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Abstract—An important part of any computed tomography
(CT) system is the reconstruction method, which transforms the
measured data into images. Reconstruction methods for CT can
be either analytical or iterative. The analytical methods can be
exact, by exact projector inversion, or non-exact based on Back
projection (BP). The BP methods are attractive because of thier
simplicity and low computational cost. But they produce sub-
optimal images with respect to artifacts, resolution, and noise.
This paper deals with improve of the image quality of BP by using
super-resolution technique. Super-resolution can be beneficial in
improving the image quality of many medical imaging systems
without the need for significant hardware alternation. In this
paper, we propose to reconstruct a high-resolution image from
the measured signals in Sinogram space instead of reconstructing
low-resolution images and then post-process these images to get
higher resolution image.

I. INTRODUCTION

In the areas of medical diagnostics and non-destructive
testing, it is of great interest to be able to capture images of
the interior of objects. One common technique to accomplish
this feat is known as Computed Tomography (CT), which
invented in 1972 [1]. A CT scanner uses digitally sampled
X-ray images acquired in multiple directions to calculate cross-
sectional images of the X-ray attenuation of an object.

An important part of any CT system is the reconstruction
method, which transforms the measured data into images.
Reconstruction methods for CT can be either analytical or
iterative. Analytical methods can be either exact and non-exact.
Exact methods are based on exact inversion of the projector
in the continuous domain. Although efficient exact methods
exist they are currently not found in clinical use. Instead, man-
ufacturers of clinical CT systems employ non-exact methods,
based on Backprojection (BP) methods. Due to approximations
in the derivation of these methods, reconstruction results are
contaminated by artifacts. In return, non-exact methods are
computationally less demanding, simpler to implement, and
offer a better dose utilization than exact methods [1], [2].

On the other hand, high-resolution images reveal more
information than low-resolution images, which therefore ease
disease diagnosis and detection. Early, fast, and accurate
detection of imaging biomarkers of the onset and progression
of diseases is of great importance to the medical community
since early detection and intervention often results in optimal
treatment and recovery. However, earlier biomarkers of disease
onset are often critically smaller or weaker in contrast com-
pared to their corresponding features in the advanced stages
of disease [3].

One way to increase the images resolution is to physically
reduce the pixel size and therefore increase the number of
pixels per unit area. However, a reduction of pixel size causes
degradation in the image quality. Instead of altering the sensor
manufacturing technology, digital image processing methods
to obtain an HR image from low-resolution (LR) observations
have been investigated by many researchers [3]–[10]. Other
researchers use interpolation techniques to enhance the quality
of the medical images [11], however, the interpolation will
not add new information to the under-sampled signals. In
practice, it is common to take multiple scans of the same
subject and average them to improve the signal-to-noise ratio
(SNR) of the final image [12]. Also, such an approach makes
no improvement in image resolution. Super-Resolution (SR)
algorithms are an interesting way to increase the resolution
of images. They are based on the fact that, by combining
various low resolution (LR) and highly correlated images, it is
possible to obtain a high resolution image (HR) by using the
information from different images.

The goal in this paper is to enhance the resolution for CT
image using multi-images super-resolution technique. Unlike
the existing super-resolution methods that are usually done as
a post-process, we propose to solve the SR problem in the
sinogram space.

II. CT RECONSTRUCTION

There are two main types of CT reconstruction techniques.
The first type is a Fourier-based technique, such as Filtered
backprojection and linogram. The other type is iterative-based
technique. The iterative based technique is algebraic and sta-
tistical approaches [1]. Simply, these methods are trying to get
the closest approximation of the density function of the object
by using iterative techniques. Since filtered backprojection is
the most used algorithm in modern CT, we will adopt it in the
reconstruction of HR CT images.

There are three main ways for CT reconstuctions using
backprojection, namely, reconstruction of pencil-beam, fan-
beam and conebeam CT. For simplicity and without loss of
generality, we will use pencil-beam reconstruction.

A. The Radon Transform

We will focus on explaining the Radon transform of an
image function and discussing the inversion of the Radon
transform in order to reconstruct the image [1].

