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Abstract—In 2012 Toghaw et al. introduced a mathematical 

model of the glucose-insulin-incretins system to investigate plausible 
hypotheses to explain the rapid, weight-independent glycemic effects 
of bariatric surgery by comparing the pre-surgery simulated time 
series with those under various hypotheses, namely the lower 
intestinal hypothesis, the upper intestinal, and the ghrelin hypothesis. 
The model system has been reduced to a system of 9 differential 
equations by excluding the plasma ghrelin concentration factor 
following the discovery made in the work of Toghaw et al. in 2012. 
In the present work, we modify the model system in order to 
incorporate two time-delays. The model system was analyzed to 
investigate the effect of delays on the complex dynamic behavior of 
the system. In addition, the simulations under the three hypotheses 
will be compared. 
 

Keywords—Bariatric Surgery, delays, glycaemia, mathematical 
model. 

I. INTRODUCTION 

CCOURDING to several recent reports [1]-[3], obese 
diabetic patients who have undergone bariatric surgery to 

lose weight, especially Roux-en-Y gastric bypass (RYGB) and 
biliopancreatic diversion (BPD), show a rapid improvement of 
the glucose homeostasis. These two operations have in 
common the effect of reducing the absorption of nutrients by 
exclusion of nutrients from the duodenum and proximal 
jejunum. It has been clinically observed that the blood glucose 
profile significantly improves only a few days after surgery 
before any significant weight loss occurs. In order to explain 
the mechanisms which underly the effect of gastric bypass 
procedures in normalizing glycaemia uncorrelated with the 
degree of weight loss, it has been hypothesized that the gut 
removal itself may play a major role in diabetes remission, 
due to the fact that important hormones are secreted there, 
such as the incretin hormones Glucagon-like peptide-1   
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(GLP-1) and Glucose Insulinotropic Polypeptide (GIP), 
ghrelin hormones and the unknown hormone anti-incretin. 

In healthy subjects, GLP-1 and GIP accounts for 50-70% of 
the overall insulin secretion in response to oral glucose intake 
[4]. In patients with type 2 diabetes (T2DM), the effect of 
administered GIP on insulin secretion is impaired, while the 
level of plasma GLP-1 is reduced, but the effect of 
administered GLP-1 on insulin secretion persists [5]. Both 
GLP-1 and GIP are mainly degraded by the enzyme 
Dipeptidyl-peptidase IV (DPP4) [6]. 

In 2009, Cummings reviewed the hypotheses that have been 
considered so far to explain the mechanisms underlying 
diabetes remission [7]. His paper discussed various 
hypotheses proposed in different literatures to explain why the 
plasma glucose control system shows an improvement at a 
faster rate than the rate of patient’s weight loss after surgery. 
The main hypotheses proposed in these literatures are the 
ghrelin hypothesis, the upper intestinal hypothesis and the 
lower intestinal hypothesis. 

The ghrelin hypothesis is based on the observation that the 
level of plasma ghrelin hormone decreases to approximately 
30% of the level before surgery. Ghrelin is a hormone which 
stimulates hunger and is mainly secreted by the stomach. Its 
concentration rises before a meal and quickly decreases after 
meal. The suppression of ghrelin release after surgery may 
reduce appetite and food intake resulting in an improvement 
of glycemia. 

In the lower intestinal hypothesis, it is claimed that the 
surgery resulting in the delivery of food to the lower intestine 
faster increases the release of GLP-1. GLP-1 is an incretin 
hormone secreted from enteroendocrine L-cells in response to 
nutrients ingestion which increases insulin secretion in a 
glucose-dependent manner. The enteroendocrine L-cells can 
be found throughout the small intestine and in high density in 
the ileum at the furthest end of the small intestine. As a result 
of surgery, GLP-1 is secreted sooner in an increased amount 
leading to glycemic improvement. 

