
System Architecture of Unobtrusive Sensors for

Supporting Home Care and Independet Living

Cvetko Pirš, Boris Cigale, Damjan Zazula

University of Maribor, Faculty of EE and CS

Smetanova 17

2000 Maribor, Slovenia

{cvetko.pirs, boris.cigale, zazula}@uni-mb.si

Dejan Usar

Gorenje d. d.

Partizanska 12

3320 Velenje, Slovenia

dejan.usar@gorenje.com

Received: August 15, 2019. Revised: September 9, 2021. Accepted: October 10, 2021. Published: November 27, 2021.

Abstract—The paper deals with an implementation of

unobtrusive sensors installed in home environment for

continuous monitoring of functional-health parameters of the

observed persons. A multi-tier architecture links sensory devices

through sensor-data concentrators to a home server. Automated

sensory measurements are supported by a concept of sensor-

activated events, event-driven data transmission and processing

by a dedicated application interface. Its logic and data structures

are revealed. Examples of three typical execution scenarios are

given and a short description depicts clinical installation of

proposed system for testing purposes.

Keywords—sensory networks; unobtrusive sensors; home

server; system architecture; functional health; home care;

independent living

I. INTRODUCTION

By 2050, as much as 30% of people will be elderly, among
them 11% aged over 80 years [1]. National health systems are
investing more than 1.5% of economic output in the provision
of long-term health care, which means 150 billion annually. In
three decades, expenditures will increase even up to 2.8%.
Already by preventing falls, which occur with serious injuries
in 40% of the elderly, substantial savings may be expected. A
large proportion also applies to chronic diseases and inability to
stay independent.

The solution for these problems should focus on the
individuals inside their everyday living environment. However,
it can be achieved optimally only if an automated and
unobtrusive assessment of the functional-health parameters
(FHPs) is feasible. Monitoring of daily living activities helps
detecting changes in residents’ daily routines, which is one of
the key supporting features of a smart home. Today's
inexpensive low-power sensors, embedded processors, and
wireless communications are available technologies that are
typical building blocks for larger networks of sensors. These
assist unobtrusive home healthcare [2].

Several research and development projects have reached
significant level of smart-home solutions and support to
independent living. System architectures applied connect
environmental sensors with data loggers, servers, and data
bases. The authors of [3] studied the ISO X73 upper-layer

substandards, i.e., nomenclature specification, domain
information model, application profiles, and vital sign device
descriptions to verify suitability for smart homes. They
measured body temperature and weight, blood oxygenation,
and electrocardiograms (ECG) by using data loggers. The
CASAS project reveals “a smart home in a box” by the
architecture that controls data flows from the physical
components through the middleware to the software
applications, and vice versa [4]. Sensors in a smart home
generate events that consist of a date, a time, a sensor
identifier, and a sensor message. The goal of the system is to
recognize the residents’ activity and to map a sequence of
sensor data to a corresponding activity label. Elite Care
environment [5] introduces infrared and radio frequency
sensors for locator badges that also help caregivers in the in-
and outdoor alert situations to react rapidly. Higher level of
awareness of the residents’ situation is obtained by combining
location and movement sensors by video cameras, such as in
the TigerPlace project [6]. The House_n project initiated by
MIT builds on hundreds of sensing components that are
installed in nearly every part of test home [7]. The sensors are,
among others, being used to monitor activity in the
environment so that researchers can carefully study how people
react to new devices, systems, and architectural design
strategies in the complex context of the home.

All smart-home projects implement ubiquitous sensing and
pervasive computing, mainly to monitor residents’ behavior
and remotely detect critical situations. There are components as
well that collect data on the residents’ health status, although
these are, in general, neither overwhelming nor exclusively
unobtrusive. On the other hand, we designed and developed
system architecture that supports a flexible system of
distributed, unobtrusive sensors ready to be installed in home
environments with a primary goal of monitoring and assessing
residents’ FHPs. Its hierarchical concept is revealed in this
paper. Section II depicts basic system requirements and design
principles. Prototype system architecture is described in
Section III and exemplified by typical cases and
implementation in Section IV, while Section V concludes the
paper.