We will discuss only the 2D Radon transform, although
some of the discussion could be readily generalized to the 3D
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Radon transform. The Radon transform (RT) of a distribution
f(x, y) is given by

p(ζ, φ) =

∫
f(x, y)δ(x cosφ+ y sinφ− ζ)dxdx (1)

where δ is the Dirac delta function and x, y, ζ, and φ are the
coordinates. The task of tomographic reconstruction is to find
f(x, y) given knowledge of p(ζ, φ).

B. Backprojection

Mathematically, the backprojection operation is defined as:

fBP (x, y) =

∫ π

0

p(x cosφ+ y sinφ, φ)dφ (2)

Geometrically, the backprojection operation simply propagates
the measured sinogram back into the image space along the
projection paths.

III. RESOLUTION ENHANCEMENT OF CT IMAGES

A. Super-Resolution Problem Description

The multi-images super-resolution problem can be simply
described, in matrix-vector notation, as [9], [10]

Y k = DkBkWkX + V k, k = 1 : N (3)

WhereWk is the geometric motion operator between the HR
frame X and theK−th LR frame, Y k. The system point spread
function (PSF) is modelled by the sparse matrix Bk, and Dk

is a sparse matrix that represents the decimation operator. The
vector V k is the system noise and N is the number of available
LR images. For convenience, concatenate all the measurements
in one vector as follows

Y = HX + V , (4)

From many available estimators, which estimate a HR image
from a set of noisy LR images, one may choose to find the most
probable X, given the measurements, Y, that is the maximum
a-posterior probability(MAP), which can be described as to
maximize

Pr{X|Y } (5)

Where Pr{X|Y } is the probability of the HR image, X , given
the measurements Y

Pr{X|Y } = Pr{Y |X}Pr{X}
Pr{Y }

(6)

Therefore, the solution for the maximum a-posteriori proba-
bility is described as

X̂MAP = ArgMaxXPr{X|Y } (7)
= ArgMaxXPr{Y |X}Pr{X} (8)

By assuming Gaussian distribution for noise and Gibbs distri-
bution with some energy function A(X) for the prior infor-
mation, we get

Pr{X} = Const. exp(−A(X)) (9)

Then

X̂MAP = ArgMaxXPr{Y ‖X}Pr{X}

= ArgMinX

N∑
k=1

‖DBWkX − Y k‖2 + λA(X)

The last term A(X) represents the regularization term and
λ represents the regularization parameter. There are many
choices for A(X), depending on the priori information, in-
cluding Gaussian prior

A(X) = ‖X‖2 (10)

And the bilateral prior

A(X) =
P∑

n=−P

P∑
m=−P

amn(̇X − SnxS
m
y X) (11)

where Sn
x is a shifting operator by n pixels in x direction

[9]. There are two types of noise exist in this imaging model,
namely, additive noise (usually assumed to be Gaussian) and
registration noise (registration error), which can be assumed as
Laplacian noise [9]. Based on the modeling of the total noise,
the data fidelity term will change.

• In case of Gaussian Noise assumption:

JMAP (X) =

N∑
k=1

‖DkBkWkX − Y k‖22 + λA(X)

• In case of Laplacian Noise assumption:

JMAP (X) =
N∑
k=1

‖DkBkWkX − Y k‖11 + λA(X)

Where ‖.‖11 is the L1-norm.

B. Two-Steps-Based CT Super-Resolution

Resolution enhancement of medical image is usually done
in two steps, namely, image reconstruction step and resolution
enhancement step. The image reconstruction can be modeled
in matrix-vector multiplication as [12]

U = Sµ+ η (12)

Where S is the reconstruction matrix that relates the measured
signal, U , with the pixel values, µ and η is the additive noise.
As a reverse problem, estimating µ can be done by minimizing

J(µ) = ‖Sµ− U‖22 + λ‖µ‖22 (13)

After reconstructing N LR images, these LR images can be
fused to get a high-resolution image. The resolution enhance-
ment problem is therefore described as

µ
k
= DkBkWkX + V k, k = 1 : N (14)

which can be solved by minimizing the cost function

J(X) =
N∑
k=1

‖DkBkWkX − µk‖
2
2 + λ(X)‖CX‖22 (15)

Where C is a sparse matrix representing a high-pass filter
operator, the last term is the Tikhonov regularization.
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C. Reconstruction of High-Resolution CT

Instead of performing resolution enhancement in two steps
as shown in the previous Section, substituting from (14) into
(12) leads to

Uk = SDkBkWkX + η
k
+ SV k, k = 1 : N (16)

