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Abstract— The optimal value of the smoothing parameter of 

the Kernel estimator can be obtained by the well known Plug-in 

algorithm. The optimality is realised in the sense of Mean 

Integrated Square Error (MISE). In this paper, we propose to 

generalise this algorithm to the case of the difficult problem of 

the estimation of a distribution which has a bounded support. 

The proposed algorithm consists in searching the optimal 

smoothing parameter by iterations from the expression of MISE 

of the kernel-diffeomorphism estimator. By some simulations 

applied to some distribution having a support bounded and semi 

bounded, we show that the support of the pdf estimator respects 

the one of the theoretical distribution. We also prove that the 

proposed method minimizes the Gibbs phenomenon. 

Keywords—Probability density function, Diffeomorphism 

Kernel Estimate, Kernel estimate, non parametric estimator, 

generalised plug-in Algorithm, smoothing parameter, smoothing 

parameter. 

I.  INTRODUCTION  

The application of a realiable pdf estimator gives 
improuvements for the systems performances. For examples, 
the optimal scalar quantification which is based on the pdf 
estimates is an important step in Signal and image coder. The 
advanced hashing procedure which is known as an essential 
task in content image basis indexing improves its performances 
when the pdf’s of image features are well estimated. When the 
application of the Bayesian classification rule in pattern 
recognition systems become possible. The determination of the 
conditional pdf and the mixture one is needed…. The coder 
parameters, the used features in data base index systems or the 
shape descriptors could be confined to a bounded or a semi 
bounded intervals.  Densities estimated using the classical 
estimators beyond their natural support. The orthogonal series 
method provides an interesting solution to this problem [1]. 
However, the pdf estimate of such bounded or semi bounded 
attributes which are modeled by a set of random variables, 
have some convergence problems in its border values known 
by the Gibbs phenomenon. For these raisons, some authors 
have recently developed new non parametric pdf estimate 
methods taking account of the data support. The 
Diffeomorphism kernel estimate is one of this pdf estimate 
kinds[2][3][4]. In the present work, we propose an 
improvement of such method by optimizing its smoothing 

parameter value in the mean of the Mean Integrate Square 
Error (MISE).  

Several methods have been developed in the literature to 
optimize the smoothing parameter of the standard kernel 
estimator [5], [6],[7],[8],[9].  

We focus in this paper on the plug-in method [7] which 
gives a good approximation of the optimal smoothing 
parameter in the mean integrated square error (MISE) sense. 
We propose to generalize this method to the diffeomorphism 
kernel estimate. The standard plug-in algorithm becomes a 
special case when the chosen diffeomorphism is the identity. 
The proposed estimator is tested on two kinds of distributions: 
distributions on an interval and those on a semi bounded 
support.  

The present paper is organized as follows. Section 2 is 
devoted to recall briefly the Kernel pdf estimate method. In 
Section 3, the theoretical principles of the modified KDE 
which is adapted to the probability density functions with a 
bounded support are presented. The convergence according to 
mean square error criterion gives a sufficient condition so that 
the estimator converges in terms of the integrated mean square 
error (IMSE). An asymptotic study is developed in section 4. 
So, the expression of the optimal smoothing parameter is 
presented according to IMSE criterion. In section 5, we 
describe the different steps of the iterative plug-in algorithm 
witch converges to the optimal smoothing parameter. 
Therefore, section 6 is devoted to evaluate the performances of 
the suggested. The results are illustrated by two distributions: 
A beta distribution for the case of a distribution with bounded 
support and exponential distribution for the case distribution 
having semi-bounded support.  The conclusion of this paper is 
presented at the  last section where some perspectives are also 
presented. 

 

II. BRIEF OVERVIEW OF THE KERNEL PDF ESTIMATE 

Let denote by ( )
1i i N

X
≤ ≤

a sample of absolute continue 

random variable X with size N. Let denote by f the probability 
density function (pdf) of X. The well known Kernel pdf 
Estimator of f [10] can be written as follow:  
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hN is generally called the smoothing parameter and K the 
Kernel. K is a pfd function and it is assumed to be an even 
regular function with unit variance and zero mean.  