For the upper intestinal hypothesis, it is observed that in a 
diabetes patient, the duodenum and proximal jejunum may 
have a mechanism which involves the unknown hormone 
called anti-incretin that works against the function of incretin 
hormones, and is stimulated when food touches these parts of 
the small intestines. As a result of surgery, the path of food is 
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changed preventing food from passing through the duodenum 
and proximal jejunum. The anti-incretin does not function 
leading to diabetes remission. 

In 2012, Toghaw et al. [8] introduced a mathematical model 
which describes the dynamics of the glucose-insulin-incretins 
system, in order to compre these three postulated mechanism 
with the known physiology. The proposed model is composed 
of 10 ordinary differential equations, describing the dynamics 
of the amounts of ingested glucose in the stomach, duodenum 
and ileum, and the dynamics of plasma glucose, insulin 
concentrations with GLP-1, GIP, DPP4 and anti-incretin 
interaction. They evaluated parameter values according to the 
literature and dependent on a number of assumptions 
especially in the unknown hormone anti-incretin. They 
performed numerical experiments to investigate these three 
plausible hypotheses to explain the weight-independent 
glycemic effects of bariatric surgery by comparing the pre-
surgery simulated time series with those post-surgery under 
various hypotheses, namely the lower intestinal hypothesis, 
the upper intestinal, and the ghrelin hypothesis. The modeling 
results seem to indicate that the suppression of ghrelin release 
is unlikely to determine major changes in short-term glucose 
control, while the anti-incretin and the lower intestinal 
hypothesis simulations both gave higher plasma insulin 
concentration peaks as well as lower plasma glucose 
concentration, while the lower-intestinal hypothesis 
simulations produced greater effect on glycemia levels. 
However, the mathematical analysis of the model system was 
not given in this paper. 

In 2012, Lueabunchong et al. [9] estimated the values of 
the parameters connected to the dynamics of the plasma 
glucose and insulin concentrations of the glucose/insulin 
model with GLP-1 and DPP4 interaction reduced from the 
model proposed in [8] by using the statistical evaluation. 

In 2013, Toghaw et al. [10] reduced the model proposed in 
[8] to a system of 9 differential equations by excluding the 
plasma ghrelin concentration, in view of the conclusions 
reached in [8]. Theorems were presented, which show the 
existence, uniqueness, and local stability of the equilibrium 
point. 

However, sustained fluctuations in insulin and incretins 
levels are often observed clinically which could be the result 
of certain delay mechanisms whereby a change in one 
component does not lead to an immediate change in the other 
components in the system under study. Such lags in the 
glucose-insulin dynamics have frequently been reported in the 
literatures [11]-[13]. 

The inclusions of time delay terms in many mathematical 
models have been used in an attempt to better understand the 
complicated dynamics in natural systems [14]-[18]. 

In this paper, the impacts of delays are investigated. The 
organization of the paper is as follows: In Section two, the 
modification of model system in [10] in order to incorporate 
two time-delays is presented. Section three deals with the 
stability properties of the model system. Simulation results 
and discussion are in Section four. Finally, Section five 

contains the conclusion. 

II. SYSTEM MODEL 

We now modify the glucose-insulin-incretin model for 
bariatric surgery and T2DM improvement mechanisms in [10] 
in order to incorporate two time delays, g  in the insulin 

secretion in response to plasma glucose and i  in the insulin-

dependent glucose uptake. The model system can then be 
written as follows: 

Tminlsds STStSktSk
dt
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Tminxpp PTPtPkk
dt

dP
=)(),( min  (8) 

Tminaxaad ATAktAktDk
dt

dA
=)(,)()( min  (9) 

where: 
t [min] is time in minutes; 

g  [min] is the time delay in the insulin secretion in 

response to glucose production in minutes, 0g ; 

i  [min] is time delay in the insulin-dependent glucose 

uptake in minutes, 0i ; 

minT  [min] is starting time for simulations; 

