
 
Nowadays, fossil fuel-based energy sources are the most 

widespread in the world. The energy consumption has 
increased significantly. The use of new sources of energy 
becomes necessary. Technological development has made it 
possible to explore new sources of energy that are renewable 
and can be used with affordable costs. The use of renewable 
energies becomes of great importance because of their 
benefits. Wind energy is an interesting source for renewable 
energy. It is a subject of recent researches and industrial 
applications. The control of wind energy conversion system 
(WECS) using a doubly fed induction generator (DFIG) is 
more complex, therefore, it needs effective strategy of control 
[1-2]. 

In this work, a MRAS technique is used, including two 
nonlinear approaches: Neuro-fuzzy (NF) theory and sliding 
mode (SM) technique. The NF networks is very interesting 
because it exploits the merits for both neural network and 
fuzzy logic techniques, the Neuronal structure is used to 
improve the structure of fuzzy inference system (FIS) [3, 4].  

The organisation of this work is as follows: the power 
control system is described in the second section. In the third 
section, the model of DFIG is presented and the strategy of 
vector control is considered in the power control.  In the fourth 

section, a Neurofuzzy controller is developed in order to 
control the active and reactive power of DFIG. The fifth 
section is devoted to develop an adaptive mechanism based on 
SMC method. Simulation results are given to show the 
effectiveness of this controller and finally conclusions are 
summarized in the last section. 

The schematic diagram of the power control system under 
study is shown in Fig. 1. The wind power is transformed to 
electrical energy via wind turbine using a DFIG. The power 
generated by the DFIG is controlled by the rotor voltages and 
then by the inverter [5-7]. 
An improved MRAS method is proposed to control the DFIG 
generated power. This technique is composed of the reference 
model, NF controller and an adaptive mechanism based on 
SMC. The proposed controller MRAS based on NF and SMC 
(MRAC-NF-SMC) is given in Fig. 2., where Y is the 
controlled variable (it can present Ps or Qs). The reference 
model (RF) represents the desired dynamic of the system with 
nominal parameters. [8]. 

 
Fig. 1. Configuration of DFIG-wind turbine. 

 
 

Fig. 2. The structure of the MRAC-NF-SMC. 
 

 
The simplified model of DFIG in park frame is described 

by the following equations: 
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Abstract— The use of renewable energies has 

increased in these last decades. The wind energy 

attracts more attention of several research studies. 

The control of the power generated by the wind 

turbine is very complicated. It requires the 

application of new techniques of control. This paper 

presents an application of Model reference adaptive 

system (MRAS) in the control of wind turbine power. 

The structure of the proposed MRAS consists of 

Neuro fuzzy (NF) controller and an adaptive system 

based on sliding mode controller (SMC). The use of 

NF and SMC methodologies is very interest and it 

allows improving the performances of the system 

control. The NF has the advantages of expert 

knowledge of the fuzzy inference system and the 

learning capabilities of neural networks. The use of 

SMC gives more flexibility to the adaptive system. 

According to digital simulation results, the designed 

MRAS-NF-SMC controller provides a good dynamic 

behaviour, and an excellent tracking of the requested 

trajectory  
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Fig. 3 describes the simplified DFIG model. In where, vqr 
and vdr are the inputs as the Ps and Qs are the outputs of this 
block diagram. 

 
 

 
 

Fig. 3. Block diagram of simplified DFIG model. 
 
 
 In this work, we use the stator field orientation control 
strategy as described in references [6-7]. The active and 
reactive power can be controlled separately following the 
direct and quadrature components of the rotor current as given 
in Eq. (2).  
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We can decouple the rotor voltage equations by 
introducing the compensation terms  as in Eq. (3): 
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A typical architecture of an ANFIS is shown in Fig. 4. In 
which a circle indicates a fixed node, whereas a square 
indicates an adaptive node. For the simplicity, we consider two 
inputs x, y and one output z [9]. 

 
 

Fig. 4.  Architecture of ANFIS [9]. 

Among many FIS models, the Sugeno fuzzy model is the 
most widely used. For a first order Sugeno fuzzy model, a 
common rule set with two fuzzy if–then rules can be 
expressed as: 
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Where Ai and Bi are the fuzzy sets in the antecedent, and pi, 

qi and ri are the design parameters that are determined during 
the training process.  