= SDkBkWkX + Ek k = 1 : N (17)

With
Ek = η

k
+ SV k, (18)

Then the HR CT reconstruction problem, by assuming that
the total contaminating noise has Laplacian distribution, is
simplified to minimize

J1(X) =
N∑
k=1

‖SDBkWkX − Uk‖11 + λ(X)‖CX‖11 (19)

Where X is the HR image. Uk is the measured signal. Without
oss of generality, we assume that the blurring operator is the
same for all images, then Bk = B and that the downsampling
operator is the same for all images, then Dk = D. Also con-
sidering that the system function in MRI can be representing
by Radon transformation, then S = R. Then (19) becomes

J1(X) =

N∑
k=1

‖RDBWkX − Uk‖11 + λ(X)‖CX‖11 (20)

Where the regularization parameter, λ(X), can be calculated
adaptively as a function of the cost function as [10], then

λ(X) =

∑N
k=1 ‖RDBWkX − Uk‖11

1
γ − ‖CX‖11

(21)

With
1

γ
= 2

N∑
k=1

‖Uk‖11 (22)

As stated in Section III-A, the data fidelity term and there-
fore the cost function depend on the noise model. The total
contaminating noise Ek(Ek = k + SV k) is a result of many
sources, including thermal noise, and registration error.

IV. SIMULATION RESULTS

A. Data Sets

In this section we present experiments illustrating the
performance of the proposed algorithm. The experiments are
conducted on Phantom sequence. This sequence contains 4
measured signals, in Sinogram space, to increase resolution
by factor 2× 2. The size of each LR image is 256× 256.

B. Experiment Setup

To test the efficiency of the proposed HR CT reconstruction
algorithm, we compared it with the reconstructed LR image.
The cost function in (20), is solved iteratively using steepest
decent as

X̂n+1 = X̂n

− β
N∑
k=1

WT
k B

TDTRTsign(RDBWkX̂n −Uk)

+ λCTsign(CX̂n)

The setup of these experiments is as follow, resolution en-
hancement factor = 2, β = 4, λ = 0.02, and maximum-
iteration = 10. The number of LR images used is 4. The
relative motions of the generated LR phantom images, with
respect to the reference image, are (0, 0), (0, 0.5), (0.5, 0) and
(0.5, 0.5), respectively. The high-pass filter, C, is used to
represent Laplacian kernel with dimension 5× 5.

C. Results an Discussions

Figure 1, shows the reference phantom image (Fig. 1a)
and its corresponding Sinogram (Fig. 1b). Figure 2 show the
results of adopting the proposed algorithm with the simple
back projection reconstruction algorithm. In Fig. 2a, zoomed
parts of the reconstructed LR images is shown. The zoomed
part of the reconstructed HR CT using proposed algorithm.
From these figures, we can see that the reconstructed HR CT
using proposed algorithm is sharper than the reconstructed LR
image.

Also the results of adopting the filtered back projection
with the proposed algorithm is shown in Fig. 3. Iin Fig. 2a,
zoomed parts of the reconstructed LR images is shown. Iin
Fig. 3b, the zoomed part of the reconstructed HR CT using
proposed algorithm. From these figures, we can see that the
reconstructed HR CT using proposed algorithm is sharper
than the reconstructed LR image. Moreover, it can be shown
that using filtered back projection is better than simple back
projection, which is logic as stated in the litreature.

V. CONCLUSION

In this paper, we proposed a HR CT Reconstruction
algorithm in the sinogram space. The proposed algorithm
is solved SR reconstruction proplrm in th sinogram space
rather than in the pixel domain. The conventional SR CT
algorithms perform the enhancement in two steps, namely,
reconstrut the CT image in pixel domain and then enhance the
resolution by applying SR technique as a post-process. Based
on the simulation results, the proposed algorithm enhances the
resolution compared to the reconstructed LR CT image.
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Fig. 1. From up to down, a) LR CT original Phantom image, b) The
corresponding Sinogram space.
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Fig. 2. From up to down, a) LR CT reconstructed phantom, b) result of HR
CT reconstruction using simple back projection.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2021.15.15 Volume 15, 2021

E-ISSN: 1998-0159 87



Fig. 3. From up to down, a) LR CT reconstructed phantom, b) result of HR
CT reconstruction using filtered backprojection.
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