Authors acknowledge the financial support of the Slovenian Ministry of
Education, Science, and Sport, and the European Regional Development

Funds for the Biomedical Engineering Competence Centre.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2021.15.26 Volume 15, 2021

E-ISSN: 1998-0159 141

II. SYSTEM REQUIREMENTS AND DESIGN

The architecture of proposed system consists of multi-tier
design that connects sensory devices with home server and
database [8]. At the hardware level, this requires additional
computational power provided by sensor data concentrators
(SDCs) and home server (HS).

SDCs are used as a bridge between sensory devices (SDs)
and HS (Fig. 1). SDCs are linked to HS by the USB or wireless
connection. Sensory data are transmitted in a proprietary event-
driven protocol as described below. HS provides software
support for data acquisition, data processing, and connection to
a healthcare centre (HC).

Distributed SDs are installed in dwelling environments.
They have additional analogue inputs which can be used for the
connection of external sensors, such as reference measuring
devices, which can also serve as system validation during
development.

Data from the SDs are collected by a corresponding SDC
adapted to individual sensors and events before they are
transmitted to HS. Events are triggered by SD when it detects a
person is present and the acquired data are related to that
person. Events mark the start or end of a measurement. They
are triggered automatically when, for example, the person
touches measuring electrodes in the environment or when the
person appears in the visual or detection field of the sensor. HS
assigns a unique numerical value to each event at the beginning
of measurement. The same value is used as a part of the
filenames when the visualization and acquisition programs that
run on HS store the data into separate files. These are
supplemented by the event time, SD name, and the unique
event number.

All SDCs are identified and connected to the HS by its
communication service. HS also offers an API to access and
transfers data from temporary storage on SDCs. This
functionality is used by the server program running on HS,
which can asynchronously request a transfer of sensory data
and FHPs computed by the software routines residing in SDCs.

Application interface on HS can communicate with
multiple devices. It also incorporates support for the
interpretation of FHP, locking of files with sensory

measurements (protection against deleting), postponed events,
query for SD properties and metadata about individual events.

FHPs appear as separate entities that have similar structure
to the files containing measured data. Actually, they contain the
results obtained by extracting FHPs from the data measured,
and are always related to a specific event. Individual FHPs can
be generated by the program for acquisition of sensory data on-
line, but it can also result from a postponed processing of
measurements that are protected against deletion in the
meantime. To queue such postponed operation, special
postponed events are used. They link the computed FHPs to
one of previous events and measurements. API provides the
following functionalities to the external client: (a) query for the
list of SDs; (b) query for the status of individual SDs (presence,
readiness, etc.); (c) query for the list of events generated by the
SD; (d) acquisition of measurement data sent by SD with every
new event; and (e) deletion of the events.

The client uses the API to: (a) obtain a list of identified SDs
in the form of alphanumeric identifiers; (b) obtain integer
identifiers of events related to the device–the range of search
can be provided; (c) access the raw data for all new events on
all devices; (d) delete an event from the internal buffer on HS
when necessary.

III. SYSTEM ARCHITECTURE

A. Sensor Data Concentrator

To connect various sensors to HS, we developed
microcontroller-based SDCs. The main task of SDC is to
transmit the acquired data from different SDs in a uniform
way. The SDCs also take care that all acquired data are
synchronized.

The SDC’s set-up depends on the connected SD. Although
their architecture stems from the same concept,
implementations may vary and include also wireless
communication channels to SDs and a different number of
analogue and digital inputs. An SDC is based on the
PIC32MX534F064L microcontroller which is connected to HS
via USB by using the FT245RL communication chip. The
latter means a single-chip USB-to-parallel FIFO bidirectional
data transfer interface [9]. Using the royalty-free D2XX drivers
provided by the FTDI producer, the data transfer rates of up to
1 MByte/s can be achieved. Drivers are supported for all
popular operating systems. SDCs support all the developed
SDs, except video cameras that are, when used, connected
directly to the HS.

B. Application Program Interfacing on Home Server

We developed an API for connecting multiple SDCs to a
HS which supervises SDCs and process data. API is written in
C to be compatible with different operating systems (Windows,
Linux).

