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Abstract—The aim of this paper is to analyze the un-
steady flow of a non-Newtonian incompressible second-order
fluid in a straight rigid axisymmetric tube with circular cross-
section of constant radius. To study this problem, we use
the 1D nine-director Cosserat theory approach which reduces
the exact three-dimensional equations to a system depending
only on time and on a single spatial variable. From this one-
dimensional system we obtain the relationship between mean
pressure gradient and volume flow rate over a finite section of
the tube. Attention is focused on some numerical simulation
of steady/unsteady flows for specific mean pressure gradient
and on the analysis of perturbed flows.

Keywords—Cosserat theory, perturbed flow, unsteady
flow, second-order fluid, mean pressure gradient, volume flow
rate.

I. INTRODUCTION

Let us consider the constitutive equation for viscoelas-
tic fluids of differential type (also called Rivlin-Ericksen
fluids) with complexity n. The extra stress tensor for
these fluids has the representation (see e.g. Colemann
and Noll [9])

σ = S(A1, A2, · · · , An) (1)

where S is an isotropic tensor function and
A1, A2, · · · , An are the first n Rivlin-Ericksen ten-
sors (see Rivlin and Ericksen [23]), given by the
recurrence formula (n = 2, 3, · · ·):
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A1 = ∇ϑ +
(
∇ϑ

)T
, (2)

An =
d

dt

(
An−1

)
+ An−1∇ϑ +

(
∇ϑ

)T
An−1, (3)

here ϑ is the three-dimensional velocity field, and d
dt(·)

denoting the material time derivative defined by the ex-
pression:

d

dt

(
An−1

)
=

∂An−1

∂t
+ ϑ · ∇An−1.

For viscoelastic fluids of differential type, with complex-
ity n = 2, the extra stress tensor (1) reduces to

σ = µA1 + α1A2 + α2A
2
1, (4)

where µ is the constant fluid viscosity, α1 and α2 are ma-
terial coefficients usually called the normal stress moduli
and the kinematic first two Rivlin-Ericksen tensors A1

and A2 are given by (2)− (3). The Cauchy stress tensor
for an incompressible and homogeneous Rivlin-Ericksen
fluid of differential type, with complexity n = 2, is given
by (see [9])

T = −pI + µA1 + α1A2 + α2A
2
1 (5)

where p is the pressure and −pI is the spherical part
of the stress due to the constraint of incompressibility.
The 3D fluid dynamic model associated to the constitu-
tive equation (5) has been studied by several authors (see
e.g. [1],[10],[16]) under different perspectives. The ther-
modynamics and stability of the fluids related with the
Cauchy stress tensor (5) have been studied in detail by
Dunn and Fosdick [13], who showed that if the fluid is to
be compatible with thermodynamics in the sense that all
motions of the fluid meet the Clausius-Duhem inequal-
ity and the assumption that the specific Helmholtz free
energy of the fluid is a minimum in equilibrium, then

