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Abstract—The present paper is focused on analyzing 

different sources of errors that appear when using Boundary 
Element Method (BEM) to solve problems, and illustrating 
their influence on the numerical solutions accuracy. The study 
is made considering the errors that appear when BEM is used 
to solve a problem of compressible fluid flow. Analytical 
checking is used by referring to cases when the problem can be 
exactly solved, and so, the numerical solutions are compared 
with analytical solutions in order to check their accuracy. Some 
techniques to minimize the errors in order to get better 
numerical results are presented.  
 

Keywords— accuracy, boundary element method, compressible 
fluid flow, numerical solution, singular kernels. 

I. INTRODUCTION 
N the last period the incredible development of numerical 
methods led to the possibility of solving difficult problems 
and simulating physical phenomena, often thousands or 

millions of times over.  
In general, problems described by complex mathematical 

models can not be solved exactly, and thus, more often one has 
to apply numerical methods to solve them. Computational 
methods and approximate solutions become necessary, but 
numerical methods don't offer the exact answer to a given 
problem because simplifications have to be made when 
applying them in order to get a solution for a certain 
mathematical model. Generally they can only tend to a 
solution, getting closer to it with each iteration. 

    The boundary element method (BEM) is one of the 
numerical methods that have been developed for finding 
computational solutions of partial differential equations 
(PDEs). It is quite similar to the finite element method, seems 
easier to use but has a quite restricted range of application to 
PDEs, because it requires the PDE to first be reformulated as 
an integral equation. But, when can be used, BEM has the 
advantage that the mesh need to cover only the boundaries of 

the domain, so it is very efficient.  

 
Manuscript received October 15, 2008: Revised version received 

December 10, 2008  
Luminita Grecu is with the University of Craiova, Faculty of Engineering 

and Management of Technological Systems Dr. Tr. Severin, 
(phone:+40252333431; fax: +40252-317219; e-mail: lumigrecu@ 
hotmail.com).  

Ion Vladimirescu  is with the University of Craiova, Faculty of 
Mathematics 

When applying BEM two big steps have to be made: first 
one has to find an equivalent boundary integral representation 
for the mathematical model of the problem, which is usually a 
singular boundary integral equation, and then to solve this 
equation for finding the numerical solution of the problem.  

For obtaining the boundary integral equation two main 
techniques can be used ([1],[2],[3]): the direct technique and 
the indirect formulation. The boundary integral equation is 
then solved with different kinds of boundary elements, so 
using different approximation models for the unknowns and 
for the geometry.  

The problem to solve is so reduced to a linear system of 
equations. After solving this system the nodal values of the 
unknowns are found and then the quantities of interest are 
deduced.  

For solving integral equations other techniques exist to: 
method of successive approximation, orthogonal polynomials, 
or Krylov subspaces. In case of solving singular boundary 
integral equations or more general, singular boundary integro-
differential equations, approximate solutions can be obtained 
by using the collocation method as in [4] and [5]. 
    No numerical method is useful without a computer program 
which permits quickly calculations, because thousands of 
iterations are usually necessary for obtaining a numerical 
solution closer to the real solution of the problem.  

And, because a computer program is valuable only if it 
offers good results, it is very important to test the boundary 
element programs if possible by making analytical checking. It 
is also important to know the different sources of errors which 
frequently appear for trying to avoid them, and if it is not 
possible for trying to minimize them. 
    In general, there are many types of error sources in 
boundary element programs, which can be summarized as 
follows: wrong kernels which are picked up from the literature; 
integration scheme which are essential, especially for weak and 
near singular integrals; matrix condition; discretization; etc.  

In the herein paper we will discuss some of the most 
important sources of errors which frequently happened in 
boundary element programming, considering the special case 
of applying the BEM to solve the problem of a compressible 
fluid flow around an obstacle. 

I 
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II. BOUNDARY INTEGRAL EQUATION 
For a better understanding, a short presentation of the problem 
is necessary.  