S(t) [mmol] is an amount of ingested glucose in the stomach; 
D(t) [mmol] is an amount of glucose in duodenum; 
L(t) [mmol] is an amount of ingested glucose that appears in 

the ileum; 
G(t) [mM] is plasma glucose concentration; 
I(t) [pM] is plasma insulin concentration; 
W(t) [pM] is plasma GLP-1 concentration; 
U(t) [pM] is plasma GIP concentration; 
P(t) [U/L] is plasma DPP4 concentration; 
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A(t) [pM] is plasma anti-incretin concentration; 
kds [min-1] is the rate of ingested glucose from the stomach 

to duodenum; 
kls [min-1] is  the rate of ingested glucose from the stomach 

to ileum; 
kgd [min-1] is the rate of ingested glucose from the duodenum 

into the plasma; 
kld [min-1] is the rate of ingested glucose from the duodenum 

to the ileum; 
kgl [min-1] is the rate of ingested glucose from ileum to the 

blood; 
kxg [min-1] is the insulin-independent rate constant of tissue 

glucose uptake; 
kxgi [min-1/pM] is the insulin-dependent rate constant of 

tissue glucose uptake; 
f is the fraction of absorbed glucose from ingested meal; 
kg

liver [pM/min] is the increase in plasma glucose concentration 
due to hepatic glucose release; 

kig [pM/min/mM] is the rate of pancreatic release of insulin 
due to glucose; 

kiwg [pM /min/ pM/mM] is the rate of pancreatic release of 
insulin due to GLP-1; 

kiug [pM /min/ pM/mM] is the rate of pancreatic release of 
insulin due to GIP; 

kxi [min-1] is the disappearance rate constant for insulin; 
λ01a, λ02a [pM-1], are the decay rates of insulin secretion via 

the effect of GLP-1 and GIP as anti-incretin 
concentrations increase, respectively; 

kwd [pM/min/mmol] is the rate of release of GLP-1 per 
amount of ingested glucose appearing in the duodenum; 

kwl [pM/min/mmol] is the rate of release of GLP-1 per 
amount of ingested glucose appearing in the ileum; 

kxw [min-1] is the disappearance rate constant for GLP-1; 
kxwp [min-1/pM] is the disappearance rate constant for GLP-1 

due to DPP4; 
kw [pM/min] is the appearance rate constant for GLP-1; 
λ04a [pM-1] is decay rate of GLP-1 production as anti-incretin 

concentration increase; 
kud [pM/min/mmol] is the rate of release of GIP per unit 

amount of ingested glucose appearing in the duodenum; 
kul [pM/min/mmol] is the rate of release of GIP per amount 

of ingested glucose; 
kxu [min-1] is the disappearance rate constant for GIP; 
kxup [min-1/pM] is the disappearance rate constant for GIP 

due to DPP4; 
ku [pM/min] is the appearance rate constant for GIP; 
λ05a [pM-1] is the decay rate of GIP production as anti-

incretin concentration increase; 
kxp [min-1] is the disappearance rate constant for DPP4; 
kp [U/L /min] is the appearance rate constant for DPP4; 
kad [pM/min/mmol] is the appearance rate constant for anti-

incretin due to glucose in the duodenum; kxa [min-1] is 
the disappearance rate constant for anti-incretin, 
supposed to be the same rate as that of DPP-4; 

ka [U/L/min] is the appearance rate constant for anti-
incretin. 

Equation (1) describes the dynamics of the amount of 
ingested glucose in the stomach. The first term represents the 

transfer of the amount of ingested glucose from the stomach to 
the duodenum which will be zero in the post-surgery situation. 
The second term is the transfer the amount of ingested glucose 
from the stomach directly to the ileum, which occurs only 
after the surgery. 

Equation (2) describes the variation of the amount of 
glucose in the duodenum proximal jejunum, the upper parts of 
the small intestines. The first term represents the entry of 
ingested glucose from the stomach, while the second term is 
the absorption of ingested glucose to the plasmatic glucose 
compartment and the third term represents the transfer of 
ingested glucose from these parts to the ileum. 

Equation (3) describes the dynamics of glucose in the ileum 
at the furthest end of the small intestine. The first term 
represents the entry of ingested glucose from the duodenum 
which will be zero in the post-surgery situation, while the 
second term represents the entry from the stomach which 
occurs only after the surgery. The last term is the absorption 
of the ingested glucose into the plasmatic glucose 
compartment. 

