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Abstract — In this paper we present a novel method for fault 
identification in Discrete Event Systems, which was developed using 
the classical diagnoser method. Our goal was to decrease as much 
as possible the amount of computation that needs to be done to 
generate a diagnoser and to use it for isolating faults. The proposed 
method consists in grouping the components of the plant in several 
types and to generate the plant model, the system model and the 
diagnoser for the “grouped plant”. In this way the size of the 
automata is reduced. The method is presented and tested on a 
loading station in a comparative analysis with the method without 
grouping. 

Keywords—diagnosis, fault detection, fault isolation, industrial 
process. 

I. INTRODUCTION  
We face a challenge when speak about industrial automation 

systems: no matter how reliable and intelligent the control system 
is, we may still encounter different kind of faults. Not only that 
we cannot find perfect equipments, but their behavior can leading 
to faults. Because of financial and even human losses, it is 
necessary to detect and isolate the faults as soon as possible. In 
order to detect and isolate the failures, appropriate methods of 
diagnosis are needed. For this purpose all the available details 
about the process and its functionality are taken into account.  

Failure detection in dynamic systems was investigated over 
the last decades [11] and it still is. Even since 1995 the detection 
and isolation of faults in discrete event systems has received a lot 
of attention [9]. Later this work was extended in many directions. 
In [1] the authors described a method for computing the 
observation likelihood of a stochastic automaton and use this 
method to find the most-likely stochastic automaton. In [10] the 
authors developed sequential window diagnosers (SWDs) 
utilizing the notions of state probability vector and stochastic 
diagnoser probability transition matrices. Ribot et al. presented in 
[7] a formal characterization of the diagnostic and prognostic 
problems in order to support the maintenance of a complex 
system. In [5] the authors proposed a model-based approach to 
passive online fault diagnosis for timed systems, describing the 
system to be diagnosed as a network of communicating timed 
automata. In [2] the authors described a whole methodology for 

the design of a real-time diagnostic system, from the 
specification to implementation, along with a complete testing on 
a real industrial automated system. A novel practical algorithm 
for real-time diagnosis suitable for automated devices (TiDiaM) 
is presented in [3]. Rincon [8] presented the study of the 
detection and diagnosis of multiple faults in a Gas Turbine using 
principal component analysis and structured residuals method.  

One challenge in large industrial systems is that we may have 
multiple faults at one moment of time, and the personnel do not 
have enough time and expertise to fix all of them. One approach 
that can be used for large industrial systems is to divide the 
system in small and independent parts. Unfortunately, this 
method may skip some of the interactions between the 
components.  

Another approach focuses on the diagnosis of only one type 
of fault using one diagnoser for each fault. Pencolé et al. 
proposed to analyse the system in order to detect a subsystem that 
is sufficient for diagnosing a particular type of fault [6]. The 
classical diagnoser method will become very difficult in large 
and complex systems, mainly due to the large size of the sets of 
descriptive parameters. Large sets lead to the necessity of large 
computing and storage capabilities. This paper presents a method 
for fault detection that was born from the need to reduce the 
amount of computation that has to be done in order to isolate a 
fault as soon as possible. 

The rest of the paper is organized as follows: in Section II all 
the necessary notations and definitions are introduced in order to 
establish the basis for Section III which introduces the new 
method for fault detection, based on grouping criteria. Section IV 
describes an example of implementation on a loading station. 
Section V concludes the paper. 

II. THE PROPOSED METHOD 
The method we will present is based on the basic rules of 

building the diagnoser automaton described in [4] and [9]. The 
method involves, in the first phase, partitioning the process into 
disjunctive groups and in the second phase, detecting the fault 
that occur in the operation of the process. By this method, we 
obtain an important reduction in the required number of states 
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used to represent the process and the attached controller, which 
accelerates the process of tracking and identifying errors.  

III.1. Grouping the components  
The efficiency of the method is strongly influenced by the 

chosen grouping criteria depending on the application we 
consider. Within an industrial plant, we can group the automation 
equipment into several types, according to the following criteria:  

A. Types of components 
The components of a facility/plant can be grouped in two 

main categories, each of them consisting in several types:  

 execution components: pneumatic valves, electric valves, 
pumps, compressors, engines, and so on; 

 measurement components - sensors: pressure, 
temperature, flow, level, weighing, position and so on. 