A uniform, steady, potential fluid flow of subsonic velocity 
iU∞ , pressure and density ∞p ∞ρ  is perturbed by the 

presence of a fixed body of known boundary, assumed at the 
begging to be smooth and closed. We want to find out the 
perturbed motion, and the fluid action on the body.  

This problem was studied using other techniques by other 
authors too, and also by the aid of BEM. When the BEM was 
applied the integral formulation was deduced in terms of 
potential or stream function and so for finding the velocity 
field, the pressure, the lift coefficient, et, the derivatives of the 
mentioned functions have to be evaluated. As regarding the 
numerical solution accuracy such an action introduces new 
errors and so a formulation that avoids differentiations is 
preferred.  

Using dimensionless variables the velocity field and 
pressure are considered given by: 

 
pUρVU 2

∞∞∞∞∞ +=+= ppiUV 11 ,  
 

where V , and p are the dimensionless perturbation velocity 
and pressure 

The following change of coordinates x=X, y=βY, u=βU, 
v=V, leads to the following mathematical model of the 
problem:  
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with the boundary condition:  
 

( ) Convnnu yx 02 =++ ββ ,                (2) 

 
where u,v are the components of the perturbation velocity, 

21 M−=β , M  being Mach number for the unperturbed 

motion, are the new components of the normal vector 

outward the fluid. It is also required that the perturbation 
velocity vanishes at infinity: . 

yx nn ,

( ) 0,lim =
∞

vu
    Using both direct and indirect techniques, singular boundary 
integral equations, formulated in terms of velocity, are 
obtained in [8] for the above problem.  

We first consider in this paper the boundary integral 
equation obtained with a direct technique. The singular 
boundary equation is written in terms of a new unknown, G, 
given by relation: ( ) xy vnnuG −+= β , and has the following 

form: 
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where Cx ∈0 , is a point on the boundary, ( ) ( )0

*
0

* ,,, xxvxxu , 

are the fundamental solutions, and  ( )0
0 xnn = .  

The sign " ∫
C

/
" denotes the principal value in the Cauchy 

sense of an integral ([15]). For simplifying the writing we shall 
not use the prim sign to specify that an integral must be 
understand in its Cauchy sense.  
    Some of the error sources that can appear when applying 
BEM can be avoided quite easy and they don't represent the 
goal of this paper. For example to avoid wrong kernels picked 
up from the literature, symbolic computation programs could 
be used to perform verifying task.  

We will focus our attention on the following types of errors: 
boundary discretization (with respect to approximation of 
geometry, approximation of unknown function, type of 
boundary element,  refinement of the mesh), computation of 
the coefficients matrix, type of boundary elements formulation, 
matrix condition and system solving. 

III. INFLUENCE OF DOMAIN DISCRETIZATION ON NUMERICAL 
SOLUTION  

    As we have mentioned before the accuracy of the numerical 
solution depends on the boundary discretization, not only on 
the refinement of the mesh but also on the type of boundary 
element used.  

For proving this we use different types of boundary elements 
to solve the boundary integral equation of the mentioned 
problem and different number of nodes for the boundary 
discretization.  

First we consider the case of constant boundary elements 
and then linear isoparametric boundary elements.  

For the computation of the coefficients matrix the analytical 
calculation was preferred in order to eliminate errors arising 
from numerical integration schemes. For the singular kernels 
analytical expressions have been found too using the Cauchy 
Principal Value of an integral.   

A. Errors when using constant boundary elements 

The boundary C is divided into  linear segments, noted N
NjLj ,1, =  with extremes in 111 ,,1,, xxNjxx Njj == ++ , 

situated on C. The unknown function G is constant on each 
, and equal with the value taken in the midpoint of the 

segment, 

jL

{ }Njx j ,...,2,1,0 ∈ .  
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 We obtain for ( 0
ii xGG = ) the following linear algebraic 

system:  
 

i

N

j
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, ,               (4) Ni ,...,1=

 
The coefficients of matrix A contain boundary integrals 

of the kernels. They can be calculated numerically, with a 
computer, but they can also be calculated analytically, even if 
they arise from non singular or singular kernels.  

ijA

For eliminating the errors the last possibility is chosen 
because it is an exact method for evaluating integrals.  