Equation (4) describes the dynamics of the plasma glucose 
concentration. The first term represents the insulin-
independent glucose tissue uptake. The second represents the 
insulin-dependent glucose tissue uptake with the time delay 

i . The third term is plasma glucose entry. The last term is the 

increase in plasma glucose concentration due to hepatic 
glucose release. 

Equation (5) describes the dynamics of the plasma insulin 
concentration. All the entry terms are collected in parentheses 
with the time delay g : the first term accounts for glucose 

dependent insulin secretion. The second term depends on the 
plasma glucose and GLP-1 concentration and third terms 
depend on the plasma glucose and GIP concentration. The 
action of the incretin hormones GLP-1 and GIP is opposed by 
the action of plasma anti-incretin with an exponentially 
decreasing dynamics. The last term accounts for linear plasma 
insulin elimination. 

Equation (6) describes the dynamics of plasma GLP-1 
concentration. The first term represents the entry due to the 
amount of glucose in the duodenum, which is exponentially 
controlled by plasma anti-incretin concentrations. The second 
term represents the entry due to the amount of glucose in the 
ileum. The third term accounts for the elimination depend on 
plasma DPP4 action, while the fourth term accounts for the 
natural plasma GLP-1 disappearance. The last term represents 
the GLP-1 constant secretion. 

Equation (7) describes the dynamics of plasma GIP 
concentration. Each term is similar to (6). 

Equation (8) describes the variation of plasma DPP-4 
concentration. The first term represents the plasma DPP-4 
constant secretion, and the last term accounts for linear plasma 
DPP-4 elimination. 

Equation (9) describes the variation of plasma anti-incretin 
concentration. The first term represents the entry due to the 
amount of glucose in the duodenum. The second term 
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accounts for linear plasma anti-incretin elimination and the 
last term represents the plasma anti-incretin constant secretion. 

The details for the physiological meaning of each variable 
and the parameter values are described in [8]. 
Remark 1. All model parameters previously defined are 
strictly positive, except for kds, kls, kld, and kgd, which may be 
zero according to the simulation for pre-surgery or post-
surgery situation. 

III. STABILITY AND BIFURCATION 

We first determine the positiveness, existence and 
uniqueness of the solution to the model system (1)-(9). 

The following theorem ensures that the model system has a 
positive solution. 
 
Theorem 1. System (1)-(9) admits a positive solution for any 
positive initial condition. 
Proof. Let 0minT  in this case. 

Equation (1) involves only one dependent variable, we have 

min
( )( ) ( ) ds lsk k tS t S T e  . 

Hence, if 0)( min TS , then 0)( tS  for all t and )(tS will 

approach zero as t  . 
Next, let 0)( min TD . By the continuity of a solution )(tD  

would become non positive if there exists a 2 0t   such that 
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This proves that, if 0)( min TD  then )(tD is always positive. 

Similarly, it can be proven that the system (3)-(9) admits a 
positive solution for any positive initial condition. By using 
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The uniqueness of a non-vanishing equilibrium solution is 
assured by the following theorem. 
 
Theorem 2. System (1)-(9) has a unique non-vanishing 
equilibrium point 
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equations 
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To investigate the effect of delays on the possibility of 
periodic dynamics in the system, the Jacobian matrix at the 

equilibrium point )( sXJ


 in (10) is derived as 
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eigenvalues 8  and 9  are complex conjugates with negative 

real parts. If, on the other hand, 0)(42  dcb , then the 

eigenvalues 8  and 9  are both real and negative, since 

0 dc  and so bdcb  )(42 . 