The performance evaluation of estimators is usually based 

on a distance between the theoretical pdf and its estimator ˆ
N

f . 

The Mean Integrated Square Error (MISE) is one of the most 
important criterions which can be expressed as: 

( ) ( ) ( )
2

2
ˆ ˆ ˆ( , ) ,
N N N

MISE f f D f f E f x f x dx
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where E is the expectation operator. 

 

The minimization of MISE with respect to the smoothing 
parameter, for a fixed size N of the sample, implies the 
following asymptotic study.   
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By consider the Taylor pdf expansion:  
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where 0 < θ < 1.  

Let denote by 

 ( ) ( )2M K K u du
+∞

−∞
= ∫   (2)     

 and 

 ( ) ( )( )
2

"J f f x dx
+∞

−∞
= ∫   (3) 

where f " is the second derivative of the function f. ∆(hN) 
which is the Taylor expansion of the MISE (and consequently 
an approximation of MISE) is given by: 

( )
( ) ( ) 4

4

N

N

N

M K J f h
MISE h

nh
≈ ∆ = +

 

The minimum value of ( )N
h∆   is obtained for the 

following value   

 ( )( ) ( )( )
1 1 1

* 5 5 5. .Nh n J f M K
− −

=   (4) 

Thus the minimum value of the MISE is given by the 
following expression:  

    

  ( )( ) ( )( )
4
5

4 1

5 5
5

4
MISE N M K J f

−
=   (5)  

III. PRINCIPLES OF THE DIFFEOMORPHISM KERNEL 

ESTIMATE 

The Diffeomorphism Kernel Density Estimate (DKDE) is 
introduced in [4] [5] [6]. It is based on appropriately 
diffeomorphism. Let consider now random variables which 

have a bounded support ]a , b[ and φ a C1-difféomorphism 
from to R.  The following estimator:  

 ( )
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φ φ φ

=
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is asymptotically unbiased when hN tends towards 0 and 

φ’(x) tends towards infinity when x tends towards a or b which 
are the bounds of the interval ]a, b[. The expectation of the 
suggested estimator is estimated by: 
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Using the following change of variable, 
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N

x u
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the expression of variance becomes: 
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Let us compute the variance of this estimator by using the 
same change of variable: 
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The mean square error (MSE) is  
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The MSE becomes:  
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As (φ-1)’is bounded on R, f is assumed to be bounded on 
]a, b[ and K2 is integrable on R, the Lebesque convergence 
theorem can be easily applied, then the MSE, for a large value 
of N, becomes equivalent to: 
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Because of the continuity of φ’ on R and f on ]a, b[, this 
estimator converges in IMSE for all compact of ]a, b[. To 
obtain this convergence according to the IMSE criterion, the 

function φ’(f) have to be integrable on ]a, b[ because: 
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Saoudi and al. [3] shows that the logarithmic 
diffeomorphism allows a better convergence of the estimator. 

] [, : ,
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IV. ASYMPTOTIC STUDY 

The quality of the pdf estimation depends on the choice of the 

optimal smoothing parameter or bandwidth hN. The MSE 

expression can be written as following:  
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We consider Taylor expansion of the function Hy defined as 

following in the neighborhood of φ (x): 
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It implies that there exists a positive number θ less than 1 such 

that: 
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The following approximations are deduced from the 

computation of the successive derivatives of the function Hy in 

φ (x): 
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The asymptotical study of IMSE gives: 
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If Mφ  and Jφ   exists, we have: 
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The optimal value of hN noted by *

N
h can be deduced by 

minimization of IMSE. 
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V. GENERALIZED PLUG-IN ALGORITHM  

Several methods are proposed in the literature for selecting 
optimal smoothing parameter. The best known of these include 
rules of thumb, oversmoothing, least squares cross-validation, 
direct plug-in methods, solve-the-equation plug-in method, and 
the smoothed bootstrap [5],[6],[7].  A method developed in 
2004 combines the technique of Least Square Cross Validation 
and the contrasts with the contrast methods [8]. Recently, 
Botev presents a new adaptive kernel density estimator based 
on linear diffusion processes [9]. We focus in this paper on the 
direct plug-in method applied to the kernel diffeomorphism 
application.  Such a method is an iterative algorithm which 
converges to the optimal bandwidth. 

