laser 
scanner data and returns data to create a new map; 

• tf node [7]; 

• node for manual control of the robot, via keyboard or 
joystick; 

• rviz interface for rendering the map made; 

after the map is ready, we save it. Figure 7 shows the map 
made. 

 
Fig. 7. Created Map of the Gazebo World. 

When the map is ready, we can start the autonomous 
navigation mode. To do this, the following programs should 
be started: 

• launch the model of the robot in the simulated world; 

• the nodes in figure 6: map_server, tf, amcl, 
move_base; 

• rviz interface to visualize and set desired destinations. 

So now we have a working simulation model of the robot 
under the control of PAC, in the mode of autonomous 
navigation. To make sure we have all the nodes we need, we 
can open rqt_graph. An interface opens showing all running 
nodes and topics (Fig. 8). This check is very useful because 

we can easily find out if the connections between the nodes 
are correct and if there are missing links. 

 
Fig. 8. Active ROS Nodes in Navigation Mode. 

V. EXPERIMENTS AND RESULTS 
As only the minimum requirements for operating a robot 

in autonomous navigation mode are met, the robot is not 
expected to move perfectly and always achieving the set 
coordinates. However, experiments can be performed to 
verify that the robot can perform the tasks.  

The experiments performed are of two types. The first type 
of experiments checks whether the robot can move 
independently in a room without obstacles. In the second type 
of experiments, additional objects were added into the room 
and then we check if the robot could detect obstacles and avoid 
them. 

Both types of experiments were successful. As expected, 
when navigating the robot in an empty room with no obstacles 
added, all experiments are successful. The system 
successfully locates the robot, generates a path, and navigates 
the robot. The robot reaches the set position each time. The 
navigation system has no difficulty since it has a lot of free 
space. 

However, this changes when there are additional 
obstacles. Figure 5 shows the added cubes and cylinders in the 
middle of the room. It should be noted that they were added 
after the card was already created and do not exist on the card 
itself, as can be seen in Figure 5. In these experiments, the 
navigation system itself recognizes the obstacles and even 
during the movement of the robot changes the planned path if 
necessary. 

Figures 9, 10, 11, 12 show the steps of completing one of 
the tasks. The starting position of the robot is the beginning of 
the blue line. The destination given is the position that the 
robot has reached in Figure 12. The robot is shown in orange, 
in blue is the planned path by global_planner, in the green is 
planned local path by local_planner, in red and purple are the 
contours of the map and obstacles. 

In black, the zone of collision is indicated as a shadow, i.e. 
the maximum distance that the robot can approach to an 
outline / obstacle. The distance to the contours can be adjusted 
depending on the settings and behavior of the robot. 

Just before the experiment started, we added a new 
obstacle - a cylinder in the middle among others. It can be seen 
that the laser scanner recognizes the contour of the cylinder, 
but the navigation system has not yet added a black shadow 
because the object is not yet within the scope of local_planner. 
However, when the robot approaches and the object become 
within range, it is recognized as a new object and the system 
corrects the original path. 
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Fig. 9. Navigation experiments – starting. 

 
Fig. 10. Navigation Experiments - the robot aligns with the planned path. 

 
Fig. 11. Navigation Experiments – recognition and avoiding the new 

obstacle. 

In some of the experiments, the robot failed to reach its 
target. In these cases, the robot falls into the area of collision 
with an object after deviating too much from its task or after 
not recognizing an obstacle in time. This happens for two 
reasons: lack of a controller for robust robot control and delay 
in refreshing rate of the local_costmap.  

While for the first reason an ROS controller for speed 
control of the robot must be set up, the second is easily 

corrected by changing the refresh rate parameter in 
local_costmap. 

 
Fig. 12. Navigation Experiments – reach the final goal. 

In addition, it is advisable to adjust the base_local_planer 
parameters because their default values may not be 
appropriate for each platform. The parameters in 
base_local_planer are maximum and minimum velocity on the 
x and y axes, maximum and minimum rotation speed and 
acceleration limits on the three axes x, y and z. 

VI. CONCLUSION 
The Robot Operating System and the Gazebo Platform 

offer very good capabilities for creating and controlling 
robots. The article describes the main steps for creating a 
simulation model of a mobile robot in ROS and Gazebo. The 
model developed is a differential robot with two caster wheels 
and is equipped with a laser scanner. The ROS navigation 
system was then configured to manage the created robot. The 
experiments show that without making special modifications 
to the settings of the mapping, localization and navigation 
packages, the robot can move independently in the simulated 
environment. 

However, to achieve accurate path tracking, smooth 
movement and precise positioning, it is necessary to add 
additional systems such as a speed controller and an inertial 
sensor. This is planned to be as future work on this study. 
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