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Abstract—A new analysis method for high dimensional 

sets is proposed by autonomous deforming of data 
manifolds. The deformation is guided by two kinds of 
virtual interactions between data points. The flattening of 
data manifold is achieved under the elastic and repelling 
interactions, meanwhile the topological structure of the 
manifold is preserved. The proposed method provides a 
novel geometric viewpoint on high-dimensional data 
analysis. Experimental results prove the effectiveness of the 
proposed method in dataset structure analysis. 
 

Keywords—Data analysis, high dimension, data 
manifold, autonomous deformation 

I. INTRODUCTION 
N current big data applications, a large part of the datasets are 
of high dimension such as images, videos, texts of great 

length, etc. It  is a challenge to reveal use ful underlying 
information in the datasets [1-6]. To f ace this challenge, 
manifold learning is one of the main non-linear methods, which 
provides a geometric viewpoint that the data set is regarded as 
samples from a data manifold. Manifold-based methods have 
attracted extensive r esearch attention since the publication of 
the Isometric Mapping and Local Linear Embedding methods 
[7-14]. The existing methods usually have the form of solving 
optimization or linear programming under certain constraints. 
Although these learning methods have achieved impressive 
experimental results, it has been  pointed out that current 
manifold learning methods may fail because of the extremely 
high dimension or high local curvature of the data manifold [15-
17]. Another problem may also invalidate manifold learning 
that the practical data sets usually do no t satisfy the ideal 
precondition of sufficiently dense and uniform sampling on the 
manifold.  

In this paper, a novel method is proposed from the geometric 
viewpoint, which reveals the dataset topology structure by the 
“flattening” of the manifold in t he embedding space. I n the 
 

 

proposed method, the da ta manifold (in a discrete form) 
deforms in an autonomous self-evolution way under the virtual 
interaction between the data points. The flattened manifold can 
naturally represents the dataset topology structure, and the 
deforming result can naturally indicate the intrinsic dimension 
of the manifold. The experimental results prove the 
effectiveness of the proposed method.  

II. THE TWO VIRTUAL INTERACTIONS BETWEEN DATA POINTS 
The proposed method introduces two v irtual interactions 

between data points, which cause the deformation of the data 
manifold. By proper design of the interactions, the flattening of 
the manifold occurs as an emergence effect. The design of the 
proposed method is inspired by the viewpoint of geometrically 
interpreting data topology structure analysis as the flattening of 
data manifold. In the proposed method, two virtual interactions 
between data points are p roposed to derive an autonomous 
deforming process. They are the r epelling and elastic 
interactions. The repelling vector from the data point pj to pi is 
defined as: 
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where ݌Ԧ௜ and ݌Ԧ௝ are the position vectors of data points pi and pj 
in Rn. dij is the distance between the two points in the deforming 
process. Ni is the neighborhood of pi. Because the vector ሺ݌Ԧ௜ െ
 Ԧ௝ሻ points from pj to pi, if pi moves along this direction it will݌
move away from pj. Therefore the vector defined in Equation 
(1) has a repelling effect between pi and pj. 

On the other hand, the elastic interaction vector between pi 
and pj is defined as: 
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where ݀௜௝଴  is the Euclidean distance between pi and pj on the 
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original manifold (before deforming). dij is the distance between 
pi and pj in the deforming process. Therefore, the interaction 
vector defined in E quation (2) will alter according to the 
manifold shape in th e deforming process. For  point pi, this 
elastic interaction only exists for the points in the neighborhood 
Ni. For point pj in Ni, if it comes closer to pi in deforming (i.e. 
the current distance dij is smaller than the original value ݀௜௝଴ ), it 
will repel pi, otherwise it will attract pi. This is just an elastic 
effect which functions as preserving the distance between 
neighbor points (i.e. k eep the neighbor structure in the 
deforming process). 

The total interaction on pi from all the other data points is the 
weighted sum of the above two interactions: 

ሬܸԦ௜ ൌ ଵߙ ∙ ∑ ሬܸԦ
௜௝
௥ே

௝ୀଵ
௝ஷ௜

൅ ଶߙ ∙ ∑ ሬܸԦ
௜௝
௘ே

௝ୀଵ
௝ஷ௜

                     (3) 

where N is the number of data points. α1 and α2 are two weight 
coefficients that balance the two kinds of interactions. ሬܸԦ௜  is 
defined as the def orming vector on pi. Because ሬܸԦ௜  is entirely 
determined by the current position of all data points (i.e. the 
manifold itself), and no external influence is in volved, this 
vector field on the manifold is intrinsic. If each pi moves 
according to ሬܸԦ௜  (i.e. take ሬܸԦ௜  as the di splacement vector), one 
step of manifold deforming will happen. Moreover, if the step 
repeats, the deformation of data manifold will proceed step by 
step. Due to the intrinsic nature of the proposed vector field, the 
deformation under it is a kind of self-evolution of the manifold. 
With the two different kinds of interactions in Equation (1) and 
(2), the deforming process will converge to a “flattened” result, 
which can naturally derive the analysis result.  