The expressions of these coefficients are presented in paper 
[11], and they depend only on the coordinates of the nodes 
chosen for the boundary discretization.  

After solving system (4) we can evaluate the perturbing 
velocity on the boundary by the following relations:  
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1) Mesh Refinement Influence - Case of nonlifting obstacles 

    The method can be implemented into a computer code 
which offers numerical values for the velocity field and for the 
local pressure coefficient on the boundary.  

An efficient way to check BEM programs is to use analytical 
checking, so we have considered a simple case when exact 
solution exists, in order to compare the numerical solution 
obtained with the exact one.  

For the case of the circular obstacle and an incompressible 
fluid flow an exact solution of the problem is known ([9]). The 
exact solution for the velocity and for the local pressure 
coefficient on the boundary gives in this case: 

 
      θθθ 2cos21,sin2,2cos +−=−=−= cpvu . (6) 

 
With two computer codes made in C programming 

language, we found exact and numerical nodal values for the 
components of the velocity and for the local pressure 
coefficient. The results are represented in the following 
graphics: Fig.1- Fig.5.  

In order to check the sensitivity of the mesh size distribution 
on the accuracy of the converged solution, the mesh is refined, 
considering different number of nodes.  
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Fig.1 Exact and numerical values of u for 10 nodes on the 
boundary. 
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Fig.2 Exact and numerical values of u for 20 nodes on the 
boundary. 
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Fig.3 Exact and numerical values of cp for 10 nodes on the 
boundary. 
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Fig.4 Exact and numerical values of cp for 20 nodes on the 
boundary. 
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 Fig.5 Exact and numerical values of cp for 25 nodes on the 
boundary. 
 
    The influence of the mesh size on the numerical solution can 
be better studied from the following graphic, where the 
maximum error that appears when using different number of 
nodes for the boundary discretization, is considered.  
    Errors are considered not only for the local pressure 
coefficient, but for the components of the velocity too. We can 
notice that as the number of nodes grows, the error is smaller, 
fact that proves the convergence of the method.  
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Fig.6 Influence of mesh refinement on errors. 
 

We can also observe that if the number of nodes is bigger 
than a certain value the error decreases but not in the same 
manner as if the number of nodes is under that value. It 
decreases slower. Because the computational effort is bigger 
when more nodes are considered for the boundary 
discretization this effort is sometimes not justified and so, for 
obtaining an efficient numerical solution and a good ration 
accuracy computational effort, we have to choose a number of 
nodes in the range 35-45.  

 
2) Mesh Refinement Influence - Case of lifting obstacles 
We consider another particular obstacle, with a cusped trailing 
edge, for which the problem has an exact solution - a Jukovsky 
profile.  

In this case the Kutta-Jukovsky condition in terms of the 
unknown G gives the relation: ( ) ( ) 0=+ is PGPG , where 

,  are adjacent to the trailing edge, situated on the upper, 
respective on the lower boundary. So, for obtaining the unique 
solution of the problem, we have to complete system (4), with 

the above condition, and to introduce a new variable, λ – the 
regularization variable. We finally get the system: 

sP iP

 

i

N

j
jiji BGAG =++ ∑

=12
1λ , i=1,2,3,…N 

01 =+ NGG ,                                           (7) 
 

for the unknowns λ,,..., 21 NGGG .  
After finding G the velocity is obtained with relations (5).  
Considering the Jukovsky profile represented in Fig.7, for 
which the complex coordinate of a point on it is given in [16] 
by: 

                           ( ) ( )θ
θθ

z
bzz ~

~)(
2

+= , (8) 

 
with    ( ) 00sincos~ iyxiz +++= θθθ , ,189.0,8.0 0 == yb  

2
00 1 ybx −−= , other programs are made for evaluating the 

numerical values of the perturbation velocity and the exact 
ones setting M=0.  

