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Abstract— Image representation is an active area of research 

with increasing applications in military and defense. Image 
representation aims at representing an image with lesser number 
of coefficients than the actual image, without affecting the image 
quality. It is the first step in image compression. Once the image 
is represented by using some set of coefficients, it is further 
encoded using various compression algorithms. This paper 
proposes an adaptive method for image representation, which 
uses Complex Wavelet transform and the concept of phase 
congruency, where the number of coefficients used for image 
representation depends on the information content in the input 
image. The efficiency of the proposed method has been assessed 
by comparing the number of coefficients used to represent the 
image using the proposed method with that used when Complex 
Wavelet transform is used for image representation. The 
resultant image quality is determined by computing the PSNR 
values and Normalized Cross Correlation. Experiments carried 
out show highly promising results, in terms of the reduction in 
the number of coefficients used for image representation and the 
quality of the resultant image. 
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I.  INTRODUCTION 
Transforming images from the spatial domain to the 

frequency domain has been found to be the general trend 
followed in various representation methods. The key reason 
for this is the way frequency domain representation of the 
image makes the image coefficients uncorrelated with each 
other, making their analysis easier. The commonly used tool 
for converting the image data from spatial to spectral domain 
is the Fourier transform [1]. Due to the non-local property of 
Fourier transform, they were replaced by wavelet functions, 
which due to their unique property of being local [2], was 
found to be better suited for data representation. Wavelets 
were found to be highly efficient in approximating data with 
sharp discontinuities [2]. The advent of wavelets opened a 
new path for the development of image representation 
algorithms. The availability of a l arge variety of wavelets 

allowed the image to be analyzed at multiple resolutions, 
thereby allowing the redundancy to be removed from each 
resolution level. However, even though Discrete Wavelet 
Transform (DWT) proved promising, it has inherent 
limitations. Since the DWTs are critically sampled, it i s not 
shift invariant and lacks directional selectivity. This led to the 
development of a variant of the conventional wavelet called 
the Complex Wavelet Transform (CWT) [3]. This makes the 
transform shift invariant, but the directional selectivity is still 
a problem in CWT.  

Phase Congruency is a feature operator which is 
invariant to illumination and scale. It assumes an image to be 
highly rich in information and very little redundancy. This 
property makes sure that the proposed technique doesn’t treat 
any major information in the image as redundant and remove 
it [4]. 

 This paper combines CWT and the concept of Phase 
Congruency and proposes a new technique for image 
representation. Even though image representation techniques 
aim at reducing the number of coefficients used for 
representing the image [5], it also results in loss of information 
in the image. Hence, a trade-off must be obtained between the 
reduction in the number of coefficients obtained and the quality 
of the resultant image. A good representation algorithm should 
aim to obtain a fairly good trade-off between the two. The 
percentage of reduction in the coefficients and the resultant 
image quality [6, 7] are also dependent on the type of the input 
image. The proposed technique adaptively changes the 
threshold value for redundancy removal, depending on the 
input image. Experimental results show that the proposed 
method achieves very good levels of coefficient reduction and 
at the same time does not compromise much on image quality, 
as the information loss is kept to the bare minimum. 

II. COMPLEX WAVELET TRANSFORM 
The Discrete Wavelet Transform has the following drawbacks 
[3]: 

• DWT coefficients oscillate at zero crossings; 
• It is not shift invariant; 
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• Aliasing occurs due to downsampling during 
analysis, which is not always cancelled 
during synthesis; 

• DWT lacks directional selectivity; 

CWT employs quadrature wavelets, which provides a 
magnitude and phase representation, shift invariance and no 
aliasing as well. 
CWT can be expressed as: 

)()()( tjtt irc ψψψ +=  

where, )(trψ is real and even and )(tj iψ  is imaginary and 

odd. If )(trψ and )(tiψ  are chosen to be out of phase with 

each other by 090 (Hibert transform pair), then )(tcψ  is an 
analytic signal and supported on only one-half of the 
frequency axis. The complex wavelet coefficients can be 
expressed as: 
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with magnitude 
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CWT enables to analyse and represent both real-valued and 
complex-valued signals, just like Fourier transform [18]. 

A. DT-CWT Filterbank 
The filterbank structure of the 1-D, DT-CWT resembles 

the conventional DWT, with twice the complexity [8]. It can 
be thought of as two conventional DWT trees operating in 
parallel. One is the real tree and the other is the imaginary 
tree. The conjugate filters used in analysis are of the form: 

xx jgh + , where xh is the set of filters { }10 ,hh  and xg is 

the set of filters{ }10 , gg . Figure 1 shows that the filters 

0h and 1h are the real-valued lowpass and highpass filters 

respectively for the real tree. 0g and 1g  are the real-valued 
lowpass and highpass filters respectively for the imaginary 
tree. 