Therefore, all eigenvalues of the Jacobian matrix have 
strictly negative real parts. We can conclude that, in the 
absence of delay, the equilibrium point sX


 is locally 

asymptotically stable. 
As   varies, for a periodic solution to exist, we are looking 

for a pure imaginary root. Letting .,   i . That is 

0)()()( )(2    idecibiiq  

We write the exponential in terms of trigonometric 
functions and break the polynomial into its real and imaginary 
parts, which yields 

0))sin(()cos(2   dbidc  (26) 

Equating real and imaginary parts on the right of (26) to zero, 
we get the pair of equations 

)cos(2  dc   (27) 

)sin( db   (28) 

Squaring each equation and summing the results yields 
 

0)2( 22224  dccb   (29) 

Setting 2  , (18) can then be written in terms of   as 

0)2( 2222  dccb   (30) 

The equation (24) will have a pair of pure imaginary 
solutions  i if (30) has a positive real solution. 

Consider the coefficients in (30), 

.0

2)()()(

)(2)(2
222

22







sxgixgxisxgixg

xisxgixgxisxgixg

IkkkIkk

kIkkkIkkcb

 (31) 
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Also, according to (21), 
xi

s
s k

KG
I 1 , 

.)(

1

ckIkk

Ikk

KGkd

xisxgixg

sxixgi

sxgi







 (32) 

Hence, we have 022  dc . 
Since, (30) is a quadratic polynomial with positive 

coefficients, then all roots have negative real part. Equation 
(30) cannot have any positive real roots for all 0  . 
Therefore, the introduction of the delays to the model system 
(1)-(9) does not lead to a Hopf bifurcation. 

 
Theorem 3. The equilibrium point of the model system (1)-
(9) is locally asymptotically stable for all 0  . 

IV. NUMERICAL RESULTS AND DISCUSSION 

The simulations of the present model has been implemented 
by using dde23 in MatlabR2011a®. Simulations start at time 

0minT  min., and the amount of glucose in the stomach is 

600 mmol, while there is no glucose in the duodenum or 
ileum. Therefore, at time minT  we have 600TminS  mmol and 

0 TminTmin LD  mmol. There are three simulations. One 

represents the pre-surgery scenario, in which no parameters 
are changed in the model. In order to simulate the lower 
intestinal hypothesis and the anti-incretin hypothesis, the 
parameters that were thought to differ from the pre-surgery 
situation were changed as described in [8]. 

 

 
                                  (a) 

       
                                  (b)                                                   

 
                              (c) 

 
(d) 

 
Fig. 1 The solution trajectories of plasma glucose 
concentration, G(t), and plasma insulin concentration, I(t), of 

(a) without delay, (b) with delays 25g   and 15i  , (c) 

with delays 70g   and 25i  , and (d) with delays 

200g   and 100i  , all under the lower-intestinal 

hypothesis. 

 

Fig. 2 the simulated time series as t   of plasma glucose 
and plasma insulin concentrations with large delays 

200g   and 100i  . 
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Although the values of the two time-delays do not effect the 
stability of the equilibrium points of the referenced model, the 
manner in which the components in tending toward the 
equilibrium points may depend on the values of the delays. 
According to the review in [20], it has been clinically 
observed that the time delay g  was 23.5 minutes and the time 

delay i  was generally smaller than g . Therefore, in the case 

of small delays we set 25g  and 15i . 

First, we study the manner in which the plasma glucose 
concentration, G(t), and the plasma insulin concentration, I(t) 
tend towards the equilibrium levels. Since variations in the 
solution trajectories in the three scenarios are quite similar, 
only the solution trajectories in the lower-intestinal scenario 
are shown in Fig. 1. In Fig. 1 (a) the solution trajectories of 

plasma glucose concentration and plasma insulin 
concentration without delay tend towards steady state levels in 
quite a similar manner as in Fig. 1 (b) with small delays, 

25g  and 15i . Also, in Fig. 1 (c) the solution 

trajectories with delays 70g  and 25i , spiral towards 

steady state levels in the same manner as in Fig. 1 (d) with 
delays 200g  and .100i  As time passes, the plasma 

levels of glucose and insulin will settle down towards positive 
steady state values as shown in Fig. 1-3. However, in the case 
of large delays, the plasma levels of glucose and insulin will 
tend to the steady state values in an oscillatory fashion as 
shown in Fig. 1 (c)-(d) and Fig. 2. 