By grouping all or some components of the same type (for 
example pneumatic valves), the corresponding model could be 
described by an automaton having the same number of states and 
events.   

B. The operation of the components 
Depending on the operation of the plant as a whole and the 

control logic, each type can be divided into several categories. 
For example, a category can consist of valves that act similar in 
the operation (meaning that will be either closed or opened at the 
same time) or work alternatively (will not be all closed or opened 
at the same time). This criterion is highly dependent on the 
particularities of the plant and the control sequences.  

C. Response time 
The response time of the components is not a criterion for the 

method described above. However, if we want to supplement it 
with time used in TiDiaM, it becomes a very important criterion 
to consider.  

III.2. Method 
Suppose that the plant has n components:  

ߎ = { ଵܲ, ଶܲ , … , ܲ} (1) 

and the plant model P is a parallel composition of its 
components: 

ܲ = ଵܲ|| ଶܲ|| … || ܲ (2) 

where ܲ are automata described by: 

ܲ = ൫ܺ ߑ, ߜ, ݔ, , ,൯ݔ ݅߳{1,2, … ,݊} 

Suppose we group the components in several types, according 
to one or more criteria presented above. We define the following 
partition of ߎ: 

ߎ = ଵߎ ∪ ଶߎ  ∪ ௦ߎ∪…  , ݏ < ݊ (4) 

where: 

ߎ = { ܲଵ , ܲଶ, … , ܲ} − ℎ  ݁ݕݐ 

and: 

൜ߎ ⊂ ℎ,ߎ ∈ {1,2, … , ߎ,{ݏ ߎ∩ = ∅ ∀ ݅ ≠ ݆
 ݅, ݆ ∈ {1,2, … , {ݏ  

For each group (type h): 

ߎ = { ܲଵ, ܲଶ, … , ܲ}, ℎ ∈ {1,2, … , {ݏ 

we consider an automaton: 

ܩ = ൫ܺீ,ீߑ ீߜ, ீݔ, ீ൯ݔ, 

where the elements of the sets ܺீ, and ீߑ are dependent on 
the corresponding elements of process components of Π୦. So, if:  

ቊ ܲ = ൫ܺ ߑ, ߜ, ݔ, ൯ݔ,
݅ ∈ {1,2, … , ݇}, ℎ ∈ {1,2, … , {ݏ

 (9) 

and: 

ቐ
ܺ = ଵݔ} , ଶݔ , … , ݔ }
ߑ = ൛ߪଵ ଶߪ, , … , ߪ ൟ

݅ ∈ {1,2, … , ݇}, ℎ ∈ {1,2, … , {ݏ
 (10) 

then:  

ቊ
ܺீ = ଵீݔ} ଶீݔ, , … ீݔ, }

ீߑ = ൛ீߪଵ ଶீߪ, , … ீߪ, ൟ,ℎ ∈ {1,2, … ,  (11) {ݏ

are defined as: 

ቐ
ீݔ = ݂ಸ(ݔଵ ଶݔ, , … ݔ, )
ீߪ = ݂ఀ ಸ(ߪଵ ଶߪ, , … , ߪ )
ℎ ∈ {1,2, … , ,{ݏ ݅ ∈ {1,2, … , ݇}

 (12) 

The set of group automata is defined as: 

ீߎ = ,ଶܩ,ଵܩ} … ௦}ܩ, (13) 
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For ݂ಸ  and ݂ఀ ಸ  we consider simple functions implemented 
by the following architecture (Fig. 1): 

Based on this grouping, we construct a group-based model of 
the plant G as a parallel composition of group models: 

൜ ܩ = ||ଶܩ||ଵܩ … ௦ܩ||
ܩ = (ܺீ ீߑ, ீߜ, ீݔ,  ீ) (14)ݔ,

It is obvious that the dimension (the number of states and the 
number of events) of ܩ is lower that the dimension of ܲ. 