µ > 0, α1 > 0, α1 + α2 = 0. (6)
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Later, Fosdick and Rajagopal [15], based on the ex-
perimental observation, showed that for many non-
Newtonian fluids of current rheological interest the re-
ported values for α1 and α2 do not satisfy the restriction
(6)2,3, relaxed that assumption. Also, they showed that
for arbitrary values of α1 + α2, with α1 < 0, a fluid fill-
ing a compact domain and adhering to the boundary of
the domain exhibits an anomalous behavior not expected
on real fluids. The condition (6)3 simplifies substantially
the mathematical model and the corresponding analy-
sis. The fluids characterized by (6) are known as second-
grade fluids as opposed to the general second-order fluids.
It should also be added that the use of Clausius-Duheim
inequality is the subject matter of much controversy (see
e.g. Coscia and Galdi [10]). A possible simplification
to a three-dimensional model for an incompressible vis-
coelastic fluid inside a domain is to consider the evolution
of average flow quantities using simpler one-dimensional
models. Usually, in the case of flow in a tube, the clas-
sical 1D models are obtained by imposing additional as-
sumptions and integrating both the equations of conser-
vation of linear momentum and mass over the cross sec-
tion of the tube. Here, we introduce a 1D model for non-
Newtonian Rivlin-Ericksen fluids of second-order, based
on the nine-director approach developed by Caulk and
Naghdi [8]. This theory includes an additional struc-
ture of directors (deformable vectors) assigned to each
point on a space curve (Cosserat curve), where a three-
dimensional system of equations is replaced by a one-
dimensional system depending on time and on a single
spatial variable. The use of directors in continuum me-
chanics goes back to Duhen [12] who regards a body as
a collection of points together with associated directions.
Theories based on such a model of an oriented medium
were further developed by the French scientist Eugène
and François Cosserat [11] and have also been used by
several authors in studies of rods, plates and shells (see
e.g. Ericksen and Truesdell [14], Truesdell and Toupin
[26], Green et al. [19], [20] and Naghdi [22]). An anal-
ogous hierarchial theory for unsteady and steady flows
has been developed by Caulk and Naghdi [8] in straight
pipes of circular cross-section and by Green and Naghdi
[21] in channels. The same theory was applied to un-
steady viscous fluid flow in curved pipes of circular and
elliptic cross-section by Green et al. [18]. Recently, this
theory has been applied to haemodynamics by Robert-
son et al. [25] and Carapau et al. [2]. Also by Carapau
and Sequeira [3], [4], [6], and by Carapau [7] consider-
ing non-Newtonian fluids. This theory it was validated

on the special case of a uniform tube of constant radius
for Newtonian fluid (see [8]), and also for non-Newtonian
fluids (see [2], [3]). The relevance of using a theory of di-
rected curves is not in regarding it as an approximation
to three-dimensional equations, but rather in their use as
independent theories to predict some of the main prop-
erties of the three-dimensional problems. Advantages of
the director theory include: (i) the theory incorporates
all components of the linear momentum; (ii) it is a hierar-
chical theory, making it possible to increase the accuracy
of the model; (iii) there is no need for closure approx-
imations; (iv) invariance under superposed rigid body
motions is satisfied at each order and (v) the wall shear
stress enters directly in the formulation as a dependent
variable. This paper deals with the study of the initial
boundary value problem for an incompressible homoge-
neous second-order fluid model in a straight circular rigid
tube with constant radius, where the fluid velocity field,
given by the director theory, can be approximated by the
following finite series (see [8]):

ϑ = v +
k∑

N=1

xα1 . . .xαN
W α1...αN

, (7)

with

v = vi(z, t)ei, W α1...αN
= W i

α1...αN
(z, t)ei, (8)

(latin indices subscript take the values 1, 2, 3; greek in-
dices subscript 1, 2, and the usual summation conven-
tion is employed over a repeated index). Here, v repre-
sents the velocity along the axis of symmetry z at time t,
xα1 . . . xαN

are the polynomial weighting functions with
order k (this number identifies the order of hierarchical
theory and is related to the number of directors), the
vectors W α1...αN

are the director velocities which are
symmetric with respect to their indices and ei are the
associated unit basis vectors. Using this director theory,
the 3D system of equations governing the fluid motion is
replaced by a system which depends only on a single spa-
tial and time variables, as previously mentioned. From
this new system, we obtain the unsteady relationship be-
tween mean pressure gradient and volume flow rate. Here
in this work we will extend the results obtain on [3] and
[5]. Attention is focused on some numerical simulation
of steady/unsteady flows for specific mean pressure gra-
dient and on the analysis of perturbed flows.

II. GOVERNING EQUATIONS OF MOTION
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Let xi (i = 1, 2, 3) be the rectangular cartesian coor-
dinates and for convenience set x3 = z. We consider a
homogeneous fluid moving within a circular straight and
impermeable tube, the domain Ω (see Fig.1) contained
in R3. Also, let us consider the surface scalar function
φ(z, t), that is related with the cross-section of the tube
by the following relationship

φ2(z, t) = x2
1 + x2

2. (9)

The boundary ∂Ω is composed by, the proximal cross-

Pe

τ2

τ1

Z

Γ2

Γ1

X1

X2

Γw

φ(z,t)

Fig. 1: General fluid domain Ω with the tangential components of
the surface traction vector τ1, τ2 and pe, where φ(z, t) denote the
radius of the domain surface along the axis of symmetry z at time
t.

section Γ1, the distal cross-section Γ2 and the lateral wall
of the tube, denoted by Γw .