The sensory architecture which is assumed by the API is
composed of one or more SDs with one or more sensors. SDs
are connected to the HS through SDCs (except video cameras,
as mentioned). HS has a permanent buffer, where sensory data
is stored until an API request from the HC is sent. HC

Fig. 1. Conceptual design of connections between sensory devices and

home server for data storage and processing

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2021.15.26 Volume 15, 2021

E-ISSN: 1998-0159 142

determines when the data, related to an event, are not needed
anymore and can be removed.

Described system architecture is schematically shown in
Fig. 2.

C. Intermediate data storage

All sensor and measurement data is written into the HS
files. Data are organized in a tree (hierarchical) directory
structure which enables this system to be implemented on top
of any platform that supports similar structures. The root of the
structure contains only one folder with only one file named
devices.dat. The rows of this file describe names of devices
that, at the same time, are also the names of subfolders in the
root folder. Each subfolder contains all information about one
device.

Every subfolder contains a cluster of files. The most
important files are:

 properties.dat, which describes the device, its
sensors and possible results (FHPs),

 events.dat, which is used to index all completed
events or events waiting to be processed.

Beside these two files, there are also all files belonging to
all known events. The file names follow a strict syntax:

<event identification mark>-<ID|lock|

sensor{n}|result{n}>.dat

where the identification mark stands for increasing integers, ID

for an event file, lock for a locked event file, and sensor

and result denote files with sensory measurements and files
with computed results (FHPs), respectively, both linked to a
sensor number (written as n in the above syntax).

D. Gorenje Interface Event Handler

This API is shortly called GIEH and is implemented as a
dynamically shared library. It offers functions as defined in
Section II. Beside that it provides: (a) a list of involved sensors
for a specific event; (b) a list of possible FHPs for a specific

device; (c) a list of possible FHPs for a specific event; (d) a
path to the file with specific device properties; and (e) a path to
the file with metadata about an event.

The access to API is serialized to prevent concurrent
modification of critical files. The synchronization is achieved
on the operating system level of the HS [10][11].

To describe all possible sensors, results and connections
between them, we introduced files with device properties. The
format of files is depicted in Fig. 3.

E. Data-Stream and File Structures

All data obtained by SDCs from sensors and connected
external devices, are processed and wrapped in the same way.
Data from each sensor are collected in data packages. Size of
the packages is 128 bytes and they comprise a head of 8 bytes,
and data part of 120 bytes. The head provides the package
generation time, the package serial number, and the sensor or
SD identification mark.

The package data part contains raw data, exactly the same
as collected from the sensory data flows. SDCs do not check
the data flow contents, they only cut them to proper size, wrap
them in packages, and send them to HS.

In general, each sensor has its own data structure which
defines the format of measured data. These are processed by
the algorithms for the FHPs computation. We have analyzed
various possible FHP structures and created common formats
that can be read and interpreted by the same software routine.

Internal formats of properties.dat, events.dat,
identification event files, and files with FHPs are organized in
rows and can be read in the same way as the conventional
configuration files (key=value). Values are of the type that
depends on the key.

The properties.dat file describes properties of
devices. All sensors and FHPs related to a device are
characterized. The description format is exemplified by a
particular FHP:

result_id=hr1

result_name=Heart rate

result_description=The person’s heart rate

in beats per minute

result_sensors=hr_monitor

result_keywords=hr|heart|rate|circulatory|ca

rdiovascular

result_value_id=hr

result_value_type=integer

result_value_unit=BPM

Fig. 3. File structure containing devices' properties: exemplified by a

device with n sensors and r resulting FHPs, each of them having p[1,r] values.

Fig. 2. System architecture of sensory devices: a home server connects to

m devices, each k-th device comprises nk sensors.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2021.15.26 Volume 15, 2021

E-ISSN: 1998-0159 143

The example above shows how heart rate is described. This

FHP is a computation result that has an ID of hr1, and is

called Heart rate, which describes a person’s heart

rate in beats per minute. The processed data are

acquired by a sensor called hr_monitor. The FHP can be

found elsewhere by using various keywords, including hr,

circulatory and cardiovascular. This FHP

comprises a single value with an ID of hr. It is an integer with

units of BPM.