 
 

 

 
                                                                                          (a) 

 
                                                                                              (b) 

    
                                                                                             (c) 
 
Fig. 3 the simulated time series of plasma glucose on the left panel and plasma insulin concentrations on the right panel, of (a) non-delayed 

case (upper panel), and (b) delayed case with 25g   and 15i   (middle panel), and (c) delayed case with 25g   and 70i  (lower 

panel), for the 3 scenarios are shown together  (solid line for the pre-surgery case, dotted line for the lower-intestinal hypothesis, and dash-dot 
line for the anti-incretin hypothesis). 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 7, 2013 445



 

 

In Fig. 3, the 3 scenarios are shown together (solid line for 
the pre-surgery case, dotted line for the lower-intestinal 
hypothesis, dash-dot line for the anti-incretin hypothesis). The 
simulated time series of plasma glucose and insulin 
concentrations with the different delays are shown because the 
variations of the other components are quite similar as 
presented in [8]. 

In Fig. 3 (a), in the upper panel, the simulations of the non-
delayed system are shown. In the lower-intestinal (dotted line) 
and the anti-incretin hypotheses (dash-dot line), the peak of 
plasma glucose concentration dynamics is lower and the peak 
of plasma insulin concentration is higher than the pre-surgery 
curve. However, the lower-intestinal hypothesis curve shows a 
more marked effect than the anti-incretin hypothesis. In Fig. 3 
(b), the delayed case with 25g  and 15i  (middle 

panel), the dynamics of plasma glucose and insulin 
concentrations for the 3 scenarios are quite similar as in the 
non-delayed case. However, with delays the peak of plasma 
glucose and insulin concentration dynamics are higher and 
elimination is faster. In Fig. 3 (c), the delayed case with 

25g  and 70i  (lower panel), in the lower-intestinal 

and the anti-incretin hypotheses the peak of plasma glucose 
concentration curve is also lower but the curve falls below   
the equilibrium level before it settles upwards to the 
equilibrium. 

V. CONCLUSION 

A mathematical model which describes the dynamics of the 
glucose-insulin-incretins system incorporating time-delays, 

g  in the insulin secretion in response to glucose production 

and i  in the insulin-dependent glucose uptake has been 

investigated in this work. Theorems have been presented 
which show the existence, uniqueness, and local stability of 
the equilibrium point, while the values of the two time-delays 
do not directly effect the stability of the equilibrium points. 
However, according to simulations, the plasma levels of 
glucose and insulin will tend to the steady state values in an 
oscillatory fashion in the case of large delays. 

Local stability of the equilibrium point 
  .T

ssssssssss APUWIGLDSX 


 

means that if the initial values of each state variables are 
sufficiently close to the steady state values, then we are 
assured that, as time passes, the glucose levels in the stomach, 
the duodenum , and the  ileum will eventually vanish, while 
the plasma levels of glucose, insulin, and other hormones will 
settle down towards positive steady state values. 

In the absence of delay, the manner in which these 
components tend towards the equilibrium levels depends 

crucially on the value of the basic number 0R  given by 

220 )(

)2(4)(4

xisxgixg

sxgixgxi

kIkk

Ikkk

b

dc
R







  (33) 

The hormone levels will tend to the steady state values in an 
oscillatory fashion if ,00 R  but if the physical parameters 

can be controlled so that ,00 R  we could avoid the hormone 

fluctuations which may be harmful to diabetic patients or 
difficult to regulate. It is suggested that hormone swings could 
be minimized if the rate kxgi is kept at a high enough level. 

The 3 scenarios have been compared in the cases with and 
without delays. The weight of evidence accumulated so far 
would seem to support the lower intestinal hypothesis over the 
anti-incretin hypothesis which supports the discovery made by 
the modeling and simulation effort in [8], although the results 
of a simulation study are dependent on a number of 
assumptions, both in the simplification of the model structure 
and in the assessment of the model parameters. 
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