Jukovsky profile
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Fig.7. Jukovsky profile. 

 
For analyzing the accuracy of the numerical solution we 

compared it with the exact solution through the local pressure 
coefficient. For the boundary discretization we have used 40 
nodes. 

Fig.8 shows that the convergence of the method is excellent 
except near the trailing edges. Even in this region the 
numerical solutions obtained are still finite. From the same 
figure we can also see the difference between the numerical 
values on the upper and the lower surface, so the appearance of 
the lifting force.  
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Fig.8. Exact and numerical local pressure coefficient for 40 
nodes on the boundary. 
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  The influence of Mach number upon the convergence can be 
studied too. It can be shown that as M grows the convergence 
is slower. 

In case of a Jukovsky profile the sensitivity of the mesh size 
distribution on the accuracy of the numerical solution can be 
observed from Fig.9 that shows the maximum errors for 
different number of nodes: 25, 40 and 45. We have used the 
following notations: ER, if all nodes are considered, and ERR 
if nodes near the trailing edge are eliminated.  
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Fig.9. Illustration of the difference between maximum errors in 
case of a uniform distribution of nodes. 
 

It appears reasonable to expect better results in the vicinity 
of the trailing edge by using more control points in this area, 
and so for improving the numerical solution’s accuracy we use 
a non uniform mesh with more nodes in the vicinity of the 
trailing edge. The errors are smaller in these situations, as we 
can see from the following graphics, Fig. 10, and Fig.11. We 
have noted ERNUM (ERRNUM) the maximum errors in case 
of a non uniform mesh. 
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Fig.10. Illustration of the difference between maximum errors 
in case of a non uniform distribution of nodes. 
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Fig. 11. Differences between maximum errors 
( ERRNUMERR − ),  for different number of nodes:  
 

Better results in the vicinity of the trailing edge can be 
obtained by using other kinds of boundary elements such as 
linear or curved ones. 

The fluid flow around profiles with cusped trailing edges is 
treated in paper [4] using BEM too, but the fluid is considered 
incompressible and the potential and stream functions are used 
in the boundary integral formulation, not the velocity as in this 
approach. 

B. Errors when using linear boundary elements 
    Another important influence on the accuracy of the 
numerical solution is due to the type of the boundary element 
used to solve the boundary integral equation, because it 
contains both the boundary geometry approximation and the 
unknown function approximation. This aspect is outline in this 
paper by making a comparison between the numerical 
solutions obtained by using constant and linear boundary 
elements, considering in each situation the same number of 
nodes for the boundary discrteization. Again the direct 
boundary formulation is considered.  
    In case of using linear isoparametric boundary elements, the 
geometry and the unknown are local approximated by linear 
models that use the same base functions. The contour C is 
approximated with a polygonal line, as in the first case, but the 
unknown G has a linear variation on each of the boundary 
elements. As before we reduce by discretization the integral 
equation to an algebraic system and the solutions of this system 
are then used to calculate the perturbation velocity and the 
pressure coefficient over the obstacle. 
The linear boundary element uses the relations:  
 

2
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2
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1
1 , ϕϕϕϕ iiii yyyxxx +=+= , 

                                   ,     (9) 2
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1
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where 21,ϕϕ  are shape functions given by:     
 
                            ( ) ( ) [ ]1,0,,1 21 ∈=−= ttttt ϕϕ , (10) 
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and  are the nodal values of the unknown at the 

extremes of boundary element . We finally get the following 
system of equations: 

21, ii GG

iL

 

                                  NiBGC
N

j
ijij ,1,

1

==∑
=

  . (11) 

 
All the coefficients that occur in system (11) can be 

computed analytically and their expression can be found in 
[12]. So no errors are introduced at this stage, as in case of 
constant boundary elements.  