IV. EXAMPLES OF POSSIBLE SCENARIOS AND SYSTEM

IMPLEMENTATION

Tables in this section describe typical processes for creating
new events. Table I refers to when an event is created by a
single program that captures the event data and processes the
data immediately after (synchronous mode). Table II shows an
event that is handled by two independent programs or threads,
where the first program/thread acquires data from sensors and
the second one processes the data asynchronously. Table III
describes a situation when the acquisition program recognizes
events of long measurements and starts processing the data in
parallel, in real time.

Handling of sensory data in synchronous or asynchronous
mode is depicted by a flow chart in Fig. 4.

TABLE I. CREATION OF A NEW EVENT BY USING SYNCHRONOUS

ACCESS

Step Step description

1 A unique event ID (called ID1) is created by using GIEH.

Step Step description

2
Data is captured from sensors and stored in files. Files are

created on demand.

3
An ID file is created for event ID1 which contains event time
and duration logs.

4
Data is processed and FHPs are created as dictated by the

device's properties.

5 All files are finalized. Event ID1 is published.

TABLE II. CREATION OF A NEW EVENT BY USING ASYNCHRONOUS

ACCESS

Step Step description

1 A unique event ID (called ID1) is created by using GIEH.

2
Data is captured from sensors and stored in files. Files are

created on demand.

3
An ID file is created for event ID1 which contains event time
and duration logs.

4
Event ID1 is locked by creating a lock file. Event ID1 now

resists deletion.

5
All files are finalized. Event ID1 is published. This event is
now known as ID2. There are no FHPs for it yet and it is still

locked. This process has now finished its work.

6

Using an asynchronous process, a new locked event ID2 is
detected and its data is processed. FHPs are created as dictated

by the device's properties. Files are named with temporary

names while writing results. They are renamed to a proper
name at the end of writing.

7 A unique event ID (called ID3) is created by using GIEH.

8
An ID file is created for event ID3 which contains event time

and information about the updated event ID2.

9 Event ID2 is unlocked. It can now be deleted.

10 All files are finalized. Event ID3 is published.

TABLE III. CREATION OF A NEW, LONGER EVENT IMPLYING A

CALCULATION OF FHPS IN REAL TIME

Step Step description

1 A unique event ID (called ID1) is created by using GIEH.

2
An ID file is created for event ID1 which contains information

such as event start time.

3
Event ID1 is locked by creating a lock file. Event ID1 is now
marked as unfinished. It also resists deletion.

4

All files are finalized. Event ID1 is published. This event is

now known as ID2. There are no FHPs for it yet and it is still
locked.

5

Data is processed and FHPs are created for event ID2 as

dictated by the device's properties. Care is taken that files can

be opened and read by multiple processes at the same time.

6
All files are finalized. Event ID2 is unlocked. Event is now

marked finished. It can also be deleted.

A. System Implementation

The architecture revealed in previous sections was used for

an implementation of home-server connected unobtrusive

sensors. The sensors are coupled in sensory devices and these

are connected with data concentrators (except for video

cameras). SDCs prepare data packages to be sent to a HS.

In our implementation, sensors were built into the different

household appliances and home devices. Fig. 5 shows

New event
(asynchronously or

synchronously)

Is a person being
detected?

No

Capture data from
sensors and store it

in files

Is a person being
detected?

Yes

Log event time and
duration

Process data and
generate FHP

Publish event

No

Create a
unique event

ID

Yes

Is this process
synchronous?

Yes

Lock this event

No

Fig. 4. Flow chart for the procedure of detecting and creating the events

and processing the capruted data either synchronously or asynchronously.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2021.15.26 Volume 15, 2021

E-ISSN: 1998-0159 144

schematically which sensors and which devices were involved.

Fig. 5. A scematic set-up of sensory devices mounted in dwelling environment to capture unobtrusively human vital signs and compute accordingly the functional-

health parameters.

For the time being the following sensory devices have

been constructed and tested:

 sensors in the refrigerator lever for detecting and

computing heartbeat, blood oxygenation and pressure,

body temperature and physical condition

 optical sensors in the bed for detecting and computing

heart rhythm, arrhythmias, respiration curve,

respiration abnormalities, and movement

 dry electrodes with an ECG measuring device built in

the oven handle to analyze ECG features

 sensors in the slippers for detecting and computing

heartbeat, blood oxygenation, gait features, and

stabilogram

 video camera behind the mirror to detect and analyze

psychophysical condition, i.e. emotions, and skin and

the eye white color

 floor carpet with optical sensor for detecting the

residents’ location, movement, and possible incident of

falling.

