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Abstract—The paper deals with an implementation of 

unobtrusive sensors installed in home environment for 

continuous monitoring of functional-health parameters of the 

observed persons. A multi-tier architecture links sensory devices 

through sensor-data concentrators to a home server. Automated 

sensory measurements are supported by a concept of sensor-

activated events, event-driven data transmission and processing 

by a dedicated application interface. Its logic and data structures 

are revealed. Examples of three typical execution scenarios are 

given and a short description depicts clinical installation of 

proposed system for testing purposes. 

Keywords—sensory networks; unobtrusive sensors; home 

server; system architecture; functional health; home care; 

independent living 

I.  INTRODUCTION 

By 2050, as much as 30% of people will be elderly, among 
them 11% aged over 80 years [1]. National health systems are 
investing more than 1.5% of economic output in the provision 
of long-term health care, which means 150 billion annually. In 
three decades, expenditures will increase even up to 2.8%. 
Already by preventing falls, which occur with serious injuries 
in 40% of the elderly, substantial savings may be expected. A 
large proportion also applies to chronic diseases and inability to 
stay independent.  

The solution for these problems should focus on the 
individuals inside their everyday living environment. However, 
it can be achieved optimally only if an automated and 
unobtrusive assessment of the functional-health parameters 
(FHPs) is feasible. Monitoring of daily living activities helps 
detecting changes in residents’ daily routines, which is one of 
the key supporting features of a smart home. Today's 
inexpensive low-power sensors, embedded processors, and 
wireless communications are available technologies that are 
typical building blocks for larger networks of sensors. These 
assist unobtrusive home healthcare [2]. 

Several research and development projects have reached 
significant level of smart-home solutions and support to 
independent living. System architectures applied connect 
environmental sensors with data loggers, servers, and data 
bases. The authors of [3] studied the ISO X73 upper-layer 

substandards, i.e., nomenclature specification, domain 
information model, application profiles, and vital sign device 
descriptions to verify suitability for smart homes. They 
measured body temperature and weight, blood oxygenation, 
and electrocardiograms (ECG) by using data loggers. The 
CASAS project reveals “a smart home in a box” by the 
architecture that controls data flows from the physical 
components through the middleware to the software 
applications, and vice versa [4]. Sensors in a smart home 
generate events that consist of a date, a time, a sensor 
identifier, and a sensor message. The goal of the system is to 
recognize the residents’ activity and to map a sequence of 
sensor data to a corresponding activity label. Elite Care 
environment [5] introduces infrared and radio frequency 
sensors for locator badges that also help caregivers in the in- 
and outdoor alert situations to react rapidly. Higher level of 
awareness of the residents’ situation is obtained by combining 
location and movement sensors by video cameras, such as in 
the TigerPlace project [6]. The House_n project initiated by 
MIT builds on hundreds of sensing components that are 
installed in nearly every part of test home [7]. The sensors are, 
among others, being used to monitor activity in the 
environment so that researchers can carefully study how people 
react to new devices, systems, and architectural design 
strategies in the complex context of the home. 

All smart-home projects implement ubiquitous sensing and 
pervasive computing, mainly to monitor residents’ behavior 
and remotely detect critical situations. There are components as 
well that collect data on the residents’ health status, although 
these are, in general, neither overwhelming nor exclusively 
unobtrusive. On the other hand, we designed and developed 
system architecture that supports a flexible system of 
distributed, unobtrusive sensors ready to be installed in home 
environments with a primary goal of monitoring and assessing 
residents’ FHPs. Its hierarchical concept is revealed in this 
paper. Section II depicts basic system requirements and design 
principles. Prototype system architecture is described in 
Section III and exemplified by typical cases and 
implementation in Section IV, while Section V concludes the 
paper. 

Authors acknowledge the financial support of the Slovenian Ministry of 
Education, Science, and Sport, and the European Regional Development 

Funds for the Biomedical Engineering Competence Centre. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2021.15.26 Volume 15, 2021

E-ISSN: 1998-0159 141



II. SYSTEM REQUIREMENTS AND DESIGN 

The architecture of proposed system consists of multi-tier 
design that connects sensory devices with home server and 
database [8]. At the hardware level, this requires additional 
computational power provided by sensor data concentrators 
(SDCs) and home server (HS). 

SDCs are used as a bridge between sensory devices (SDs) 
and HS (Fig. 1). SDCs are linked to HS by the USB or wireless 
connection. Sensory data are transmitted in a proprietary event-
driven protocol as described below. HS provides software 
support for data acquisition, data processing, and connection to 
a healthcare centre (HC). 

Distributed SDs are installed in dwelling environments. 
They have additional analogue inputs which can be used for the 
connection of external sensors, such as reference measuring 
devices, which can also serve as system validation during 
development. 

