
Mobile Robot Simulation and Navigation in ROS and Gazebo

 Denis Chikurtev
Institute of Information and Communication Technologies Bulgarian Academy of Sciences

Sofia, Bulgaria
dchikurtev@gmail.com

Received: April 30, 2020. Revised: September 17, 2020. Accepted: September 28, 2020. Published: September 30, 2020.

Abstract— mobile robots are entering our daily lives as well

as in the industry. Their task is usually associated with carrying

out transportation. This leads to the need to perform

autonomous movement of mobile robots. On the other hand,

modern practice is that the planning of most processes is done

through simulations. Thus, various future production problems

can be anticipated and remedied or improved. The article

describes the creation of a mobile robot model in the Gazebo

simulation environment. Specific settings and features for

running a mobile robot in autonomous navigation mode under

the robot operating system are presented. The steps for creating

a map, localization and navigation are presented. Experiments

have been conducted to optimize and tune the parameters of

both the robot model itself and the simulation control

parameters.

Keywords— mobile robot, simulation model, autonomous

navigation, ROS, Gazebo

I. INTRODUCTION
Service robotics is a very popular area that has undergone

significant development in recent years. Service robots are
widely used. They are becoming more and more
commonplace in our daily lives as well as in various fields of
industry, healthcare, medicine, education, construction,
entertainment and more [1, 2, 3]. Most service robots are
mobile because they can perform their tasks related to
assisting humans and / or machines [4, 6]. The mobility of the
robots enables them to perform the tasks for which they are
intended without difficulty [2].

Nowadays there is a very wide variety of mobile robots.
The main types of mobile robots, according to their
locomotion, are divided into wheeled, chain, walking and
floating. The subject of research in the article are wheeled
mobile robots. They are among the most common and are
relatively easy to operate, unlike walking robots. Wheeled
mobile robots are equipped with different types of wheels -
standard, omni wheels, mecanum wheels and more. There are
different configurations of mobile platforms according to the
location and number of wheels. Thus, we have differentially
positioned wheels (such as tank-type platform) with one or
two caster wheels, triangular omni-wheel platforms, standard
four-wheel platforms with mecanum wheels and other specific
and unique types.

All these varieties and configurations of mobile platforms
are characterized by specific kinematic and dynamic
characteristics. These specifics are at the heart of managing a
mobile robot. They determine the behavior of the platform and
controllers. In a simulation model, these characteristics must

be correctly set in order to get as close as possible to the real
model.

Simulating a mobile robot can be of great benefit. On the
one hand, having a robot model in a simulation environment
can be used by many people without the need for everyone to
own a physical robot. On the other hand, a number of
experiments and studies can be conducted in this way without
compromising the security of humans, the robot or the objects
that the robot handles and interacts with. Last but not least,
running time through simulation can be greatly reduced, since
many activities such as preparing for experiments or restoring
the robot's initial parameters and the characteristics of the
environment in which it operates are eliminated.

Another major problem with mobile robots is their
autonomous movement. Autonomous navigation involves
localization, path planning, and motion control of the mobile
platform [8]. All these problems have a number of solutions
and can be investigated in a simulation environment. The
article describes the creation of a simulation model of a
differential drive mobile platform equipment with a laser
sensor and a simulation controller in a Gazebo environment.
Then describes the use of the navigation package ROS and the
necessary tools and programs for its implementation.

II. ROS AND GAZEBO
The robotics operating system is widespread and used by

all those involved in robotics. The system allows the use of
numerous ready-made packages, tools, models and libraries
for robots [6]. And because it is open source each user has the
ability to use and modify the right one for him pack, tool or
library.

The Gazebo simulator can connect directly to the ROS
through special packages. These packages provide the
necessary interfaces to simulate a Gazebo robot using ROS
messages, services, and dynamic reconfigure.

In order to work correctly with a robot, PAC needs a
description of the kinematics of the robot. In this way,
trajectories, navigation, and more can be planned and
executed. ROS way of describing a robot is by specifying its
properties in URDF (Universal Robot Description Format)
files. URDF supports XML and xacro (XML macro)
languages. Xacro code is easier to implement, maintain and
has better readability. To use a URDF file in Gazebo, some
additional simulation-specific tags must be added to work
properly with Gazebo.