Consider the motion of an incompressible fluid without
body forces inside a straight circular tube. The equations
of motion, stating the conservation of linear momentum
and mass are given by (in Ω × (0, T ))





ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
= ∇ · T ,

∇ · ϑ = 0,

T = −pI + µA1 + α1A2 + α2A
2
1, tw = T · η,

(10)
with the initial condition

ϑ(x, 0) = ϑ0(x) in Ω, (11)

and the homogeneous Dirichlet boundary condition

ϑ(x, t) = 0 on Γw × (0, T ), (12)

where ϑ = ϑiei is the velocity field and ρ is the constant
fluid density. Equation (10)1 represents the balance of
linear momentum and (10)2 is the incompressibility con-
dition. In equation (10)3, tw denotes the stress vector
on the surface whose outward unit normal is η = ηiei.
The kinematical first two Rivlin-Ericksen tensors A1 and
A2 are given by (2) − (3). If α1 = α2 = 0 in (10)3 the
classical Navier-Stokes system are recovered.

The components of the outward unit normal to the
surface φ(z, t) are

η1 =
x1

φ
√

1 + φ2
z

, η2 =
x2

φ
√

1 + φ2
z

, η3 = − φz√
1 + φ2

z

, (13)

where the subscript variable denotes partial differentia-
tion. Since equation (9) defines a material surface, the
velocity field ϑ must satisfy the kinematic condition

d

dt

(
φ2(z, t) − x2

1 − x2
2

)
= 0,

i.e.
φφt + φφzϑ3 − x1ϑ1 − x2ϑ2 = 0 (14)

on the boundary (9).
Averaged quantities such as flow rate and average pres-

sure are needed to study 1D models. Consider S(z, t) as
a generic axial section of the tube at time t defined by
the spatial variable z and bounded by the circle defined
in (9) and let A(z, t) be the area of this section S(z, t).
Then, the volume flow rate Q is defined by

Q(z, t) =
∫

S(z,t)
ϑ3(x1, x2, z, t)da, (15)

and the average pressure p̄, by

p̄(z, t) =
1

A(z, t)

∫

S(z,t)
p(x1, x2, z, t)da. (16)

III. ONE-DIMENSIONAL APPROACH

Using the director theory approach (7) with k = 3, it
follows (see [8]) that the approximation of the velocity
field ϑ(x1, x2, z, t) = ϑiei, with nine directors, is given
by

ϑ =
[
x1(ξ + σ(x2

1 + x2
2)) − x2(ω + η(x2

1 + x2
2))

]
e1

+
[
x1(ω + η(x2

1 + x2
2)) + x2(ξ + σ(x2

1 + x2
2))

]
e2

+
[
v3 + γ(x2

1 + x2
2)

]
e3 (17)

where ξ, ω, γ, σ, η are scalar functions of the spatial vari-
able z and time t. The physical significance of these
scalar functions in (17) is the following: γ is related to
transverse shearing motion, ω and η are related to ro-
tational motion (also called swirling motion) about e3,
while ξ and σ are related to transverse elongation.

Using the boundary condition (12), the velocity field
(17) on the surface (9) is given by

ξ + φ2σ = 0, ω + φ2η = 0, v3 + φ2γ = 0. (18)
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The incompressibility condition (10)2 applied to the ve-
locity field (17), can be written as

(v3)z + 2ξ +
(
x2

1 + x2
2

)(
γz + 4σ

)
= 0. (19)

For equation (19) to hold at every point in the fluid, the
velocity coefficients must satisfy the conditions

(v3)z + 2ξ = 0, γz + 4σ = 0. (20)

Taking into account (18)1,3 these separate conditions (20)
reduce to

(v3)z + 2ξ = 0,
(
φ2v3

)
z

= 0. (21)

Moreover, replacing the velocity field (17) in condition
(14) defined at the boundary (9), we get

φt +
(
v3 + φ2γ

)
φz −

(
ξ + φ2σ

)
φ = 0. (22)

Now, let us consider a flow in a rigid tube, i.e.