 

Data from the SDs are collected by a corresponding SDC 
adapted to individual sensors and events before they are 
transmitted to HS. Events are triggered by SD when it detects a 
person is present and the acquired data are related to that 
person. Events mark the start or end of a measurement. They 
are triggered automatically when, for example, the person 
touches measuring electrodes in the environment or when the 
person appears in the visual or detection field of the sensor. HS 
assigns a unique numerical value to each event at the beginning 
of measurement. The same value is used as a part of the 
filenames when the visualization and acquisition programs that 
run on HS store the data into separate files. These are 
supplemented by the event time, SD name, and the unique 
event number. 

All SDCs are identified and connected to the HS by its 
communication service. HS also offers an API to access and 
transfers data from temporary storage on SDCs. This 
functionality is used by the server program running on HS, 
which can asynchronously request a transfer of sensory data 
and FHPs computed by the software routines residing in SDCs. 

Application interface on HS can communicate with 
multiple devices. It also incorporates support for the 
interpretation of FHP, locking of files with sensory 

measurements (protection against deleting), postponed events, 
query for SD properties and metadata about individual events. 

FHPs appear as separate entities that have similar structure 
to the files containing measured data. Actually, they contain the 
results obtained by extracting FHPs from the data measured, 
and are always related to a specific event. Individual FHPs can 
be generated by the program for acquisition of sensory data on-
line, but it can also result from a postponed processing of 
measurements that are protected against deletion in the 
meantime. To queue such postponed operation, special 
postponed events are used. They link the computed FHPs to 
one of previous events and measurements. API provides the 
following functionalities to the external client: (a) query for the 
list of SDs; (b) query for the status of individual SDs (presence, 
readiness, etc.); (c) query for the list of events generated by the 
SD; (d) acquisition of measurement data sent by SD with every 
new event; and (e) deletion of the events. 

The client uses the API to: (a) obtain a list of identified SDs 
in the form of alphanumeric identifiers; (b) obtain integer 
identifiers of events related to the device–the range of search 
can be provided; (c) access the raw data for all new events on 
all devices; (d) delete an event from the internal buffer on HS 
when necessary. 

III. SYSTEM ARCHITECTURE 

A. Sensor Data Concentrator 

To connect various sensors to HS, we developed 
microcontroller-based SDCs. The main task of SDC is to 
transmit the acquired data from different SDs in a uniform 
way. The SDCs also take care that all acquired data are 
synchronized. 

The SDC’s set-up depends on the connected SD. Although 
their architecture stems from the same concept, 
implementations may vary and include also wireless 
communication channels to SDs and a different number of 
analogue and digital inputs. An SDC is based on the 
PIC32MX534F064L microcontroller which is connected to HS 
via USB by using the FT245RL communication chip. The 
latter means a single-chip USB-to-parallel FIFO bidirectional 
data transfer interface [9]. Using the royalty-free D2XX drivers 
provided by the FTDI producer, the data transfer rates of up to 
1 MByte/s can be achieved. Drivers are supported for all 
popular operating systems. SDCs support all the developed 
SDs, except video cameras that are, when used, connected 
directly to the HS. 

B. Application Program Interfacing on Home Server 

We developed an API for connecting multiple SDCs to a 
HS which supervises SDCs and process data. API is written in 
C to be compatible with different operating systems (Windows, 
Linux). 

The sensory architecture which is assumed by the API is 
composed of one or more SDs with one or more sensors. SDs 
are connected to the HS through SDCs (except video cameras, 
as mentioned). HS has a permanent buffer, where sensory data 
is stored until an API request from the HC is sent. HC 

 
Fig. 1. Conceptual design of connections between sensory devices and 

home server for data storage and processing 
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determines when the data, related to an event, are not needed 
anymore and can be removed. 

Described system architecture is schematically shown in 
Fig. 2. 

 

C. Intermediate data storage 

All sensor and measurement data is written into the HS 
files. Data are organized in a tree (hierarchical) directory 
structure which enables this system to be implemented on top 
of any platform that supports similar structures. The root of the 
structure contains only one folder with only one file named 
devices.dat. The rows of this file describe names of devices 
that, at the same time, are also the names of subfolders in the 
root folder. Each subfolder contains all information about one 
device. 

Every subfolder contains a cluster of files. The most 
important files are: 

 properties.dat, which describes the device, its 
sensors and possible results (FHPs), 

 events.dat, which is used to index all completed 
events or events waiting to be processed. 