 
Fig. 1. Architecture of a typical function of group component 

The controller for ܲ is defined as: 

ܥ = (ܺ ߑ, ݔ,ߜ, )ݔ, 

ቐ
ܺ = ܺଵ ∪ ܺଶ ∪…∪ ܺ
ߑ = ଵߑ ∪ ଶߑ ∪…∪ ߑ

ߑ:ܺܺߜ → ܺ
 

where ܺ are the states of the controller corresponding to 
ܲ, ߑ  – is the set of control events corresponding to ܲ, ߜ - is 

the transition function between the states, ݔେ - represents the 
initial (start) state and ݔ - represents the final state. 

We construct the group-based controller model: 

ீܥ = (ܺீ ீߑ, , ீߜ ீݔ, ீ)ݔ, (17) 

where: 

൝
ܺீ = ܺீଵ ∪ ܺீଵ ∪ …∪ ܺீ௦
ீߑ = ீଵߑ ∪ ீଵߑ ∪…∪ ீ௦ߑ

ீߑீ:ܺீܺߜ → ܺீ
 

and ܺீ – are the states of the controller corresponding to ܩ, 
 ீ - is theߜ ,ܩ ீ – is the set of control events corresponding toߑ
transition function between the states, xେୋ - represents the initial 
(start) state, ݔீ - represents the final state.  

Because of the way it was build, the group controller has 
fewer states and events that the initial one.  

We construct the system model for ܲ: 

ܵ = :,ܵܥ||ܲ = ൫ ௌܺ ௌߑ, , ௌݔ,ௌߜ  ௌ൯ (19)ݔ,

and the group system model for G: 

ܵீ = ீܥ||ܩ ,ܵீ: = ൫ ௌܺீ ௌீߑ, , ௌீߜ ௌீݔ, ,  ௌீ൯  (20)ݔ

Then the number of states and the number of events of ܵீ is 
lower than the ones of ܵ. 

III.3. Fault detection 
Finally, we compute the diagnoser, according to the classical 

method.  

We define the failure partition for P: 

൜ ∆ ݂ = ଵܨ ∪ ଶܨ ∪ …∪ ܨ
ܨ  − ܲ ݐ݊݁݊݉ܿ ℎ݁ݐ ݎ݂ ݁ݎݑ݈݂݅ܽ ݂ ݐ݁ݏ ℎ݁ݐ 

 

We group ܨ୧ in accordance with (5): 

ቊ
∆ ݂ = భܨ ∪ మܨ ∪ …∪ ೞܨ

ܨ  − ߎ ݐ݊݁݊݉ܿ ℎ݁ݐ ݎ݂ ݁ݎݑ݈݂݅ܽ ݂ ݐ݁ݏ ℎ݁ݐ 
 

൞

భܨ = ଵଵܨ ∪ ଵଶܨ ∪…∪ ଵܨ
మܨ = ଶଵܨ ∪ ଶଶܨ ∪ …∪ ଶܨ

…
ೞܨ = ௦ଵܨ ∪ ௦ଶܨ ∪…∪ ௦ܨ

 

where: 

⎩
⎪
⎨

⎪
ଵܨ⎧ = ൛ܨଵଵ ଵଶܨ, , … ଵܨ, ൟ,ܽ ∈ {1,2, … , ݅}
ଶܨ = ൛ܨଶଵ ଶଶܨ, , … ଶܨ,

 ൟ,ܾ ∈ {1,2, … , ݆}
…

௦ܨ = ௦ଵܨ} ௦ଶܨ, , … ܿ,{௦ܨ, ∈ {1,2, … , ݇}

 

We can now define the failure partition for G as: 

൜ ∆݂ீ = ܨீ ଵ ∪ ܨீ ଶ ∪ …∪ ܨீ ௦
ܨீ   − ܩ ݎ݂ ݏ݈ܾ݈݁ܽ ݁ݎݑ݈݂݅ܽ ݂ ݐ݁ݏ 

 

where:  