φ = φ(z), (23)

without swirling motion (ω = η = 0). From (23) and (18)
we verify that the kinematic condition (22) is satisfied
identically. Conditions (15), (17), (18)3 and (21)2 imply
that the volume flow rate Q is a function of time t, given
by

Q(t) =
π

2
φ2(z)v3(z, t). (24)

Then, for a flow in a rigid tube without rotation, with
volume flow rate (24) and conditions (18)1,3 and (21)1,
the velocity field (17) becomes

ϑ =
[
x1

(
1 − x2

1 + x2
2

φ2

)2φzQ(t)
πφ3

]
e1 (25)

+
[
x2

(
1 − x2

1 + x2
2

φ2

)2φzQ(t)
πφ3

]
e2

+
[2Q(t)

πφ2

(
1 − x2

1 + x2
2

φ2

)]
e3. (26)

Also, from Caulk and Naghdi [8] the stress vector (see
(10)3) on the lateral surface Γw can be given by

tw =
[ 1

φ(1 + φ2
z)1/2

(
τ1x1φz − pex1 − τ2x2(1 + φ2

z)
1/2

)]
e1

+
[ 1

φ(1 + φ2
z)1/2

(
τ1x2φz − pex2 + τ2x1(1 + φ2

z)
1/2

)]
e2

+
[ 1

(1 + φ2
z)1/2

(
τ1 + peφz

)]
e3 (27)

where τ1, τ2 and pe are the tangential components of the
surface traction vector.

Instead of satisfying the momentum equation (10)1
pointwise in the fluid, we impose the following integral
conditions

∫

S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
da = 0, (28)

∫

S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
xα1 . . . xαN da = 0, (29)

where N = 1, 2, 3.

Using the divergence theorem and integration by parts,
equations (28) − (29) for nine directors, can be reduced
to the four vector equations:

∂n

∂z
+ f = a, (30)

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (31)

where n, kα1...αN , mα1...αN are resultant forces defined
by

n =
∫

S
T 3da, kα =

∫

S
T αda, (32)

kαβ =
∫

S

(
T αxβ + T βxα

)
da, (33)

kαβγ =
∫

S

(
T αxβxγ + T βxαxγ + T γxαxβ

)
da, (34)

mα1...αN =
∫

S
T 3xα1 . . .xαN

da. (35)

The quantities a and bα1...αN are inertia terms defined
by

a =
∫

S

ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
da, (36)

bα1...αN =
∫

S
ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
xα1 . . . xαN

da, (37)

and f , lα1...αN , which arise due to surface traction on the
lateral boundary, are defined by

f =
∫

∂S

√
1 + φ2

z twds, (38)

lα1...αN =
∫

∂S

√
1 + φ2

z tw xα1 . . . xαN
ds. (39)

The equation for the mean pressure gradient as a func-
tion of the volume flow rate will be obtain using the re-
sults quantities (32)− (39) on equations (30)− (31).

IV. NUMERICAL RESULTS RELATED WITH
VOLUME FLOW RATE
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Let us consider the system (10)−(12)where the normal
stress coefficients α1 and α2 do not satisfy the restriction
(6)2,3. We consider the case of a straight circular rigid
walled tube with constant radius, i.e. φ = ct. Replac-
ing the results (32)− (39) obtained by the nine-director
model into equations (30) − (31), we get the unsteady
relationship

p̄z(z, t) = − 8µ

πφ4
Q(t) − 4ρ

3πφ2

(
1 + 6

α1

ρφ2

)
Q̇(t), (40)

were the notation Q̇ is used for time differentiation. Flow
separation occurs when the axial component τ1 of the
stress vector on the lateral surface (cf. (27)) is in the
direction of the flow, i.e. τ1 > 0. The expression for the
wall shear stress τ1 is given by

τ1 =
4µ

πφ3
Q(t) +

ρ

6πφ

(
1 + 24

α1

ρφ2

)
Q̇(t). (41)

Integrating equation (40), over a finite section of the
tube, between z1 and position z2 (z1 < z2), we get the
mean pressure gradient

G(t) =
p̄(z1, t)− p̄(z2, t)

z2 − z1

=
8µ

πφ4
Q(t) +

4ρ

3πφ2

(
1 + 6

α1

ρφ2

)
Q̇(t). (42)