The relationship between ROS and Gazebo is the same as
that between ROS and the hardware of a real robot. The

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.6 Volume 14, 2020

ISSN: 1998-0159 38

mailto:dchikurtev@gmail.com

controller in ROS receives data on one topic from both models
and publishes data on another topic to both models.
Simulation and real robot control can be performed at the
same time. This way, their behavior and work can be easily
compared. In fact, ROS makes no difference whether it
controls a real robot or a simulation model of a robot. The
important thing here is to implement the correct nodes and to
have the necessary topics for communication.

Figure 1 shows the structure of the Gazebo simulation
model. It consists of a model with a description of the robot,
its plugins and Gazebo libraries. The model receives data from
the Joint Command Interface, and as a feedback sends data
through the Joint State Interface. The same applies to the
hardware model (Figure 2), which is connected to the ROS
controller via the same interfaces. The difference between the
two models is that the hardware model includes components
such as an embedded controller, actuators and sensors, which
in Gazebo are replaced by simulated ones by plugins and
libraries. The ROS controller is shown in Figure 3. It
processes the data received from any model and sends control
commands accordingly [13].

Fig. 1. Principal Robot Simulation in Gazebo.

Fig. 2. Principal Robot Hardware.

Fig. 3. ROS Contrrller Manager.

III. DESIGN OF A MOBILE ROBOT IN GAZEBO
Robot simulation is at the heart of creating and testing

robot models [5]. A well-designed simulation model enables
testing algorithms, controllers, robot design, artificial
intelligence training, and more. The Gazebo platform offers
the ability to accurately and effectively simulate robots in
complex environments, both outdoors and indoors. Gazebo
offers physics simulation at a much higher degree of fidelity,
a suite of sensors, and interfaces for both users and programs.

A few key features of Gazebo include:

• multiple physics engines,

• a rich library of robot models and environments,

• a wide variety of sensors,

• convenient programmatic and graphical interfaces

Creating a robot simulation model can happen by using
Gazebo's graphical user interface or by directly programming
the robot's parameters and properties in files. In both cases, the
features and rules for creating a robot and describing the
parameters of its units are the same. There are a number of
steps that can be taken to create a mobile platform. The article
describes the minimum number of steps required to create a
working model of a mobile robot.

• creation on the basis of the platform: the following
properties are defined - shape, dimensions, mass,
moment of inertia (according to the form: cylinder,
cube, parallelepiped), type of unit: parent unit;

• creation of the driving wheels: according to the type
of platform, the required number of wheels are
created with the following properties - shape,
dimensions, mass, moment of inertia, type of unit:
child unit;

• creation of caster wheels: they are set in the shape of
a ball with defined radius and positioning;

• set joints between the base and the driven wheels: set
the type of joint, set the type of units - the base is the
parent, the rest are children, set the axis of rotation of
the wheel, positioning the child units relative to the
base;

• fixing joints between the base and the caster wheels:
because they rotate in all directions, we choose the
type of the joint to be ball, then position them against
the base;

• adding sensors: Sensors are described like other units
and the most important thing for them is to determine
the connection to the joint to the base. Then a
description of the sensor properties is added such as:
update rate, resolution, range, scan angle;

• adding plugins: in our case we add a gazebo plugins
to control the differential platform and scanning the
area with the lidar. Gazebo controllers set a number
of parameters such as update rate, connection names,
wheel diameter, wheel spacing, torque, range,
scanning angle, input and output topics.

The dimensions and parameters of all robot components
are presented in Table 1. There are two files in which the robot
model information is programmed and stored. One file is of

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.6 Volume 14, 2020

ISSN: 1998-0159 39

type xacro and contains information about the size and
location of all links and joints of the robot. Each individual
element of the robot is represented as a link with a specific
name. The link is described with the following properties:
collision, visual and inertial. After all the links have been
described, the joints should be described in order to obtain the
connection between the links.

TABLE I. ROBOT’S PARTS DIMENTIONS.