III. THE ALGORITHM 
Based on the above definitions, the proposed algorithm is as 

follows. 
Step1: Calculate the Euclidean distance dij between each pair 

of data points in the data set. 
Step2: Find the k nearest neighbor points for each data point as 

its neighborhood point set Ni. 
Step3: Initialize the count of deforming steps C as zero. 
Step4: For each data point pi, calculate the current displacement 

vector ሬܸԦ௜ according to the current position of each point 
(i.e. the current manifold shape) in Rn. 

Step5: Update the position of each point pi with the 
displacement vector ሬܸԦ௜ 

Step6: Increase C by 1. 
Step7: Check whether the termination condition is satisfied (the 

sum of each point’s displacement is smaller than a  
threshold ε, or C reaches a given value). If not, return to 
Step 4. Otherwise, go to Step 8. 

Step8: Perform Principle Component Analysis (PCA) on the 
flattened manifold, and obtain the final analysis result 
(the estimated intrinsic dimension of manifold is t he 
number of principle components, and the low-dimension 
coordinate of each data point is th e projection on the 
principle component vectors). 

The above algorithm first flattens the manifold in Rn, and 
then PCA is used to extract manifold dimension and the dataset 

topology structure, because the manifold has already deformed 
to a fairly flat geometry. 

IV. SIMULATION RESULTS 
The proposed method is implemented by programming 

simulation. Experiments have been done on simple test data sets, 
and also practical data sets i n real wo rld applications. Some 
results and analysis are as follows. 

Preliminary experiments have been done for typical types of 
surfaces in R3. Some results are shown in Fig. 1 to Fig. 3 for the 
half cylinder side face. 

 
Fig. 1 The mesh of the discrete cylinder side face 

 
Fig. 1 shows the mesh of t he discrete cy linder side face, 

which has 120 data points. Because the neighborhood 
relationship is the basis of m anifold topology structure, the 
results consist of nodes for data points, and edges for the 
representation of neighborhood relationship. The nodes  
represent the data points, and each edge connects two neighbor 
points in the data set. 

 
Fig. 2 The deforming result of Fig. 1 in R3 

 
Fig. 2 shows the deforming result of Fig. 1 in R3. In the 

deforming result, the cylinder side face is totally flattened. Fig. 
3 shows the final anal ysis result in R2, which is the result of 
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PCA on Fig. 2 . In Fig. 3, each node point represents the data 
after analysis, and each edge connects two data points which 
correspond to neighbor points in the original data set. Moreover, 
the length o f the ed ge represents the Euclidean distance 
between the two neighbor data points. The nodes in Fig. 3 are 
numbered, which may facilitate further analysis. In thi s way, 
the analysis result and the topology structure of data can be 
clearly demonstrated. In Fig . 3, the data points are evenly 
distributed in R2, which corresponds to the evenly sampling of 
the cylinder side face shown in Fig. 1. It proves t he 
effectiveness of the proposed method on the type of curling 
surface. 

 
Fig. 3 The final structure analysis result of Fig. 1 in R2 

 
Fig. 4 and Fig. 5 show the experimental results on an image 

set from the “Object Pose Estimation Database” [18]. This 
image set of auto fuse is captured under different horizontal and 
vertical viewpoints. The image data set is from Internet [19]. 
Fig. 4 shows the data set with a number assigned to each image. 
Each image is of the size 7 2×90, which i s a dat a vector of 
dimension 6480 in the embedded space of the data manifold. 

The analysis result is shown in Fig. 5. The intrinsic dimension 
of this image set is estimated as two. Each node point in Fig. 5 
represents an image with the same number in Fig. 4. The edges 
connect the pairs of nodes corresponding to the neighbor data 
points in the original data set. The result reveals that the images 
change along two different dimensions. The first dimension is 
the x-axis in Fig. 5, wh ich corresponds to the chang e of 
horizontal viewpoint. The second one is the y-axis in Fig. 5, 
which corresponds to the change of vertical viewpoint. It should 
be noted that the points at the lower right corner in Fig. 5 are 
much closer, becau se the method preserves the distance 
between neighbor points, and those distances are relatively 
small in the o riginal image data set. Therefore, the topology 
structure of the i mage set is effectively extracted and 
represented by the result in Fig. 5. 

 

 
Fig. 4 The image set of auto fuse 

 
 
 
 

 
Fig. 5 The final structure analysis result of the image set of auto fuse in R2 
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V. CONCLUSION 
In this paper, a novel dataset analysis method is proposed by 

the autonomous deforming (self-evolution) of data manifolds. 
The deforming is guided by the proposed deforming vector field 
including two kinds of interactions between data points. The 
elastic interaction preserves the topological structure of the data 
manifold, while the repelling interaction stretches and spreads 
the manifold. The flattening of the manifold in Rn can be 
achieved as a result of data point interactions. The experiment 
results on cylindrical surface prove that the proposed method 
can effectively flatten the bending data manifold. The 
experimental results on real-world data sets prove that effective 
topology structure analysis can be ach ieved by the prop osed 
method, the intrinsic dimension can be revealed, and there are 
meaningful interpretations for the analysis results. Further 
study will investigate detailed characteristics of the final stable 
shape of the deforming manifold. 
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