Following, let’s detail the steps of the generalized plug-in 
algorithm.  

• Step 1: Initialization of ( )M Kφ and ( )(0)
J fφ .  These 

values can be set arbitrarily. However, we propose to 

choose ( )M K as first value for ( )M Kφ  

• Step 2: It consists of the determinate of 
( )0

N
h  given by 

the equation (10) 

• Step 3: Estimation of the pdf 
( )0

f   according the value    

( )0

N
h computed by the step 2 task. 

• Step 4: At the k
th

 iteration, we approximate ( )M Kφ

given by the (equation (8)), 
( )( )

'
k

f  and 
( )( )

"
k

f   

• Step 5: Estimation of 
( )( )k

J fφ   (equation (9)) and 

deduction of  
( )k

N
h  (equation (10))  

• Step 6: Estimation of  
( )k

f  (equation (6)) 

• Step 7: Stopping the algorithm is conditional on a low 

relative difference between 
( )k

N
h and 

( )1k

N
h

−
 (less than 

1%). 

 

VI. PERFORMANCES OF THE GENERALIZD PLUG-IN KERNEL 

DIFFEOMORPHISM ESTIMATE 

In this section, we intend to evaluate the performances of 
the generalized kernel plug-in diffeomorphism estimate. The 
study was conducted on two kinds of distributions:  

• Distributions defined on a semi bounded support 
illustrated by an exponential distribution defined on R+ 
with E(X) =1. 

• Distributions defined on an interval illustrated by a beta 
distribution (parameters = (1.5,1)) which is defined on  
[0, 1] 

A. Semi-bounded distributions case 

Figure 1 represents the estimate of the simulated 
exponential density by the standard kernel Density estimate 
(KDE)with adjustment of the smoothing parameter by the plug-
in algorithm.  Figure 2 represents this estimation by the 
generalized plug-in diffeomorphism kernel estimate (GKDE). 
The estimate is obviously improved by GKDE. Indeed, the 
estimated density approaches so nearly perfectly the theoretical 
density and the Gibbs phenomenon is significantly reduced. 
Similarly, the disturbances observed on the estimate of figure 1 
are greatly reduced in Figure 2. Mean Integrated Square Error 
(MISE) values which are shown in the table 1 confirm these 
observations. Thus, for a sample size of 1000, the observed 
MISE value is 37.9 10

-6
 for the classical kernel estimate 

whereas it is 7.76 10
-6

 the generalized kernel diffeomorphism 
estimate.  

B. Bounded distributions case 

Figures 3 and 4 shows that the estimation of beta 
distribution pdf by the generalized plug-in diffeomorphism 
kernel estimate gives better results than those obtained by usual 
plug-in kernel pdf estimate. The Gibbs phenomenon is 
significantly reduced and the smoothing seems to be better. 
The MISE values versus the sample size presented in table 1 
confirm these observations. 
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Fig. 1. pdf estimation of an exponential distribution by Plug-in Kernel 

Density estimator (KDE) 

 

Fig. 2. pdf estimation of an exponential distribution by Plug-in 

Diffeomorphism Kernel Density Estimator (DKDE) 

 

 

Fig. 3. pdf estimation of a beta distribution by Plug-in Kernel Density 

estimator (KDE) 

 

Fig. 4. pdf estimation of a beta distribution by Plug-in Diffeomorphism 

Kernel Density estimator (DKDE) 

TABLE I.  MISE VALUES VERSUS SAMPLE SIZE 

MISE for exponential pdf 

Sample size Plug-in KDE*10
-6

 GKDE*10
-6

 

1000 37.9  7.76  

2000 26.8  6.01  

3000 20.0  5.51  

4000 9.06  3.13  

5000 7.80 2.81  

MISE for beta pdf 

Sample size Plug-in KDE Plug-in DKDE 

1000 0.3016 0.2487 

2000 0.2896 0.2511 

3000 0.2827 0.2484 

4000 0.2820 0.2530 

5000 0.2818 0.2533 

 