Beside these two files, there are also all files belonging to 
all known events. The file names follow a strict syntax: 

<event identification mark>-<ID|lock| 

sensor{n}|result{n}>.dat 

where the identification mark stands for increasing integers, ID 

for an event file, lock for a locked event file, and sensor 

and result denote files with sensory measurements and files 
with computed results (FHPs), respectively, both linked to a 
sensor number (written as n in the above syntax). 

D. Gorenje Interface Event Handler 

This API is shortly called GIEH and is implemented as a 
dynamically shared library. It offers functions as defined in 
Section II. Beside that it provides: (a) a list of involved sensors 
for a specific event; (b) a list of possible FHPs for a specific 

device; (c) a list of possible FHPs for a specific event; (d) a 
path to the file with specific device properties; and (e) a path to 
the file with metadata about an event. 

The access to API is serialized to prevent concurrent 
modification of critical files. The synchronization is achieved 
on the operating system level of the HS [10][11]. 

To describe all possible sensors, results and connections 
between them, we introduced files with device properties. The 
format of files is depicted in Fig. 3. 

 

E. Data-Stream and File Structures 

All data obtained by SDCs from sensors and connected 
external devices, are processed and wrapped in the same way. 
Data from each sensor are collected in data packages. Size of 
the packages is 128 bytes and they comprise a head of 8 bytes, 
and data part of 120 bytes. The head provides the package 
generation time, the package serial number, and the sensor or 
SD identification mark. 

The package data part contains raw data, exactly the same 
as collected from the sensory data flows. SDCs do not check 
the data flow contents, they only cut them to proper size, wrap 
them in packages, and send them to HS. 

In general, each sensor has its own data structure which 
defines the format of measured data. These are processed by 
the algorithms for the FHPs computation. We have analyzed 
various possible FHP structures and created common formats 
that can be read and interpreted by the same software routine. 

Internal formats of properties.dat, events.dat, 
identification event files, and files with FHPs are organized in 
rows and can be read in the same way as the conventional 
configuration files (key=value). Values are of the type that 
depends on the key. 

The properties.dat file describes properties of 
devices. All sensors and FHPs related to a device are 
characterized. The description format is exemplified by a 
particular FHP: 

result_id=hr1 

result_name=Heart rate 

result_description=The person’s heart rate 

in beats per minute 

result_sensors=hr_monitor 

result_keywords=hr|heart|rate|circulatory|ca

rdiovascular 

result_value_id=hr 

result_value_type=integer 

result_value_unit=BPM 

 
Fig. 3. File structure containing devices' properties: exemplified by a 

device with n sensors and r resulting FHPs, each of them having p[1,r] values. 

 
Fig. 2. System architecture of sensory devices: a home server connects to 

m devices, each k-th device comprises nk sensors. 
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The example above shows how heart rate is described. This 

FHP is a computation result that has an ID of hr1, and is 

called Heart rate, which describes a person’s heart 

rate in beats per minute. The processed data are 

acquired by a sensor called hr_monitor. The FHP can be 

found elsewhere by using various keywords, including hr, 

circulatory and cardiovascular. This FHP 

comprises a single value with an ID of hr. It is an integer with 

units of BPM. 

IV. EXAMPLES OF POSSIBLE SCENARIOS AND SYSTEM 

IMPLEMENTATION 

Tables in this section describe typical processes for creating 
new events. Table I refers to when an event is created by a 
single program that captures the event data and processes the 
data immediately after (synchronous mode). Table II shows an 
event that is handled by two independent programs or threads, 
where the first program/thread acquires data from sensors and 
the second one processes the data asynchronously. Table III 
describes a situation when the acquisition program recognizes 
events of long measurements and starts processing the data in 
parallel, in real time. 

Handling of sensory data in synchronous or asynchronous 
mode is depicted by a flow chart in Fig. 4. 

 

TABLE I. CREATION OF A NEW EVENT BY USING SYNCHRONOUS 

ACCESS 

Step Step description 

1 A unique event ID (called ID1) is created by using GIEH. 

Step Step description 

2 
Data is captured from sensors and stored in files. Files are 

created on demand. 

3 
An ID file is created for event ID1 which contains event time 
and duration logs. 

4 
Data is processed and FHPs are created as dictated by the 

device's properties. 

5 All files are finalized. Event ID1 is published. 

 

TABLE II. CREATION OF A NEW EVENT BY USING ASYNCHRONOUS 

ACCESS 

Step Step description 

1 A unique event ID (called ID1) is created by using GIEH. 

2 
Data is captured from sensors and stored in files. Files are 

created on demand. 

3 
An ID file is created for event ID1 which contains event time 
and duration logs. 

4 
Event ID1 is locked by creating a lock file. Event ID1 now 

resists deletion. 

5 
All files are finalized. Event ID1 is published. This event is 
now known as ID2. There are no FHPs for it yet and it is still 

locked. This process has now finished its work. 