⎩
⎪
⎨

⎪
ܨீ⎧ ଵ = ൛ீܨ ଵ

ଵ , ܨீ ଵ
ଶ , … , ܨீ ଵ

 ൟ
ܨீ ଶ = ൛ீܨ ଶ

ଵ , ܨீ ଶ
ଶ , … , ܨீ ଶ

 ൟ
…

ܨீ ௦ = ܨீ} ௦
ଵ , ܨீ ௦

ଶ , … , ܨீ ௦
 }
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⎩
⎨

ܨீ⎧ ଵ
 = ݂ீ ଵ(ܨଵଵ ଵଶܨ, , … ܽ,(ଵܨ, ∈ {1,2, … , ݅}

ܨீ ଶ
 = ݂ீ ଶ൫ܨଶଵ ଶଶܨ, , … ଶܨ, ൯,ܾ ∈ {1,2, … , ݆}

…
ܨீ ௦
 = ݂ீ ௦(ܨ௦ଵ ௦ଶܨ, , … ௦ܨ, ), ܿ ∈ {1,2, … , ݇}

 

We can now compute the diagnosers: one for the classical 
model of the system ܵ and the failure partition ∆ ݂: 

ܦ = ൫ܺ ߑ, ൯ݔ,ݔ,ߜ, 

and one using the group system model Sୋ and the failure 
partition ∆݂ீ : 

ீܦ = ൫ܺீ ீߑ, , ீߜ ீݔ, ீ൯ݔ, 

It is now obvious that the dimension of ∆݂ீ  is lower than the 
dimension of ∆ ݂. Therefore: 

|ܺீ| < |ܺ|, ீߑ| | < | ߑ|

Because all the automata involved in the generation of ீܦ are 
smaller than the ones used for ܦ, the diagoser ீܦ will also have 
fewer states and fewer events than the classical one.  

When a failure occurs, ீܦ will isolate the fault and will 
estimate it belongs to Fୋ୧, meaning a fault at a component from 
P ୧ (of type i ∈ {1,2, … , s}).  

An automation system usually includes an events history 
component that keeps the record of all the observable events that 
occurred. Consider we store the observable events recorded until 
the fault occurred, in an array, we can search for the exact 
component that has a fault by searching the event from ߑ ୮୧ that 
appeared.  

The method we have presented is highly dependent on the 
degree of grouping; therefore, on the particularities of the plant 
and the control sequences. 

This is the reason why the most important disadvantage of the 
method we have presented above is that there may be situations 
(plants) in which the method will not bring major improvements 
or will not bring any improvements at all to the classical method.  

This can happen especially in small processes with few 
components, or composed of several sub-processes between 
which the interaction is limited.  

But for small processes the conventional method is not a 
challenge, since the amount of information and computing is not 
high.  

For processes that consist in several sub-processes, because 
of the limited interaction, it is easy to build separated diagnosers 
for each sub-process, returning in the situation above.  

This is why the criteria we have presented do not limit the 
application of the method to a certain category of processes 
(plants), but represent the rules for defining the generalized plant 
model. 

III. EXAMPLE OF IMPLEMENTING THE METHOD 
In order to demonstrate the effectiveness of the method we 

presented above, we exemplified it on a small loading station 
used to load fuel from fuel trucks into fuel tanks (Fig. 2). The 
station is composed of two pumps, three valves and the piping 
between. The components and the operations of the considered 
system are the following: 

 One valve on the inlet pipe; 
 Two fuel pumps; 
 Two valves on each line to the tanks. 
All valves are of the same type, dimensions and are provided 

with limit switches for monitoring their position in the control 
system.  

The operation of the loading station: 

The initial state is the same as the safe state of the plant and is 
described as following: pumps stopped, valves closed. 

The start-up procedure is composed of the following 
sequence: 

 Open XV1; 
 Choose the tank for loading; 
 Open the corresponding valve (either XV1 or XV2); 
 Start P1 or P2 (if P1 is in maintenance). 
The station will be shut down in the following situations: 

 Loading finished; 
 Automatic alarm; 
 Manual alarm. 
The shut down procedure consists in stopping the pumps and 

closing the valves. 

 
Fig. 2. Loading station 

Using the classical diagnoser approach, we would construct 
the automaton for every component in order to achieve the plant 
model as parallel composition. Next, we would construct the 
control model and the system model. For our examples we used 
DESUMA/UMDES Error! Reference source not found. 
software developed from the University of Michigan, which 
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permits the generation of the automata of the system (plant and 
control models) and the diagnoser automaton.  