Prototypes of all the developed sensors, SDs, and SDCs

were installed and connected into a test system at the

University Rehabilitation Institute Soča of Ljubljana. Several

experiments have been conducted with healthy and also

diseased people. Some of the experiments involved only one

single combination of sensors, SD and SDC, such as those in

the refrigerator lever (Fig. 6). Another type of experiments

was designed with a sequence of daily activities that involved

handling with several sensory devices, such as opening the

refrigerator and oven, passing the mirror, and lying in bed. All

the FHPs acquired and computed were saved into the database

along with the corresponding referential measurements. These

incorporated standard medical devices that measured the same

parameters as tested unobtrusive sensors did at the same time,

so that comparisons and validation were feasible afterwards.

Fig. 6. Exeprimental environment for testing the sensors in the refrigirator

lever installed at the University Rehabilitation Institute Soča of Ljubljana

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2021.15.26 Volume 15, 2021

E-ISSN: 1998-0159 145

V. CONCLUSION

Current functionality of API is ready to be extended by
additional sensors and/or sensory devices. Any additional
sensor or device needs additional software routines that must
be able to handle any particular requirements when acquiring
and storing data according to the basic rules implemented in
the API.

The system of delayed events introduces a simple way of
computing new FHPs from previously stored measurements if
an error is detected in data-processing algorithms or the
algorithms have been modified.

The described system supports ubiquitous computing in
health care delivered at home. It has been designed and
implemented as a network of distributed, unobtrusive sensors
that can be built in different home devices, but also in many
other environments, such as residential homes for elderly,
clinics, or public places.

REFERENCES

[1] M. Chan, D. Estève, C. Escriba, and E. Campo, “A review of smart
homes—Present state and future challenges,” Computer Methods and
Programs in Biomedicine, vol. 91, no. 1, pp. 55–81, Jul. 2008

[2] D. Ding, R. A. Cooper, P. F. Pasquina, and L. Fici-Pasquina, “Sensor
technology for smart homes,” Maturitas, vol. 69, no. 2, pp. 131–136,
Jun. 2011

[3] J. Yao, and S. Warren, “Applying the ISP/IEEE 11073 standards to
wearable home health monitoring systems,” Journal of Clinical
Monitoring and Computing, vol. 19, pp. 427-436, 2005

[4] D. Cook, A. Crandall, B. Thomas, and N. Krishnan, “CASAS: A smart
home in a box.,” IEEE Computer, to appear

[5] V. Stanford, “Using pervasive computing to deliver elder care,”
Pervasive computing, pp. 10-13, 2002

[6] M. J. Rantz, R. T. Porter, D. Cheshier, D. Otto, C. H. Servey, R. A.
Johnson, M. Aud, M. Skubic, H. Tyrer, Z. He, G. Demiris, G. L.
Alexander, G. Taylor, “TigerPlace, A state-academic-private project to
revolutionize traditional long-term care,” Journal of Housing for the
Elderly, vol. 22, no. 1/2, pp. 66-85, 2008

[7] House_n Research Group, “House_n,” MIT Department of Architecture,
http://architecture.mit.edu/house_n/

[8] L. C. De Silva, “Multi-sensor based human activity detection for smart
homes,” Proceedings of the 3rd International Universal Communication
Symposium IUCS ’09, Tokyo, Japan, pp. 223-229, Dec. 2009

[9] FT245RL USB FIFO(USB-Parallel)I.C. ©Future Technology Devices
Intl. Ltd. 2010: 1-37

[10] Microsoft. (2012, Dec 18). Using Mutex Objects (Windows) [Online].
Available: http://msdn.microsoft.com/en-us/library/windows/desktop/
ms686927%28v=vs.85%29.aspx

[11] V. Shukla. (2007, May 24). Semaphores in Linux [Online]. Available:
http://www.linuxdevcenter.com/pub/a/linux/2007/05/24/semaphores-in-
linux.html

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2021.15.26 Volume 15, 2021

E-ISSN: 1998-0159 146