After solving the systems we can evaluate the perturbing 
velocities and the pressure coefficients in the same manner as 
in case of constant boundary elements. 
    This approach was implemented in a computer code which 
offers numerical solutions for the perturbation velocity and for 
the local pressure coefficient, for different types of obstacles. 
    In order to study the errors we consider the case of the 
circular obstacle and an incompressible flow.  

The exact solution of the problem, the numerical one 
obtained with constant boundary elements, and the numerical 
solutions obtained with linear boundary elements are compared 
in Fig.12.  
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Fig.12 Exact and numerical solutions of the local pressure 
coefficient for 20 nodes. 
 

As we can see, the calculated and the analytical values of the 
pressure coefficient are very close, in both cases, but a higher 
degree of accuracy is obtained by the use of linear elements.  

We can also observe that a small number of elements (20) is 
sufficient for obtaining satisfactory results. As expected, better 
results are obtained when using more nodes or curved 
boundary elements which allow a better approximation of the 
geometry. 

IV. INTEGRATION SCHEME INFLUENCE ON NUMERICAL 
SOLUTION 

Another source of errors in applying BEM is represented by 
different techniques of integrating the kernels, specially the 
singular ones. Coefficients obtained from them are dominant 
and situated near the principal diagonal of the system's matrix 
and so they play an important role in getting an accurate 
solution.  

We consider in this study the boundary integral equation 
obtained when an indirect technique with sources distribution 
is applied to solve the problem. In this case the boundary of the 
obstacle is considered to be a continuous distribution of 
sources of unknown intensities. 

If denoting by f the intensitie of the sources, persumed to 
satisfay a hölder condition on the boundary, the singular 
boundary integral equivalent to the mathematical model with 
partial differential equations of the problem, is: 
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with the same notations as before.   
 When solving the above equation with constant and linear 
boundary elements we follow the same ideas as in case of 
equation (3), and conclusions are similar.  
 As we mentioned before if higher order boundary elements 
are used we expect better results because of the better 
approximation of the geometry and of the unknown function.  
 In paper [11] the above equation is solved using quadratic 
boundary elements. The geometry and the unknown, have local 
a quadratic variation, on each of the boundary elements.  
 For obtaining the discret equation the boundary is divided 
into N unidimensional quadratic boundary elements, each of 
them with three nodes: two extreme nodes and an interior one. 
For describing the local geometry and the local behavior of the 
unknown , on a boundary element, we use a quadratic 

model, with the same set of basic functions, noted , 
given by: 

f
321 ,, NNN
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We used two systems of notation: a global and a local one 
(global,  is the value of f at node number i, and local  jf

Ni,3,lf i
l ,11, ==   is the value of f  at node number l of 

element number i).  
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[ ] ( )321 NNNN = . 
 
Denoting by: 
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 Returning to the global system of notation, and noting 

 we finaly obtain the following linear algebraic 

system with 2N equations and 2N unknowns: 

j
xj nB πβ2=
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The coefficients of matrix A depend on the nodes coordinates 
and on the following integrals:  
 

( ) ( ) 4,3,2,1,0,2,1,,
1

1

=== ∫
−

kNjidJ
N

I
ij

k
k
ij ξξ

ξ
ξ

,   (22) 

 

where ( ) iii aabaJ ++= ξξξ 24 2 .  
  