The ANFIS of fig. 4 consists of five layers: 

 Layer 1: Every node i in the first layer employs a node 
function given by Eq. (4): 
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Where 
iA  and 

iB can adopt any fuzzy membership 
functions (MF). 

 Layer 2: Every node in this layer calculates the firing 
strength of a rule via multiplication as in Eq. (5). 
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 Layer 3: The i th node in this layer calculates the ratio of 
the i th rule’s firing strength to the sum of all rules firing 
strengths as in Eq. (6):  

2,1,
21

3 


 i
ww

w
wO i

ii                     (6) 

 Where wi is referred to as the normalized firing strengths. 
 
 Layer 4: In this layer, every node i has the following 
function As in Eq. (7): 

       2,1,)(4  iryqxpwzwO iiiiiii                    (7) 

Where iw  is the output of layer 3, and { pi, qi, ri} is the 
parameter set. The parameters in this layer are referred to as 
the consequent parameters. 

V. ADAPTIVE NEURO-FUZZY MODE 
POWER CONTROLLER 

A. Adaptive Neuro-Fuzzy Principle 
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 Layer 5: The single node in this layer computes the 
overall output as the summation of all incoming signals, 
which is expressed as given in Eq. (8): 
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 The output z in Fig. 2 can be rewritten as in Eq. (9) [10, 
11]: 

222222111111 )()()()()()( rwqywpxwrwqywpxwz       (9) 

 

The adaptive neural fuzzy inference system (ANFIS) is 
based on fuzzy logic controller with rules and inferences issued 
from a learning method. This last will train the parameters of 
the membership functions of the fuzzy logic controller and 
learn it more about the information of the inputs data as 
described in references [9, 10]. 

For that, we developed the ANFIS as: 
 First order Sugeno Type 
 The error and change of error as inputs  
 The control action as output 
 Bell membership functions  
 Hybrid optimization method  
 Number of iterations 30 
 Error tolerance 10-5 

The Fig. 5 describes the ANFIS structure. 

The ANFIS controller generates change in the reference 
voltage based on active power error (ep) defined as in Eq. (10):  

   srefP PPe                           (10) 

Where Pref and Ps are the reference and the actual active 
power, respectively. 

The number of epochs was 30 for training. The number of 
MFs for the inputs (e) and (de) are 5, after training we can 
obtain the MFs of the inputs the forms are shown in in Figs. 6 
and 7. The Bell MF is used for the input variable.  Fig. 8 
highlights surface of the ANFIS using the input and the 
output. 
 
 

 
Fig. 5. The ANFIS structure 

 
Fig. 6. Membership functions for e. 

 
Fig. 7. Membership functions for DE. 

 
Fig. 8. The output surface of the ANFIS using the inputs and 

the output. 
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B. Adaptive Neuro-Fuzzy Controller  

B.1. Active power controller:  
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The adaptive neural fuzzy inference system (ANFIS) is 
based on fuzzy logic controller with rules and inferences issued 
from a learning method. This last will train the parameters of 
the membership functions of the fuzzy logic controller and 
learn it more about the information of the inputs data as given 
in references [9, 10]. 

The ANFIS is: 
 First order Sugeno Type 
 The error and change of error as inputs 
 The control action as output 
 Bell membership functions 
 Hybrid optimization method  
 Number of iterations 100 
 Error tolerance 10-4 

The Fig. 5 shows the structure of proposed ANFIS is 
structured and the surface view between inputs and outputs. 
The number of epochs for training was 100. The number of 
MFs for the inputs (e) and (de) are 5, after training we can 
obtain the MFs of the inputs the forms are presented in Figs. 9 
and 10. The Bell MF is used for the input variable.  Fig. 11 
depicts surface of the ANFIS using the input and the output. 

 
Fig. 9. Membership functions for e. 

 
Fig. 10. Membership functions for De. 

 
Fig. 11. The output surface of the ANFIS using the inputs 

and the output. 