 
Figure 1: DT-CWT structure with two separable DWT 

 The synthesis filter pairs form orthogonal pairs with 
their respective counterparts of the analysis tree. For the 2D 
DT-CWT, the filter structure has four trees for analysis and 
synthesis as shown in Figure 2. The pair of conjugate filters is 
applied to two dimensions (x and y) and is expressed as: 
( )( ) ( ) ( )yxyxyxyxyyxx hgghjgghhjghjgh ++−=++

 

 
Figure 2: Filter bank structure for 2-D DT-CWT 

 
The 2-D DT-CWT is 4-times expensive than the standard 

2-D DWT, since it has 4 different trees. Trees a and b are the 
real pair and trees c and d form the imaginary pair in the 

analysis stage. Tree pairs (
~
a ,

~
b ) and (

~
c ,

~
d ) are the real and 

imaginary parts respectively in the synthesis stage, 
corresponding to the analysis pairs [9]. 

III. PHASE CONGRUENCY 
It has been traditionally a p ractice in image processing to 

think about features in terms of derivatives. This is because, 
features in images are mostly thought of as edges, which are 
points of discontinuities. As a result, gradient based operators 
are mostly used to detect the features in images. The gradient 
based feature estimation techniques, such as those developed 
by Sobel [11], Marr and Hildreth [12] and Canny [13, 14], 
face two major drawbacks. Firstly, the gradient operators are 
sensitive to illumination variations. i.e; they cannot be relied 
on, when working with images of varying lighting and 
contrast. The second shortcoming of gradient operators is that, 
localization of features depends on the scale of analysis. 
Hence, the localization becomes innacurate when analysed at 
varying scales. This leads to the need of a feature operator that 
is invariant to illumination and scale. 
 Phase congruency model of feature detection [4] 
assumes an image to be high in information and low in 
redundancy. Thus, instead of searching for points of sharp 
changes in intensity, this model searches for patterns, where 
the phase components of the Fourier transform of the image 
are in order (maximally in-phase). It is a f requency-based 
model and instead of spatial processing of data, it processes an 
image using the phase and amplitude components of the 
individual frequency components. 
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 Consider a 1-D slice through an image. Such a signal 
f(x) can be reconstructed from its Fourier transform by: 

∫
∞

∞−

+= ωφω ωω dxTaxf )cos()( , 

where for each frequencyω , ωa is the amplitude of the cosine 

wave and ωφω +xT is the phase offset of that wave. The term 
‘T’ is related to the size of the image window. The phase 
congruency model in the discrete form is expressed as: 
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where, p gives the decay in the amplitude with frequency 
and φ  is the phase offset. Phase Congruency is the ratio of 

local energy to amplitude. 
∑

=

n
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An(x) is the amplitude and E(x) is the local energy and 
1)(0 ≤≤ xPC [10]. 

IV. PROPOSED TECHNIQUE FOR IMAGE REPRESENTATION 
In [9, 10] the authors have discussed an image 

representation technique using CWT and Wavelet transform. 
This proposed technique de-correlates the input image 
information by transforming the image into the frequency 
domain using CWT. The proposed algorithm makes use of the 
concept of phase congruency, to determine the amount of 
redundant information that needs to be removed from the input 
image. In our earlier paper [15], we had proposed a technique 
for image compression, which uses Slantlet transform and 
phase congruency, where the threshold had to be provided by 
the user, which determined how much of the coefficients 
would be removed for a fairly good representation. However, 
choosing threshold values empirically can’t always be reliable, 
as the amount of redundancy is image dependent.  

We have introduced a threshold selection method in 
this paper, which selects the threshold value automatically 
from the input image, based on its information content. Here 
the threshold value used is the Coefficient of Variation [16, 
17] of the transformed image. The value thus obtained is 
found to be an optimum threshold, which reduces the number 
of coefficients used for representation by almost 60-70%, at 
the same time maintaining the image quality. 

The algorithm is applied on the image as a whole. The 
following steps are carried out on the input image. 

A. Decomposition of theiInput image using CWT 
Complex Wavelet transform is applied to each column of 

the input image. The CWT filter coefficients used in this 
experimentation is obtained from [3]. Let I(x,y) be the input 
block to be compressed. The CWT of each column of the 
block is carried out, resulting in a corresponding coefficient 
block in the transform domain, denoted as TI(u,v). Let the 

transform domain coefficients of the transformed block be 
represented as C(u,v)TI. 

B. Phase Congruency map for the decomposed Image 
The next step in the proposed compression technique is to 

create the phase congruency map for the transformed image 
block, TI(u,v). Each transform domain coefficient will thus 
have a phase congruency value corresponding to the position of 
the coefficient in the transformed image. Let the phase 
congruency map for the transformed image block be denoted as 
PCTI and each phase congruency value be represented as 
PC(u,v)TI. 