For the above example we define the plant ߎ having 5 
components:  

ߎ = { ଵܲ , ଶܲ, ଷܲ , ସܲ , ହܲ} 

Where:  

⎩
⎪
⎨

⎪
⎧ ଵܲ − −1ܸܺ ݎ݂ ݊ݐܽ݉ݐݑܽ ℎ݁ݐ ݏ݅  .݃݅ܨ  4

ଶܲ − −1ܲܲ ݎ݂ ݊ݐܽ݉ݐݑܽ ℎ݁ݐ ݏ݅  .݃݅ܨ  5
ଷܲ − −2ܲܲ ݎ݂ ݊ݐܽ݉ݐݑܽ ℎ݁ݐ ݏ݅  .݃݅ܨ 5
ସܲ − −2ܸܺ ݎ݂ ݊ݐܽ݉ݐݑܽ ℎ݁ݐ ݏ݅  .݃݅ܨ  6
ହܲ − 3ܸܺ ݎ݂ ݊ݐܽ݉ݐݑܽ ℎ݁ݐ ݏ݅  − .݃݅ܨ  7

 

According to (9) we have: 

⎩
⎪
⎨

⎪
⎧ ଵܲ = ( ଵܺ,ߑଵ (ଵݔ,ଵݔ,ଵߜ,

ଶܲ = (ܺଶ,ߑଶ, (ଶݔ,ଶݔ,ଶߜ
ଷܲ = (ܺଷ,ߑଷ, (ଷݔ,ଷݔ,ଷߜ
ସܲ = (ܺସ,ߑସ (ସݔ,ସݔ,ସߜ,
ହܲ = (ܺହ,ߑହ, (ହݔ,ହݔ,ହߜ

 

and: 

ଵܺ = ,ܥܵ_1ܸܺ,ܱܵ_1ܸܺ,ܥ_1ܸܺ,ܱ_1ܸܺ}
:ܥ_1ܸܺ :ܱ_1ܸܺ,1ܸܺ_1ݏ {1ܸܺ_2ܿݏ

ଵߑ = ܥ_1ܼܵ} → ܼܵ1_ܱ,ܼܵ1_ܱ → ,ܥ_1ܼܵ
,(ܥ_1ܼܵ,1ܸܺ_ܿ) (ܿ_ܸܺ1,ܼܵ1_ܱ), ,(ܥ_1ܼܵ,1ܸܺ_)

,(ܱ_1ܼܵ,1ܸܺ_) ,1ܸܺ_1ܿݏ ,1ܸܺ_2ܿݏ
,1ܸܺ_1ݏ {1ܸܺ_2ݏ

ܺଶ = {ܦܧܱܲܲܶܵ_1ܲ,ܦܧܴܶܣܶܵ_1ܲ}
ଶߑ = ,1_ݐݏ} {1_ݐݎܽݐݏ

ܺଷ = { ܦܧܱܲܲܶܵ_2ܲ,ܦܧܴܶܣܶܵ_2ܲ}
ଷߑ = ,1_ݐݏ} {1_ݐݎܽݐݏ

ܺସ = ,ܥܵ_2ܸܺ,ܱܵ_2ܸܺ,ܥ_2ܸܺ,ܱ_2ܸܺ}
:ܥ_2ܸܺ :ܱ_2ܸܺ,2ܸܺ_1ݏ {2ܸܺ_2ܿݏ

ସߑ = ܥ_2ܼܵ } → ܼܵ2_ܱ,ܼܵ2_ܱ → ,ܥ_2ܼܵ
,(ܥ_2ܼܵ,2ܸܺ_ܿ) (ܿ_ܸܺ2,ܼܵ2_ܱ), ,(ܥ_2ܼܵ,2ܸܺ_)

,(ܥ_2ܼܵ,2ܸܺ_) ,2ܸܺ_1ܿݏ ,2ܸܺ_2ܿݏ
,2ܸܺ_1ݏ {2ܸܺ_2ݏ

ܺହ = ,ܥܵ_3ܸܺ,ܱܵ_3ܸܺ,ܥ_3ܸܺ,ܱ_3ܸܺ}
:ܥ_3ܸܺ :ܱ_3ܸܺ,3ܸܺ_1ݏ {3ܸܺ_2ܿݏ

ହߑ = ܥ_3ܼܵ} → ܼܵ3_ܱ,ܼܵ3_ܱ → ,ܥ_3ܼܵ
,(ܥ_3ܼܵ,3ܸܺ_ܿ) (ܿ_ܸܺ3,ܼܵ3_ܱ), ,(ܥ_3ܼܵ,3ܸܺ_)

,(ܥ_3ܼܵ,3ܸܺ_) ,3ܸܺ_1ܿݏ ,3ܸܺ_2ܿݏ
,3ܸܺ_1ݏ {3ܸܺ_2ݏ  



We consider that the pumps are ideal, they do not have faults. 

