
 

 

  
Abstract—Computation of parallel lines for different geometric 

shapes varieties is of mayor importance for the development of 
models of physical problems such as cavitation bubbles. 

The use of parallel lines and Göebner basis to find solutions for 
complex problems as multiphase flow allows us to track the 
evolutions of a surface over time. 
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I. INTRODUCTION 
HE  application of a mathematical tool such as parallel 
lines coupled with  the Gröebner basis method allows us 

to calculate  approximations to physical problems such as 
cavitation bubbles. 
 In this paper we try to give an approximation to the 
multiphase flow problem of a cavitation bubble, in which case 
we must first describe how the shape of the bubble changes 
under different kind of fields. 
 The approximation used in this paper is the application of 
parallel lines to an elliptical shape, in which case we find a 
single polynomial that implicitly generates an affine variety 
that contains the parallel lines. 

II. PARALLEL SURFACE 
 
The conditions we need to describe a surface on a flow are 

for a 2d case five equations, fist we describe the initial shape 
of the bubble using its variety. 

 
 

 
Where (a,b) and (x0,y0) denote parameters that define an 
elliptical shape which we can be set for different sizes and 
different placements. 

For the second condition we must define small circles of 
radius r within centered on the bubble surface (1). The size of 
the radius must be set depending of the magnitude of the flow 
at each point. 
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The last condition for the system sets the growth direction 
of the parallel line, using a line with the same direction of the 
flow at (x0,y0). 

III. FIELD EXAMPLES 

A. Constant Field 
 Let us set a constant field vf1.  
 

 
 
Now we must find the associated variety for the 

polynomials (1) (2) (3) and (4). 
 

 

  
 
Once we fix this conditions, and using the Gröebner basis 

resolutions tools from Maple Software, we get solutions for 
the system that doesn’t contain  the factors (x0,y0,r). 
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Fig1: Parallel Surface 
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So in the general case using the elimination teory and the 

lexicographic order we can find a minimal basis wich contains 
the parallel lines polynomial without dependence of (x0,y0). 

 
       Now that we have the solution for the general case we 

fix a geometric shape setting the parameters for an ellipse for 
a=3 and b=2 , and an initial position xc=0 and yc=4. 

 
When we superpose the constant field and the geometric 

shape we find a set of solutions for our system that only 
depend of polynomials within the real domain that contains 
the parallel lines. 
 

The geometric representation of this two equations is the 
evolving shape of every point around the bubble, subject to a 
flow in the same direction and with the same strenght. 

  

B. Speed Field 
 
If now we set a speed field that depends on position, it will 

simulate the flow against a solid boundary. Different speeds  

can be set changing the U values. 
 
Let U=1/10  so we can appreciate the effect over the surface 

when the flow gets close to a solid boundary. Later on we can 
superpose the geometric shape. 

 
Applying the theory of parallel lines we must now find the 

 
Fig2. Constant Field [4,4] 

   

 
(6) 

 
Fig 3 Initial shape 

 
(7) 

 
 

 
Fig.4 Displacement over a constant field. 

 
Fig 5. Speed field against a solid boundary 
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associated variety to this polynomials in which case we find 
four polynomials, but only the following two are on the real 
domain. 

 

       
Using now this polynomials we can track the evolution of 

the geometric shape subject to flow. 
 

C. Pressure Field 
Now we setup a gradient field which representing the pressure 
field around a spherical bubble is defined by the equation. 

 
Where the є is a arbitrary small distance between the bubble 

and the solid boundary. We can now fix the growth direction 

for the polynomials in the same direction as the pressure field. 
 
If we superpose the elliptical surface using a lexicographic  

order we obtain that the minimal Gröebner  basis that contains 
twelve polynomials but only one independent of x0 and y0, this 

polynomial show the evolution of the surface through the 
pressure field. 

We can also try other shapes like circular ones for which 
case we find eight polynomial for the Gröebner basis, which 
evolve differently.  

 
Fig 8. Bubble in gradient field 

 

  
 

(9) 

 
Fig6. Bubble in a speed field 
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Fig 7. Pressure Field 

(11) 

  
 

 
Fig 9. Circular shape in a pressure field 
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IV. CONCLUSIONS 
 
The application of Gröbner basis to find solutions for 

elliptical shapes in a flow allows us to observe a 
representation of the cavitation bubble in a field, in which case 
the bubble shape is affected only by external forces that 
generate the flow around it when it gets close to a solid 
boundary. 

The use of this method with the aid of only a few simple 
rules like the growth direction of the field and the geometric 
description of the initial shape allowed us to describe the 
evolution of a system. This kind of descriptions will also let us 
simulate more complex problems in a multiphase flow . 
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