Now, let us consider the following dimensionless vari-
ables

ẑ =
z

φ
, t̂ = ω0 t, Q̂ =

2ρ

πφµ
Q, ˆ̄p =

φ2ρ

µ2
p̄, (43)

where φ is the characteristic radius of the tube and ω0 is
the characteristic frequency for unsteay flow. Substitut-
ing the new variables (43) into equation (40), we obtain

ˆ̄pẑ = −4Q̂(t̂) − 2
3

(
1 + 6We

)
W2

0
˙̂
Q(t̂), (44)

where W0 = φ
√

ρω0/µ is the Womersley number and
We = |α1|/(ρφ2) is a viscoelastic parameter, also called
the Weissenberg number (see e.g. Galdi et al. [17]). The
dimensionless number W0 is the most commonly used
parameter to reflect the unsteady pulsatility of the flow.
Integrating (44) over a finite section of the tube between
ẑ1 and ẑ2, we get the relationship between mean pressure
gradient and volume flow rate given by

Ĝ(t̂) = 4Q̂(t̂) +
2
3

(
1 + 6We

)
W2

0
˙̂

Q(t̂). (45)

Moreover, the dimensionless form of equation (41) is

τ̂1 =
φ2ρ

µ2
τ1 = 2Q̂(t̂) +

1
12

(
1 + 24We

)
W2

0
˙̂

Q(t̂). (46)

If we consider We = 0 on above equations (45) and (46),
we recover the results obtained by Caulk and Naghdi (see
[8]) to the case of a viscous fluid inside a circular straight
tube. Next, solving equation (45), we can compute in
time the volume flow rate Q̂ in terms of the mean pressure
gradient Ĝ.

Flow under constant mean pressure gradient

In the particular case of a constant mean pressure gra-
dient Ĝ(t̂) = Ĝ0 the system converges toward a steady
state solution. In Fig.2 this steady state volume flow rate
is obtained solving the time dependent problem but, if
we are not interested in the behaviour during the initial
transient phase, the steady (asymptotic) value of the vol-
ume flow rate can be obtained directly from (45) setting
˙̂
Q(t̂) = 0, since at constant pressure gradient we have
Q̇(t̂) → 0 as t̂ → ∞. Therefore the steady solution is
characterized by

Q̂ = Ĝ0/4, (47)

which is in excellent agreement with the numerical results
shown in Fig.2. From Fig.2, we can realize that there is

Fig. 2: Time evolution of the volume flow rate given by (45)
with constant mean pressure gradiente, fixed Womersley number
(W0 = 0.25) and different values of the Weissenberg number (We =
(0.25, 0.75, 1.5)).

no qualitative difference between solutions for different
values of Weissenberg number, except from the fact that
the corresponding curves becomes less dense as the Weis-
senberg number increases. Several numerical tests have
also been performed for other values of Womersley num-
ber (fixed or not) and Weissenberg number (fixed or not)
showing similar results.
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Flow under time mean pressure gradient

In the general situation of imposing a time dependent
mean pressure gradient the theory still holds, but addi-
tional conditions must be imposed in order to get conve-
nient solutions. We will only briefly show numerical re-
sults for specific mean pressure gradient. The case of the
mean pressure gradient rising (falling, respectively) expo-
nentially with time was study by Carapau and Sequeira
(see [3]), here the 1D nine-director solution was com-
pared with the 3D exact solution obtained by Soundal-
gekar [24]. Now, considering the following mean pressure
gradient

Ĝ(t̂) = 1+ | sin(t̂) | + | cos(2t̂) |, (48)

we can observe in Fig.3 how the volume flow rate Q̂

change with the time for different values of Womersley
and Weissenberg numbers. From these results we can
realize that there is no qualitative different between so-
lutions. However, the behavior of the sinusoidal solution
start to decrease the values on the peacks when we in-
crease the Weissenberg number. Considering other val-

Fig. 3: Time evolution of the volume flow rate given by (45)
with mean pressure gradient (49), with Womersley number´s W0 =
(0.5, 0.75) and Weissenberg number´s We = (0.25, 0.75, 1.75).

ues for Womersley and Weissenberg numbers we get the
same solution behavior.