VII. CONCLUSION 

In this work, we have generalized the plug-in algorithm 
which adjusts the smoothing parameter of the kernel pdf 
estimate, to the diffeomorphism kernel estimate version.  Such 
modified plug-in algorithm comes from the optimization of the 
MISE of this estimate. This generalization gives a more 
complicated iterative algorithm since the values of two 
parameters depending on the unknown pdf have to be 
approximated along iterations instead of only one parameter on 
the classical plug-in. It is important to note that the 
convergence is obtained for the proposed algorithm. By 
simulations concerning different kinds of distributions confined 
to bounded or semi bounded supports, we illustrate the better 
performance of the proposed Plug-in Diffeomorphism Kernel 
pdf estimate in the sense of MISE.  

In our future works, we intend to study the case of 
multivariate bounded support distributions. We also test this 
well performance estimate in real data. 

 

 

-2 -1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Plug-in kernel pdf estimator

f

f estimated

-2 -1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Plug-in diffeomorphism kernel pdf estimator

f

f estimated

-0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Plug-in Kernel Density Estimate

theoretical density

Estimated density

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Generalized plug-in diffeomorphism kernel estimate

theoretical density

estimated density

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0159 132



REFERENCES 

 
[1] P. Hall, “Comparison of  two orthogonal series methods of estimating a 

density and its derivatives on interval”. J. Multivariate anal, vol. 12, pp. 
432 – 449, 1982. 

[2] S. Saoudi, F. Ghorbel, A.  Hillion, “Non parametric probability density 
function estimation on a bounded support: applications to shape 
classification and speech coding”. Applied Stochastic Models and Data 
Analysis, vol. 10, pp. 215-231, 1994. 

[3] S. Saoudi, F. Ghorbel, A.  Hillion, “Some statistical properties of the 
Kernel-diffeomorphism estimator”, Applied Stochastic Models and Data 
Analysis,vol. 10, pp. 39-58,1997.  

[4] F. Ghorbel, Vers une approche unifiée des aspects géométriques et 
statistiques de la reconnaissance des formes planes, sd ed. Arts-Pi 
editions, Tunis, 2011. 

[5] M.C. Jones, J.S Marron, S.J.  Seather, “A brief survey of bandwidth 
selection for density estimation”. J. Amer. Stat. Assoc. , vol.91, pp. 401 
– 407, 1996. 

[6] A.W. Bowman, A. Azzalini,  Applied Smoothing Techniques for Data 
Analysis. Oxford University Press, 1997. 

[7] P. Hall, J.S. Marron, “ Estimation of integrated squared density 
derivatives”, Statistics &Probability letters, vol. 6,pp. 109 – 115, 1987. 

[8] A.R. Mugadi, I.A. Ahmad , “A bandwidth selection for kernel density 
estimation of functions of random variables”, Computational statistics 
and data analysis, vol. 47, pp. 49-62, 2004. 

[9] Z. I . Botev, J.F. Grotowski ,D.P. Kroese , “Kernel density estimation 
via diffusion”, The annals of statistics, vol.38, n° 5, pp. 2916 – 2957, 
2010. 

[10] E. Parzen, “On estimation of a probability density function and mode”, 
Annals of mathematical statistics, vol. 33, pp. 1065-1076, 1962.  

[11] Ghorbel, F.,  Derrode, S., Alata, O. (ed.): Récentes avancées en 
reconnaissance de forme statistique. Arts-Pi editions, Tunis (2012) 

[12] Troudi, M., Alimi, A.M., Saoudi, S.: Analytical Plug-in Method for 
Kernel Density Estimator Applied to Genetic Neutrality Study. Eurasip 
Journal of advances in Signal Processing (Eurasip-JASP), Volume 2008, 
Article ID 739082, 8 pages doi: 10.1155/2008/739082. 

 

 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2021.15.24 Volume 15, 2021

E-ISSN: 1998-0159 133