The other file is a gazebo extension, it contains
information about how each element looks in the simulation,
the plugins used and their settings, as well as the properties
and settings of all the sensors. The
differential_drive_controller plugin is used to drive the mobile
robot. The controller parameters are:

<legacyMode>false; <alwaysOn>true; <updateRate>30;
<leftJoint>left_wheel_hinge;
<rightJoint>right_wheel_hinge; <wheelSeparation>0.4;
<wheelDiameter>0.16; <torque>15;
<commandTopic>cmd_vel; <odometryTopic>odom;
<odometryFrame>odom; <robotBaseFrame>chassis.

Wheel and platform color references have been added. The
following is a reference for the laser scanner and its features:

<pose>0 0 0.06 0 0 0; <visualize>false; <update_rate>40;
<scan> <horizontal><samples>720; <resolution>1;
<min_angle>-3.14159265; <max_angle>3.14159265;
<range><min>0.2; <max>25.0; <resolution>0.01;
<noise><type>gaussian; <mean>0.0; <stddev>0.01.

Finally, we use the gazebo_ros_head_rplidar_controller
plugin to publish the scanned data into a topic: <topicName>
/ mybot / laser / scan; <frameName> laser.

There is another way to describe the elements is to import
a mesh file with dae extension. Such a file can be exported
from a drawing in Blender. This type of file describes the
characteristics of the element in great detail. In our case, the
description of the RPLidar A2 laser sensor is inserted [11].

After completing all these steps, the mobile platform is
ready for use. Figure 4 shows the platform designed in
Gazebo. After launching the robot model in ROS and Gazebo,
we can check what the active nodes and topics are. So far, we
have two output topics - odom of odometry, LaserScan of
lidar, and one input topic (cmd_vel) for wheel control.

Fig. 4. 3D Simulated Model of Differential Drive Mobile Robot.

The final stage of modeling in Gazebo is to create a model
of a simulated world. Thus, the robot will be located in a
certain environment with its properties. To make it easier for
developers, Gazebo offers a significant range of ready-to-use
items and even buildings. Therefore, we can easily create our
world and save it. The created world information is saved in a
.world file. Finally, in order to launch the robot in the world
we create, we must start together the robot model and the
world file in a .launch file (Figure 5).

Fig. 5. Robot Model in Simulated World.

IV. ROS NAVIGATION STACK
Once we have made a simulation model of the robot, we

can configure it to operate at autonomous navigation. Several
new steps should be taken to achieve this. These steps are
determined by the navigation package requirements.

The principle of operation of the navigation package is
presented in Figure 6. Autonomous navigation is performed at
the move_base node [12]. This node receives the desired
destination data from the moce_base_simple / goal topic.
Then move_base reads the data from the odom, LaserScan, tf
- transform library [7], and GetMap topics, processes the data
and plans the path. Finally, the necessary commands are
published in the cmd_vel topic for controlling the mobile
platform.

Element Shape, Dimensions Parameters

base cylinder, radius = 0.2 m, length
= 0.05 m

mass = 10 kg

driving wheels cylinder, radius = 0.08 m, length
= 0.03 m

mass = 2 kg

caster wheels sphere, radius = 0.04 m mass = 0.5 kg

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.6 Volume 14, 2020

ISSN: 1998-0159 40

Fig. 6. ROS Navigation Stack Configuration.

In order for navigation to work correctly, both the mapping
and localization packages must be configured [8]. These two
packages are part of the packages in the ROS and can be used
ready-made. The Mapping package is used to create and
retrieve map information [9]. The AMCL package provides
self-localization algorithms [10]. In addition, some global and
local planer parameters, as well as global_costmap and
local_costmap parameters can be set. When the entire
navigation system is already configured, we move on to
experiments.

Initially, a map of the work environment should be
created. The map creation process is done manually. The
following programs and nodes are started:

• launch the model of the robot in the simulated world;

• slam_gamapping node that reads odometry and laser
scanner data and returns data to create a new map;

• tf node [7];

• node for manual control of the robot, via keyboard or
joystick;

• rviz interface for rendering the map made;

after the map is ready, we save it. Figure 7 shows the map
made.

Fig. 7. Created Map of the Gazebo World.