 
Fig. 3. The automaton for XV1 

 

Fig. 4. The automata for PP1 and PP2 

 
Fig. 5. The automaton for XV2 

 
Fig. 6. The automaton for XV3 

The plant model is computed as the parallel composition of 
its components according to (2): 
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ܲ = ଵܲห| ଶܲ|ห ଷܲ|| ସܲ|| ହܲ 

We define the control model ܥ and we compute the system 
model for ܲ according to (19). 

Now we can summarize: following the classical method we 
obtain: 

 The plant model P having 864 states; 
 The control model C having 16 states; 
 The system model S having 8640 states. 
We define the failure partition: 

∆ ݂ = {ହܨ,ସܨ,ଷܨ,ଶܨ,ଵܨ} 36

⎩
⎪
⎨

⎪
ଵܨ⎧ = ,1ݒݔ_1ݏ} ,1ݒݔ_1ܿݏ ,1ݒݔ_2ݏ {1ݒݔ_2ܿݏ

ଶܨ = ∅
ଷܨ = ∅

ସܨ = ,2ݒݔ_1ܿݏ,2ݒݔ_1ݏ} ,2ݒݔ_2ݏ {2ݒݔ_2ܿݏ
ହܨ = ,3ݒݔ_1ݏ} ,3ݒݔ_1ܿݏ ,3ݒݔ_2ݏ {3ݒݔ_2ܿݏ

 

We compute the diagnoser ܦ with 10 233 states. 
 
Using the method we have described in section III.2, with the 

following hypothesis: 

 PP1 and PP2 will never be both started at the same time; 
 XV2 and XV3 will never be both opened at the same 

time; 
 The pumps are ideal, they do not have faults, 
it is possible to group the components in 3 types of 

components using OR function: 

 1st group: XV1; 
 2nd group: PP1, PP2; 
 3rd group: XV2, XV3. 
 
We define the following partition of Π: 

ߎ = ଵߎ ∪ ଶߎ  ∪ ଷߎ (38) 

where: 

ቐ
ଵߎ = { ଵܲ}− 1 ݁ݕݐ 

ଶߎ = { ଶܲ , ଷܲ} − 2 ݁ݕݐ 
ଷߎ = { ସܲ , ହܲ} − 3 ݁ݕݐ 

 

We construct the group automata ܩଵ,ܩଶ   :ଷܩ,

൞
ଵܩ = ൫ܺீଵ,ீߑଵ,ீߜଵ,ݔீଵ,ݔீଵ൯ −  Fig. 7
ଶܩ = ൫ܺீଶ,ீߑଶ,ீߜଶ,ݔீଶ,ݔீଵ൯ −  Fig. 8
ଷܩ = ൫ܺீଷ,ீߑଷ,ீߜଷ,ݔீଷ,ݔீଷ൯ −  Fig. 9

 

 

Fig. 7. The automaton for ܩଵ 

 
Fig. 8. The automaton for ܩଶ  

where: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

ܺீଵ = ,ܥܵ_1ܸܺ,ܱܵ_1ܸܺ,ܥ_1ܸܺ,ܱ_1ܸܺ}
:ܥ_1ܸܺ :ܱ_1ܸܺ,1ܸܺ_1ݏ {1ܸܺ_2ܿݏ

ଵீߑ = ܥ_1ܼܵ } → ܼܵ1_ܱ,ܼܵ1_ܱ → ,ܥ_1ܼܵ
,(ܥ_1ܼܵ,1ܸܺ_ܿ) (ܿ_ܸܺ1,ܼܵ1_ܱ),
,(ܥ_1ܼܵ,1ܸܺ_) ,(ܥ_1ܼܵ,1ܸܺ_)