V. PERTURBED FLOWS

In many industrial applications involving fluid flows in
specific domains it is important to determine the changes
in flow characteristics induced by perturbations in the
initial or boundary data, body forces or pressure drop.
In fact, since it is virtually impossible to maintain an
exactly constant pressure drop, one should be able to
predict how much a perturbation of given magnitude in
pressure drop will affect the volume flow rate. Let us con-
sider a uniform perturbation of magnitude ε (see Fig.4)
related with the mean pressure gradient

Ĝ(t̂) = 1+ | sin(t̂) | + | cos(2t̂) | . (49)

For each ε > 0, defining the quantities,

Ĝ+
ε (t̂) = (1 + ε)Ĝ(t̂), Ĝ−

ε (t̂) = (1 − ε)Ĝ(t̂), (50)

we denote by Q̂+
ε and Q̂−

ε the perturbed volume flow
rates corresponding to Ĝ+

ε and Ĝ−
ε , respectively.

Fig. 4: Multiplicative perburbation of the mean pressure gradient
(49), with magnitude ε = 0.1.

Now, considering the perburbation Ĝ±
ε = (1 ± ε)Ĝ0,

where Ĝ0 is a constant mean pressure gradient, for suffi-
ciently large t̂, after the transient period, we can use the
characterization of the steady solution (see (45)) deduced
by

Q̂ = Ĝ0/4, (51)

and explicitly compute the perturbed volume flow rate,
using (50), as follows:

Q̂±
ε =

1
4
Ĝ±

ε =
1
4
(1 ± ε)Ĝ0 = Q̂(1 ± ε). (52)

Normalizing the above perturbeded volume flow rate Q̂±
ε

by the unperturbed volume flow rate Q̂, we get

Q̂±
ε

Q̂
= (1 ± ε), (53)

which means that in the steady case, this kind of multi-
plicative perturbation acts linearly. Changing the mean
pressure gradient by a factor of (1 ± ε), we changes
the unperturbed volume flow rate by the same factor of
(1±ε). In particular this shows that the steady state so-
lution is linearly stable. Perturbations will be negligible
if (1± ε) ' 1, which happens when ε → 0, i.e. for small
changes in the mean pressure gradient.

In the case of time dependent mean pressure gradient
the same ideas hold, apart from the fact that it is no
longer possible to deduce exact expressions for the per-
turbed volume flow rates. However, we can compute the
time evolution of the perburbation volume flow rate Q̂±

ε .

6

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 2, 2008 251



Fig. 5: Time evolution of the unperturbed volume flow rate Q̂,
and perturbeded volume flow rate Q̂±

ε , with magnitude ε = 0.1.

In Fig.5, we illustrate the time evolution of the vol-
ume flow rate with mean pressure gradient (49), together
with the perturbed flow rates Q̂±

ε of magnitude ε = 0.1,
forming a strip around Q̂ containing all perturbations
of magnitude less or equal to ε. Fig.6 shows the am-
plitude of this strip for several values of Womersley and
Weissenberg numbers, showing also that increasing the
Weissenberg number reduces sensitivity to perturbations

|Q̂+
ε − Q̂−

ε | (54)

with fixed Womersley number. Considering other values

Fig. 6: Time evolution of perburbation (54) for different values of
Womersley and Weissenberg numbers.

for Womersley and Weissenberg numbers we get the same
solution behavior shown in Fig.6.

VI. CONCLUSIONS

The Cosserat nine-director theory has been used to
derive a 1D second-order fluid model in a straight and
rigid tube with circular cross-section of constant radius,
as an alternative approach to predict some of the main
properties of associated 3D models. Unsteady nondimen-
sional relationship between mean pressure gradient and
volume flow rate over a finite section of the tube has
been obtained. For steady/unsteady mean pressure gra-
dients we predicted some numerical results for different
values of Weissenberg and Womersley numbers. Finally,
we conducted numerical simulations of perturbed flows,

obtaining an exact expression for the perturbed volume
flow rates in the steady case, providing a first step to-
wards stability analysis of the model. One of the pos-
sible extensions of this work is the application of this
one-dimensional approach theory to study flow in curved
tubes and in tubes with branches or bifurcations.
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