When the map is ready, we can start the autonomous
navigation mode. To do this, the following programs should
be started:

• launch the model of the robot in the simulated world;

• the nodes in figure 6: map_server, tf, amcl,
move_base;

• rviz interface to visualize and set desired destinations.

So now we have a working simulation model of the robot
under the control of PAC, in the mode of autonomous
navigation. To make sure we have all the nodes we need, we
can open rqt_graph. An interface opens showing all running
nodes and topics (Fig. 8). This check is very useful because

we can easily find out if the connections between the nodes
are correct and if there are missing links.

Fig. 8. Active ROS Nodes in Navigation Mode.

V. EXPERIMENTS AND RESULTS
As only the minimum requirements for operating a robot

in autonomous navigation mode are met, the robot is not
expected to move perfectly and always achieving the set
coordinates. However, experiments can be performed to
verify that the robot can perform the tasks.

The experiments performed are of two types. The first type
of experiments checks whether the robot can move
independently in a room without obstacles. In the second type
of experiments, additional objects were added into the room
and then we check if the robot could detect obstacles and avoid
them.

Both types of experiments were successful. As expected,
when navigating the robot in an empty room with no obstacles
added, all experiments are successful. The system
successfully locates the robot, generates a path, and navigates
the robot. The robot reaches the set position each time. The
navigation system has no difficulty since it has a lot of free
space.

However, this changes when there are additional
obstacles. Figure 5 shows the added cubes and cylinders in the
middle of the room. It should be noted that they were added
after the card was already created and do not exist on the card
itself, as can be seen in Figure 5. In these experiments, the
navigation system itself recognizes the obstacles and even
during the movement of the robot changes the planned path if
necessary.

Figures 9, 10, 11, 12 show the steps of completing one of
the tasks. The starting position of the robot is the beginning of
the blue line. The destination given is the position that the
robot has reached in Figure 12. The robot is shown in orange,
in blue is the planned path by global_planner, in the green is
planned local path by local_planner, in red and purple are the
contours of the map and obstacles.

In black, the zone of collision is indicated as a shadow, i.e.
the maximum distance that the robot can approach to an
outline / obstacle. The distance to the contours can be adjusted
depending on the settings and behavior of the robot.

Just before the experiment started, we added a new
obstacle - a cylinder in the middle among others. It can be seen
that the laser scanner recognizes the contour of the cylinder,
but the navigation system has not yet added a black shadow
because the object is not yet within the scope of local_planner.
However, when the robot approaches and the object become
within range, it is recognized as a new object and the system
corrects the original path.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.6 Volume 14, 2020

ISSN: 1998-0159 41

Fig. 9. Navigation experiments – starting.

Fig. 10. Navigation Experiments - the robot aligns with the planned path.

Fig. 11. Navigation Experiments – recognition and avoiding the new

obstacle.

In some of the experiments, the robot failed to reach its
target. In these cases, the robot falls into the area of collision
with an object after deviating too much from its task or after
not recognizing an obstacle in time. This happens for two
reasons: lack of a controller for robust robot control and delay
in refreshing rate of the local_costmap.

While for the first reason an ROS controller for speed
control of the robot must be set up, the second is easily

corrected by changing the refresh rate parameter in
local_costmap.

Fig. 12. Navigation Experiments – reach the final goal.

In addition, it is advisable to adjust the base_local_planer
parameters because their default values may not be
appropriate for each platform. The parameters in
base_local_planer are maximum and minimum velocity on the
x and y axes, maximum and minimum rotation speed and
acceleration limits on the three axes x, y and z.

VI. CONCLUSION
The Robot Operating System and the Gazebo Platform

offer very good capabilities for creating and controlling
robots. The article describes the main steps for creating a
simulation model of a mobile robot in ROS and Gazebo. The
model developed is a differential robot with two caster wheels
and is equipped with a laser scanner. The ROS navigation
system was then configured to manage the created robot. The
experiments show that without making special modifications
to the settings of the mapping, localization and navigation
packages, the robot can move independently in the simulated
environment.

However, to achieve accurate path tracking, smooth
movement and precise positioning, it is necessary to add
additional systems such as a speed controller and an inertial
sensor. This is planned to be as future work on this study.