,1ܸܺ_1ܿݏ ,1ܸܺ_2ܿݏ ,1ܸܺ_1ݏ {1ܸܺ_2ݏ
ܺீଶ =  {ܦܧܴܶܣܶܵ_ܲ,ܦܧܱܲܲܶܵ_ܲ}

ଶீߑ = ,_ݐݎܽݐݏ} {_ݐݏ
ܺீଷ = ,ܥܵ_23ܸܺ,ܱܵ_23ܸܺ,ܥ_23ܸܺ,ܱ_23ܸܺ}
:ܥ_23ܸܺ :ܱ_23ܸܺ,23ܸܺ_1ݏ {23ܸܺ_2ܿݏ

ଷீߑ = ܥ_23ܼܵ} → ܼܵ23_ܱ,ܼܵ23_ܱ → ,ܥ_23ܼܵ
,(ܥ_23ܼܵ,23ܸܺ_ܿ) (ܿ_ܸܺ23,ܼܵ23_ܱ),
,(ܥ_23ܼܵ,23ܸܺ_) ,(ܥ_23ܼܵ,23ܸܺ_)

,23ܸܺ_1ܿݏ ,23ܸܺ_2ܿݏ ,23ܸܺ_1ݏ {23ܸܺ_2ݏ

 
(41) 

and: 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
ܦܧܱܲܲܶܵ_ܲ = ݂ீଶ(ܲ1_ܱܵܶܲܲܦܧܱܲܲܶܵ_2ܲ,ܦܧ)
ܦܧܴܶܣܶܵ_ܲ = ݂ீଶ(ܲ1_ܵܶܦܧܴܶܣܶܵ_2ܲ,ܦܧܴܶܣ)

ܸܺ23_ܱ =  ݂ீଷ(ܸܺ2_ܱ,ܸܺ3_ܱ)
ܥ_23ܸܺ =  ݂ீଷ(ܸܺ2_ܥ_3ܸܺ,ܥ)

ܸܺ23_ܱܵ =  ݂ீଷ(ܸܺ2_ܱܵ,ܸܺ3_ܱܵ)
ܥܵ_23ܸܺ =  ݂ீଷ(ܸܺ2_ܵܥܵ_3ܸܺ,ܥ)

:ܥ_23ܸܺ 23ܸܺ_1ݏ =  ݂ீଷ(ܸܺ2_ܥ: ,2ܸܺ_1ݏ
:ܥ_3ܸܺ (3ܸܺ_1ݏ

ܸܺ23_ܱ: 23ܸܺ_2ܿݏ =  ݂ீଷ(ܸܺ2_ܱ: ,2ܸܺ_2ܿݏ
ܸܺ3_ܱ: (3ܸܺ_2ܿݏ

 

 

Fig. 9. The automaton for Gଷ 



⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

_ݐݎܽݐݏ = ݂ఀ ಸమ(1_ݐݎܽݐݏ, (2_ݐݎܽݐݏ
_ݐݏ = ݂ఀ ಸమ(1_ݐݏ, (2_ݐݏ

ܥ_23ܼܵ → ܼܵ23_ܱ = ݂ఀ ಸయ(ܼܵ2_ܥ → ܼܵ2_ܱ,
ܥ_3ܼܵ → ܼܵ3_ܱ)

ܼܵ23_ܱ → ܥ_23ܼܵ = ݂ఀ ಸయ(ܼܵ2_ܱ → ,ܥ_2ܼܵ
ܼܵ3_ܱ → (ܥ_3ܼܵ

(ܥ_23ܼܵ,23ܸܺ_ܿ) = ݂ఀ ಸయ((ܿ_ܸܺ2,ܼܵ2_ܥ),
((ܥ_3ܼܵ,3ܸܺ_ܿ)

(ܿ_ܸܺ23,ܼܵ23_ܱ) = ݂ఀ ಸయ((ܿ_ܸܺ2,ܼܵ2_ܱ),
(ܿ_ܸܺ3,ܼܵ3_ܱ))

(ܥ_23ܼܵ,23ܸܺ_) = ݂ఀ ಸయ((ܥ_2ܼܵ,2ܸܺ_),
((ܥ_3ܼܵ,3ܸܺ_)