6 

Using an asynchronous process, a new locked event ID2 is 
detected and its data is processed. FHPs are created as dictated 

by the device's properties. Files are named with temporary 

names while writing results. They are renamed to a proper 
name at the end of writing. 

7 A unique event ID (called ID3) is created by using GIEH. 

8 
An ID file is created for event ID3 which contains event time 

and information about the updated event ID2. 

9 Event ID2 is unlocked. It can now be deleted. 

10 All files are finalized. Event ID3 is published. 

 

TABLE III. CREATION OF A NEW, LONGER EVENT IMPLYING A 

CALCULATION OF FHPS IN REAL TIME 

Step Step description 

1 A unique event ID (called ID1) is created by using GIEH. 

2 
An ID file is created for event ID1 which contains information 

such as event start time. 

3 
Event ID1 is locked by creating a lock file. Event ID1 is now 
marked as unfinished. It also resists deletion. 

4 

All files are finalized. Event ID1 is published. This event is 

now known as ID2. There are no FHPs for it yet and it is still 
locked. 

5 

Data is processed and FHPs are created for event ID2 as 

dictated by the device's properties. Care is taken that files can 

be opened and read by multiple processes at the same time. 

6 
All files are finalized. Event ID2 is unlocked. Event is now 

marked finished. It can also be deleted. 

A. System Implementation 

The architecture revealed in previous sections was used for 

an implementation of home-server connected unobtrusive 

sensors. The sensors are coupled in sensory devices and these 

are connected with data concentrators (except for video 

cameras). SDCs prepare data packages to be sent to a HS. 

In our implementation, sensors were built into the different 

household appliances and home devices. Fig. 5 shows 

New event 
(asynchronously or 

synchronously)

Is a person being 
detected?

No

Capture data from 
sensors and store it 

in files

Is a person being 
detected?

Yes

Log event time and 
duration

Process data and 
generate FHP

Publish event

No

Create a 
unique event 

ID

Yes

Is this process 
synchronous?

Yes

Lock this event

No

 
Fig. 4. Flow chart for the procedure of detecting and creating the events 

and processing the capruted data either synchronously or asynchronously. 
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schematically which sensors and which devices were involved. 

 

Fig. 5. A scematic set-up of sensory devices mounted in dwelling environment to capture unobtrusively human vital signs and compute accordingly the functional-

health parameters. 

For the time being the following sensory devices have 

been constructed and tested: 

 sensors in the refrigerator lever for detecting and 

computing heartbeat, blood oxygenation and pressure, 

body temperature and physical condition 

 optical sensors in the bed for detecting and computing 

heart rhythm, arrhythmias, respiration curve, 

respiration abnormalities, and movement 

 dry electrodes with an ECG measuring device built in 

the oven handle to analyze ECG features 

 sensors in the slippers for detecting and computing 

heartbeat, blood oxygenation, gait features, and 

stabilogram 

 video camera behind the mirror to detect and analyze 

psychophysical condition, i.e. emotions, and skin and 

the eye white color 

 floor carpet with optical sensor for detecting the 

residents’ location, movement, and possible incident of 

falling.  

Prototypes of all the developed sensors, SDs, and SDCs 

were installed and connected into a test system at the 

University Rehabilitation Institute Soča of Ljubljana. Several 

experiments have been conducted with healthy and also 

diseased people. Some of the experiments involved only one 

single combination of sensors, SD and SDC, such as those in 

the refrigerator lever (Fig. 6). Another type of experiments 

was designed with a sequence of daily activities that involved 

handling with several sensory devices, such as opening the 

refrigerator and oven, passing the mirror, and lying in bed. All 

the FHPs acquired and computed were saved into the database 

along with the corresponding referential measurements. These 

incorporated standard medical devices that measured the same 

parameters as tested unobtrusive sensors did at the same time, 

so that comparisons and validation were feasible afterwards. 

  

 
Fig. 6. Exeprimental environment for testing the sensors in the refrigirator 

lever installed at the University Rehabilitation Institute Soča of Ljubljana 
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V. CONCLUSION 

Current functionality of API is ready to be extended by 
additional sensors and/or sensory devices. Any additional 
sensor or device needs additional software routines that must 
be able to handle any particular requirements when acquiring 
and storing data according to the basic rules implemented in 
the API.  

The system of delayed events introduces a simple way of 
computing new FHPs from previously stored measurements if 
an error is detected in data-processing algorithms or the 
algorithms have been modified. 

The described system supports ubiquitous computing in 
health care delivered at home. It has been designed and 
implemented as a network of distributed, unobtrusive sensors 
that can be built in different home devices, but also in many 
other environments, such as residential homes for elderly, 
clinics, or public places. 
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