 The treatment of singularities represents one of the most 
important sources of errors in BEM. 
For integrals of singular kernels, evaluated in [13] using 
different techniques, we have considered in this paper two 
methods: the method of truncation the interval, and a 
regularization method.  
 The nonsingular integrals can be evaluated with a usual 
numerical method. For treating singularities one can use 
different efficient techniques ([1], [15]) such as: the non-linear 
coordinate transformation, the use of element subdivision, 
singularity isolation using Taylor expansion, etc.  
 For the singular integrals we have considered here  two 
techniques: the method of truncation the interval and a 
regularization method.  
 Using the method of truncation the interval, the singularity 
that appeares is isolated, and the integral is calculated on an 
interval where the integrand has no singularities. So, it 
becomes an usual integral, and a computer can be used for its 
evaluation.  
 So, the singular integrals (22) are evaluated as follows:  
 a) If 12 −= ij ,  has a singularity for k

ijI 1−=ξ  so it 

will be evaluated on [ ]1,1 ε+− , where ε  is a verry small 
positive number. 
 b) If ij 2= , the singularity appeares for 0=ξ  and so 

it will be evaluated on [ ] [ ]U 1,,1 εε−− .  

 c) If 12 += ij , the singularity appeares for 1=ξ , and 
so it will be evaluated on [ ]ε−− 1,1 . 
 After solving the system (21), so after we find the 
values of f for the  nodes choosen for the discretization of 
the boundary we may also compute the velocity for these  
nodes. Denoting by  the components of the velocity we 
deduce:  

N2

u,v
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N
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ij

i
ij
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ij

ij
xjj bfbfbfnfxu
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2
2

1
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1
2
1

π
,               

( ) ( )∑
=
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N

i
ij

i
ij

i
ij

ij
yjj cfcfcfnfxv

1

3
3

2
2

1
12

1
2
1

π
,  (23) 

 
where the coefficients depend on the nodes coordinates and on 
the same integrals as the system's coefficients. For eample: 

   12341

24
2

44 ij
ij

ij
iij

ij
ii

ij
i

ij I
u

I
nu

ImnImb −
−

+
−

+= ,  

and analogus for the others.  
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 If  we have usual integrals, and if  
, ,  the integrals are singular, but 

they can be evaluated using the truncation method as in case 
of the singular coefficients of the matrix. 

12,2,12 +−≠ iiij
12 −i ij 2= 2= ij=j 1+

 We compare the exact solution obtained for an 
incompressible ideal fluid and a circular obstacle with the 
numerical one obtained with the truncation  method in Fig.13.  
 

-4

-3

-2

-1

0

1

2

1 3 5 7 9 11 13 15 17 19 exact
ε=0.09

 
Fig. 13. Exact and numerical solutions in case of truncation 
method. 
 
 As we can see from the above graphic this method doesnt 
leed to a verry good numerical solution even if quadratic 
boundary elements are used for the boundary discretization, so 
it is not recomanded for this types of singular integrals. The 
error between the exact solution and the numerical one is quite 
big and it is bigger than that obtained when we use linear and 
constant boundary elements for solving the problem. The 
truncation parameter, ε , is set to be 0.09, and 20 nodes are 
used on the boundary. 
 The last method applied is the regularization method, the one 
that made the subject of paper [13], and was inspired by the 
work of M Bonnet([1]). 
 The regularization method uses new coordinates and new 
modified shape functions It is based on Taylor expansion. 
Taylor polynomials suitable chosen allow us to simplify some 
factors and so to get modified shape functions, in fact, new 
integrands. This method offers the best results for this problem. 
 If [ 1,1−∈ ]η  is the value of the local coordinateξ , for   

jxx = , we have:  

 

( ) ( )( )
23

1

2

∑
=

−=−
l

lllj xNNxx ηξ  (24) 

 
with ( ) ( ) ( ) ( )ηξηξηξ ,ˆ

lll NNN −=− .                                   
(25) 

   
 Based on this technique we obtain the expressions for the 
modified shape functions. Denoting by ηξρ −=  we have:  
 

( ) ρηηρ
2
1

2
1,ˆ

1 +−=N ,   , ( ) ρηηξ −−= 2,ˆ
2N

                              ( ) ρηηξ
2
1

2
1,ˆ

3 ++=N  (26) 

  
 Comparisons between the numerical solution obtained with 
this method, when we use for the discretization 20 nodes, and 
the exact solution, are performed in Fig.14.  
 As we can see it shows a verry good agreement, because the 
calculated and analytical values are very close.  
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Fig.14 Exact and numerical solutions in case of regularization 
method 
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Fig.15.  Error distribution in case of regularization methods 
and 20 nodes on the boundary. 
 