We choose the surface of the commutation of the sliding 
mode controller in the following formas given in Eq. (10) [10, 
11]: 
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From (11), we can obtain the derivative of the surface as in 
given in Eq. (12):   
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By substituting Ps by its expression and considering vqs  
equal to vs , we obtain Eq. (13):  
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We extract the expression of qri


 from (1) and replace it in 
(13), we obtain Eq. (14): 
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In steady state, we can define the stator flux by Eq. (15): 


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The control of the active power is  described by Eq. (16):  
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(16) 
 

 

In sliding surface, we have: ( ) 0sS P  ,  ( ) 0sS P


 , Using 
expression in Eq. (14), neglecting g, we can obtain veq

qr  as 
given in Eq. (17) 
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B.2. Reactive power controller:  

5. ADAPTIVE MECHANISM  
A. Control of The Active Power 
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The expression of vn
qr as given in Eq. (18): 
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n
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Where  k vqr – is a positive constant.  

The surface commutation of the reactive power is defined 
by Eq. (19) [10, 11]:: 
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And by derivation, we obtain Eq. (20):  
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By substituting Qs by its expression from in Eq. (2) and 
replacing the stator flux  s   we obtain Eq. (21): 
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By extracting the dri


 from in Eq. (1) and substituting it in 
Eq. (21) we obtain Eq. (22): 
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The control of the reactive power is  calculated as given in 
Eq. (23):  
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In sliding surface ( ) 0, ( ) 0s sS SQ Q


  , neglecting g, we 

obtain the expression of  veq
dr  as described in Eq. (24):  
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The expression of vn
dr is given as in Eq. (25): 

( )n
dr vdrsign Pv k     (25) 

Where  k vdr – is a positive constant.  

In order to validate the control strategies as discussed above, 
digital simulation studies of the system described in Figs. 1 
and 2 were done. The simulation is realized using the 
SIMULINK software in MATLAB environment.  
Fig. 12 depicts the performances of the response of the system 
controlled by MRAS_NF-SMC controller. An increase of the 
wind speed is accompanied by an increase in active power 
generated by the wind turbine and then the increase of the 
quadrature rotor current iqr. A decoupled control of the active 
and reactive powers is realised using vector control; the active 
power can be controlled separately by the direct rotor current, 
and the reactive control by the quadrature rotor current.  

Figs. 13 and 14 show respectively the control of the active and 
the reactive power delivered by the DFIG. The results show 
the high performance of the control technique used in tracking 
the desired trajectory with negligible error in permanent mode. 
The active power and the reactive power  generated track well 
the desired value given by the reference models.  

Figs 15 and 16 introduce the test of robustness considering 
the case of unknown or a wrong value of the rotor resistance. 
The results show that control of active and reactive power 
with the proposed controller retains its best qualities of control 
despite disturbances.  

B. Control of the Reactive Power 

6. SIMULATION RESULTS 
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Fig. 12 The response of the system controlled by MRAS_NF-SMC controller 

 
Fig. 13. The active power control using MRAS_NF-SMC 

controller 

 

Fig. 14. The reactive power control using MRAS_NF-SMC 
controller 

To test the robustesse of the system, a test was applied 
considering the change of the value of the rotorique resistance 
of about 1.5 Rr. The figs 14 and 15 show that the controller is 
robuste against the unknown or a change of the resistance.  

 
Fig. 15. The test of robustness using the proposed reactive 

power controller: Qs (Rs), Qs2 (1.5Rs) 
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Fig. 16. The test of robustness using the proposed active power  

controller: Ps (Rs), Qs1 (1.5Rs) 

 

The control of the power generated by the wind turbine 
is important. In this paper we presented a technique of the 
control based on MRAS system. The structure of the MRAS 
was developed using the Anfis methodology in the direct 
control and the SMC in the adaptive mechanism. First the 
model of the DFIG was given. Then, the structure of the 
controller was presented and applied to the control of the 
active and reactive power generated by the wind turbine. The 
performances of the proposed controller MRAC-F-SMC gave 
best responses. 

The MRAS-NF-SMC has a good behavior in dynamic 
performance and ability to reduce the effect of the internal and 
external disturbances on the system; it can be considered a 
robust technique of control. The implementation of this 
controller can be the subject of future studies.  
 
 
Appendix 
Rated data of the simulated doubly fed induction generator: 
7.5 kW, vs=220V, Fs=50 Hz, p=3, J=0.1kg/m2, 
f=0.06N.m.s/rad, Rs=0.95Ω Rr=1.8Ω, Lm=0.082H, s

=0.094H,
 

r  =0.088H. 
Wind turbine parameters: Pm=10kw, number of blades=3, 
R=3.5m, G=5.4, J=0.042kg.m2, f= 0.017N.m.s/rad. 
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