(ܥ_23ܼܵ,23ܸܺ_) = ݂ఀ ಸయ((ܥ_2ܼܵ,2ܸܺ_),
((ܥ_3ܼܵ,3ܸܺ_)

23ܸܺ_1ܿݏ = ݂ఀ ಸయ(2ܸܺ_1ܿݏ, (3ܸܺ_1ܿݏ
23ܸܺ_2ܿݏ = ݂ఀ ಸయ(2ܸܺ_2ܿݏ, (3ܸܺ_2ܿݏ
23ܸܺ_1ݏ = ݂ఀ ಸయ(2ܸܺ_1ݏ, (3ܸܺ_1ݏ
23ܸܺ_2ݏ = ݂ఀ ಸయ(2ܸܺ_2ݏ, (3ܸܺ_2ݏ

 


 
For fଡ଼ృమ , fஊృమ , fଡ଼ృయ and fஊృయ  we consider the architecture 

presented in Fig. 1, for a number of 2 inputs. 

It is now possible to compute the group-based model of the 
plant G as a parallel composition of group models according to 
(14): 

ܩ = ଷ ܩ||ଶܩ||ଵܩ

We construct the group-based controller model (Fig. 10) and 
system model based on (17) and (20). 

In this case: 

 The plant model has 72 states; 
 The control model has 6 states; 
 The system model has 324 states.  
 

 
Fig. 10. The group-based controller model 

We group ܨ୧ defined in (42): 

∆ ݂ = భܨ ∪ మܨ ∪ యܨ  

where: 

ቐ
భܨ = ଵܨ

మܨ = ଶܨ ∪ ଷܨ
యܨ = ସܨ ∪ ହܨ

 

We define ∆݂ீ : 

∆݂ீ = ܨீ ଵ ∪ ܨீ ଶ ∪ ܨீ ଷ 

where:  

ቐ
ܨீ ଵ = ,1ݒݔ_1ݏ} ,1ݒݔ_1ܿݏ,1ݒݔ_2ݏ {1ݒݔ_2ܿݏ

ܨீ ଶ = ∅
ܨீ ଷ = ,23ݒݔ_2ݏ,23ݒݔ_1ݏ} ,23ݒݔ_1ܿݏ  {23ݒݔ_2ܿݏ

 

and: 

൞

23ݒݔ_1ݏ = ݂ீ ,2ݒݔ_1ݏ) (3ݒݔ_1ݏ
23ݒݔ_2ݏ = ݂ீ ,2ݒݔ_2ݏ) (3ݒݔ_2ݏ
23ݒݔ_1ܿݏ = ݂ீ (3ݒݔ_1ܿݏ,2ݒݔ_1ܿݏ)
23ݒݔ_2ܿݏ = ݂ீ (3ݒݔ_2ܿݏ,2ݒݔ_2ܿݏ)
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We compute the diagnoser ீܦ for the group-based system 
model and the failure partition ∆݂ீ  having 429 states, unlike the 
initial one with 10 233 states. 

 will act as a classical diagnoser for the group-based ீܦ
system model, meaning it will isolate the group of faults (ܨୋ୧). 
After isolating the group we use the algorithm presented in 
Error! Reference source not found. to find the component 
within the group that has a fault.  

For example, if the fault 2ݒݔ_1ݏ occurs, ீܦ will isolate ܨୋଷ, 
meaning we have a fault either in XV2 or XV3. Next, we 
compare the observable events that occurred (recorded by the 
monitoring and control system of the plant) with the sets of 
events ߑସ and ߑହ. We will find that one of the latest observable 
event belongs to ߑସ meaning we have a failure at XV2. 

 

IV. CONCLUSIONS  
In this paper we have presented a new method based on 

grouping components for detecting and isolating faults in 
industrial automated systems. The method is based on the 
classical diagnoser approach, but it significantly reduces the 
number of states in the plant model, the dimension of the set of 
failure labels and consequently the number of states of the 
diagnoser. This is very important in large applications where the 
computing and storage capacity should be high for the classical 
method.  

The applicability and efficiency of the method are process 
dependent, meaning that it depends on the structure and 
functioning of the automated process how much the number of 
states is reduced and how effective the method can be. 
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