As we can see form the above graphics the accuracy of the 
numerical solution is very good in case of quadratic boundary 
elements when the regularization method for integrating the 
singular kernels. 

 

V. INFLUENCE OF DIFFERENT TYPES OF BOUNDARY ELEMENT 
FORMULATIONS  

The accuracy of numerical solution is influenced by the 
technique used to obtain the integral formulation of the 
problem.  
 Comparison studies between the exact solution and the 
numerical solutions obtained by considering three different 
types of boundary element formulations, in fact different 
techniques of obtaining the singular boundary integral 
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equation: with a direct technique, by applying an indirect 
technique with sources distribution and with vortex distribution 
are made in papers [11], [14], [15].  
 In case of approximating the boundary with a continuous 
distribution fundamental solutions of vortex type, having the 
unknown intensity ( )xg , the integral equation is solved in [14] 
using constant boundary elements and in [15] using linear 
isoparametric boundary elements. 
 In [14] it was shown that the numerical solution obtained 
with the direct method is closer to the exact one than the 
others, by considering in all cases the same obstacle, the 
circular one, and an incompressible fluid, the same number of 
nodes for the boundary discretization, and the analytical 
calculus for the system coefficients.  
 In case of using the indirect technique, for obtaining the 
singular boundary integral equation, and isoparametric linear 
boundary elements to solve it, a comparison between the 
numerical solutions deduced in case of sources, respective, 
vortex distributions, shows that the indirect technique with 
vortex distribution leads to better results in both situations 
(when using constant [14], or linear boundary elements[15]). 
Different number of nodes are also considered, and the 
analytical calculus too. Tests were made for the circular 
obstacle and for the incompressible fluid flow. Of course by 
using higher order boundary elements the numerical solution 
better agrees with the exact one. 
   

VI. CONCLUSIONS  
This paper briefs out some aspects about the errors that appear 
when solving problems of partial differential equations by 
using the boundary element method, through a concrete case: 
the problem of the subsonic compressible fluid flow around 
obstacles. Conclusions regarding how to minimize these errors 
have been formulated.  

Taking into account that the boundary integral equation 
itself is a statement of the exact solution to the problem posed, 
we can say that errors arise in principal due to discretization 
and numerical approximations, due to our inability to carry out 
the required integrations in closed form.  

A refined mesh of the boundary offers a very good numerical 
solution even for lower order boundary elements. 

When the number of nodes is bigger than a certain value the 
error decreases but not so quickly as if the number of nodes is 
less than that value. It decreases slowly.  

The computational effort is bigger when more nodes are 
used and so, for obtaining an efficient numerical solution and a 
good ration accuracy computational effort, we have to choose 
for the number of nodes a certain range of values. 

The accuracy of numerical solution is better in case of higher 
order elements. 

The effectiveness of the BEM is clearly dependent on the 
implementation of efficient and accurate integration procedures 
to evaluate boundary integrals of the singular kernels. If the 
numerical integration procedure is made sufficiently 

sophisticated (by using for example curved boundary elements 
and continuously varying distributions of functions over the 
boundary) than the errors so introduced can be very small 
indeed.  

Numerical integration is, of course, always a much more 
stable and precise process than numerical differentiation and 
neither the direct nor the indirect BEM require any 
differentiation of numerical quantities whatsoever, and this 
recommends the BEM as an efficient numerical technique for 
solving boundary values problems of partial differential 
equations. 
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