C. Selecting the threshold value for selection of coefficients 
Figures and Tables 
Once the phase congruency map has been generated, we 

need to select the threshold value for selecting the coefficients. 
We select the threshold value by computing the Coefficient of 
Variation [16] for the transformed image. The value for the 
threshold is obtained as: 

( )

mn

vuC
T

mn

i
TI

SH

∑
== 1

,
 

D. Removing the redundant CWT coefficients Figures and 
Tables 
The phase congruency map acts as the basis for removing 

the redundant CWT coefficients. The compression algorithm 
chooses only those CWT coefficients from the transformed 
image block, which has edge strength greater than the 
obtained threshold TSH. The edge strength is represented by the 
normalized phase congruency value from the phase 
congruency map. The decision rule can be expressed as: 

SHTI

SHTITITI
C

TvuPCif
TvuPCifvuCvuC
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>=
),(                       ,0                   

),(          ,),(),(

 
where, TI

C vuC ),( are the CWT coefficients of the 
compressed image. 

E. Obtaining the final mage block 
To get the resultant image block, the inverse Complex 

Wavelet transform of the coefficients thus selected is taken. 
The final result is expressed as: 

),((),( vuCISTyxF C
IC = , 

where, ),( yxFIC is the final image block. It can be observed 
that the number of CWT coefficients that were used to 
reconstruct back the final image block is much lesser than the 
actual number of CWT coefficients that was used to represent 
the input image block. 
Experimental results also prove that this technique helps to 
achieve almost 60-70% reduction in the number of 
coefficients used for representing the image, without trade-off 
in the visual quality of the image. 
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F. Experimental Results and Analysis 
The proposed CWT and phase congruency based image 

representation technique was applied on a s et of grayscale 
images of size 512 x  512 of various categories such as 
standard test images, natural images, user created images and 
medical images. The number of coefficients used for 
representation, PSNR and Normalized Cross Correlation 
(NCC) values are computed to determine the degree of 
efficiency achieved in representing the image and the amount 
of information loss respectively. Experimental results 
pertaining to six images of various categories are discussed 
here. Figure 3 shows the input images used and Figure 4 
shows the output images of the proposed method. It can be 
observed that the visual quality of the image has not degraded 
due to this technique. 

 

     

     
 

Figure 3: Input Images  
 

         
 

       
             

 Figure 4: Resultant images using the proposed method 
 

 For analyzing the performance of the proposed 
method, percentage reduction in the number of coefficients 
when compared to conventional CWT, PSNR and NCC values 
are measured. In each case the number of CWT coefficients 
required to represent the image and the number of coefficients 
required to represent the same image, after the proposed 
method have been used for analysis. Table 1 shows the details 
regarding the number of coefficients in CWT based image 

representation, the resultant coefficients after the proposed 
technique, percentage reduction in the number of coefficients 
used for representation in the proposed method, PSNR and 
NCC. It also shows the automatically generated threshold for 
each input image. It also shows the automatically generated 
threshold for each input image. 

TABLE I.  NO: OF COEFFICIENTS USED FOR REPRESENTATION IN 
CONVENTIONAL CWT AND THE PROPOSED METHOD, ITS PERCENTAGE 

EQUIVALENT, PSNR AND NCC VALUES. 

 
Observations Lena Peppers Natural User 

Created 
CT MRI 

CWT 301401 301401 301401 301401 301401 301401 
Proposed 
Method 

86482 79086 84029 109956 116339 125178 

No: of 
coefficients 

in % 

28.69% 26.24% 27.88% 36.48% 38.60% 41.53% 

Automatic 
Threshold 

Value 

0.1611 0.1590 0.1818 0.1912 0.0117 0.1053 

PSNR 37.2480 34.7208 45.5925 35.9257 45.9276 41.4324 
NCC 0.9954 0.9947 0.9961 0.9953 0.9967 0.9960 

  
 From Table 1 it is  clear that, using the proposed 
method, the input image can be represented with almost only 
30-40% of coefficients, as with conventional CWT. There is 
no much compromise on the image quality. Visual comparison 
of the original and the resultant image shows that there is no 
visual change between the two, ascertaining excellent visual 
quality. The values of PSNR are high, which shows that there 
is no much loss of information in the proposed method. Also, 
the NCC value is very close to 1, which tells that the resultant 
image obtained is 99% same as the original image. 

 

CONCLUSION 
Complex wavelet transform, removes the 

shortcomings of the conventional DWT. Hence, it has the 
advantages of shift invariance, directionality and it also avoids 
aliasing to a large extent. CWT can thus be thought of as a 
powerful tool in multiresolution analysis.  The phase 
congruency map is generated from the CWT coefficients of 
the input image and is used as the decision rule to find out the 
coefficients that are used for image representation. The 
threshold to be used for the selection of coefficients is 
obtained automatically from the input image. Coefficients of 
variation is used for selection of the threshold, as it considers 
the information content in the image and selects an appropriate 
threshold value, which doesn’t remove any relevant 
information in the image. Exhaustive experiments conducted 
on grayscale images exhibit promising results. The 
experimental analysis of the results thus obtained shows that 
using the proposed method, a high degree of reduction in the 
number of coefficient for representing an image can be 
obtained, when compared to conventional Complex Wavelet 
transform.  
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