ACKNOWLEDGMENT (Heading 5)

The research presented in this paper was supported by the
Bulgarian National Science Fund under the contracts No. KP-
06-М27/1 – 04.12.2018. The work was partially supported by
the Bulgarian Ministry of Education and Science under the
National Research Programme “Young scientists and
postdoctoral students” approved by DCM # 577 / 17.08.2018.

REFERENCES
[1] Zheng, Chuanqi, and Kiju Lee. "WheeLeR: Wheel-Leg Reconfigurable

Mechanism with Passive Gears for Mobile Robot Applications." In
2019 International Conference on Robotics and Automation (ICRA),
pp. 9292-9298. IEEE, 2019.

[2] Kim, Pileun, Jingdao Chen, Jitae Kim, and Yong K. Cho. "SLAM-
driven intelligent autonomous mobile robot navigation for construction
applications." In Workshop of the European Group for Intelligent
Computing in Engineering, pp. 254-269. Springer, Cham, 2018.

[3] Arvin, Farshad, Jose Luis Espinosa Mendoza, Benjamin Bird, Andrew
West, Simon Watson, and Barry Lennox. "Mona: an affordable mobile

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.6 Volume 14, 2020

ISSN: 1998-0159 42

robot for swarm robotic applications." In UK-RAS Conference on
‘Robotics and Autonomous Systems, pp. 49-52. 2017.

[4] Ambrus, Rares, Nils Bore, John Folkesson, and Patric Jensfelt.
"Autonomous meshing, texturing and recognition of object models
with a mobile robot." In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5071-5078. IEEE, 2017.

[5] Takaya, Kenta, Toshinori Asai, Valeri Kroumov, and Florentin
Smarandache. "Simulation environment for mobile robots testing using
ROS and Gazebo." In 2016 20th International Conference on System
Theory, Control and Computing (ICSTCC), pp. 96-101. IEEE, 2016.

[6] Pietrzik, S., and B. Chandrasekaran. "Setting up and Using ROS-
Kinetic and Gazebo for Educational Robotic Projects and Learning."
In Journal of Physics: Conference Series, vol. 1207, no. 1, p. 012019.
IOP Publishing, 2019.

[7] Foote, Tully. "tf: The transform library." In 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA), pp. 1-6.
IEEE, 2013.

[8] Guimarães, Rodrigo Longhi, André Schneider de Oliveira, João
Alberto Fabro, Thiago Becker, and Vinícius Amilgar Brenner. "ROS

navigation: Concepts and tutorial." In Robot Operating System (ROS),
pp. 121-160. Springer, Cham, 2016.

[9] da Silva, Bruno MF, Rodrigo S. Xavier, and Luiz MG Gonçalves.
"Mapping and Navigation for Indoor Robots under ROS: An
Experimental Analysis." (2019).

[10] Talwar, Dhruv, and Seul Jung. "Particle Filter-based Localization of a
Mobile Robot by Using a Single Lidar Sensor under SLAM in ROS
Environment." 제어로봇시스템학회 국제학술대회 논문집 (2019):
1112-1115.

[11] Guirguis, Silvana, Mark Gergis, Catherine M. Elias, Omar M. Shehata,
and Slim Abdennadher. "ROS-based Model Predictive Trajectory
Tracking Control Architecture using LiDAR-Based Mapping and
Hybrid A* Planning." In 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pp. 2750-2756. IEEE, 2019.

[12] ROS Navigation:
http://wiki.ros.org/navigation/Tutorials/RobotSetup?action=AttachFil
e&do=get&target=overview_tf.png

[13] Gazebo ROS Control:
http://gazebosim.org/tutorials?tut=ros_control&cat=connect_ros

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2020.14.6 Volume 14, 2020

ISSN: 1998-0159 43

http://wiki.ros.org/navigation/Tutorials/RobotSetup?action=AttachFile&do=get&target=overview_tf.png
http://wiki.ros.org/navigation/Tutorials/RobotSetup?action=AttachFile&do=get&target=overview_tf.png
http://gazebosim.org/tutorials?tut=ros_control&cat=connect_ros

