INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Fast algorithms for preemptive scheduling of equal-length jobs on a
single and identical processors to minimize the number of late jobs

Nodari Vakhania*

Abstract— We consider the preemptive scheduling of n
equal-length jobs with release times and due dates with the ob-
jective to minimize the number of late jobs on a single and par-
allel identical processors. Our algorithm for the single-processor
version is on-line and runs in time O(n log n). It produces an op-
timal schedule. Our multiprocessor algorithm is off-line, it has the
time complexity of O(n?) and produces a sub-optimal schedule.
No optimal polynomial time algorithm for this problem is known
yet.

Keywords-algorithm, due date, release time, scheduling

1 Introduction

In this paper we deal with two versions of the preemp-
tive scheduling problem with the objective to minimize the
number of late jobs. This objective function is motivated
by applications in real-time overloaded systems where job
due dates are crucial so that if a job is late then it might
rather be removed completely or postponed for an unde-
fined period of time in favor of other jobs which might be
completed on time on the same processor.

We consider single-processor and multiprocessor ver-
sions. In the first model, we have a single processor that
has to perform jobs which arrive on-line over time. Each
job j is characterized by a due date d; which is the desir-
able time for its completion on the processor. We aim to
minimize the number of late jobs, that is, ones completed
after their due dates. In our model, the processing time of
all jobs is a given integer p. Each j becomes available (and
known) at its integer release time r; and, as already noted,
has the due date d; which is also an integer. The proces-
sor can handle at most one job at a time. As above noted,
our problem is preemptive, i.e., we may split a job in a fi-
nite number of portions and assign the portions at different
time moments to the processor. This assignment is feasi-
ble if no two job portions overlap in time. Thus a feasible
schedule is a mapping which assigns each job j a unique
specified time intervals with the total length p on the pro-
cessor, such that the earliest such an interval starts at time
no earlier than ;. A job in a schedule S' is late (on time,
respectively) if it is completed after (at or before, respec-
tively) its due date in S. Again, our objective is to find

*State University of Morelos, Mexico. Inst. of Computational Math.,
Thilisi, Georgia. E-mail: nodari@uaem.mx. Partially supported by
CONACYyT grant 48433

Issue 2, Volume 1, 2007

95

a feasible schedule with the minimal number of late jobs,
equivalently, with the maximal number of on time jobs.

The multiprocessor model is similar to the above one,
with the only different that instead of a single processor,
each job might be performed on any (but only one) proces-
sor from the given set of m parallel identical processors.

According to the commonly used scheduling no-
tations, our single-processor and multiprocessor prob-
lems are abbreviated as 1/pmtn,p; = p,r;/> U, and
P/pmtn,p; = p,r;/ > Uj, respectively (here U; is a
0-1 function with U; = 1 iff j is late). The single-
processor version is known to be polynomial due to Lawler
[4]. Lawler’s algorithm is off-line, that is, it needs all the
problem data in advance. In many practical situations with
real-time jobs (part of) the problem data are not known in
advance. For example, the jobs may arrive on-line over
time (at their release dates). Hence, the complete set of
jobs might not be known in advance. Alternatively, the set
of jobs might be given in advance but (some or all) job pa-
rameters may become known only upon the arrival of each
job.

Our single-processor algorithm works in either of the
above circumstances on-line. It has the time complexity of
O(nlogn). The algorithm uses preemptive Earliest Due-
date Heuristic (ED-heuristic) and decides on-line whether
to preempt the currently executed job and include the next
arrived job into the constructed schedule or take any other
actions.

Some know results for the related single-processor ver-
sions are as follows. When all the jobs are released si-
multaneously, the non-preemptive single-machine problem
1// > U; can be solved off-line in polynomial time Moore
[6] and Lawler [5]. If we have release times and allow
preemptions then the problem 1/pmin,r;/ > U, can also
be solved off-line in polynomial time Baptiste [1]. With-
out preemptions and with equal-length jobs, the problem
1/p; = p,7;/ > Uj is also polynomial Chrobak et al. [2]
and Vakhania [7].

No polynomial time algorithm producing optimal
schedules is known for the multiprocessor problem, neither
for the preemptive, nor for the non-preemptive version. The
time complexity status of these problems remains open. We
propose an O(n...) algorithm for the preemptive version
producing sub-optimal solutions. If jobs have arbitrary pro-
cessing times, already scheduling on 2 identical processors

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

even with preemptions P2/pmtn,r;/ > U; is NP-hard Du
et al. [3]. The weighted version of our problem even with-
out release times P/pmitn,p; = p/ Y w;U; is also NP-
hard Brucker & Kravchenko [?], but its non-preemptive
version P/p; = p/ > w;U; is surprisingly polynomial.
Without release times, if we allow preemptions and fix
the number of processors, then Qm/pmtn/>" U, and
Pm/pmitn,p; = p/ > w;U; are also polynomially solv-
able.

2 The single-processor case

2.1 Preliminaries

Due to the nature of our objective function, if a job is late
then it can obviously be scheduled arbitrarily late without
affecting our objective function. Suppose S is a feasible
schedule with all its jobs being included on-time, and we
can assert that we have included the maximal possible num-
ber of jobs in it. Then we can append all the omitted jobs in
an arbitrary feasible fashion at the end of .S, in linear time.

Because of the above observation, from now on, we
shall take care only on on time scheduling of jobs replac-
ing due dates by deadlines: unlike due dates, deadlines are
strict dates, i.e., each job is to be finished no later than its
deadline in any feasible schedule. Then our task reduces
to finding a feasible schedule which contains the maximal
possible number of jobs.

As already noted in the Introduction, our algorithm
employs on-line preemptive ED-heuristic. Initially, the cur-
rent scheduling time is defined by the minimal job release
time. Iteratively, among all released jobs by the current
scheduling time ¢, ED-heuristic schedules a job with the
smallest deadline (ties can be broken arbitrarily). If during
the execution of a job another job with a smaller deadline
is released, the former job is interrupted and the latter job
is initiated. If all earlier assigned jobs are completed by
the current time ¢ and no new job is released, the algorithm
waits till the next job is released. Thus each new value of
t is either a job release time or (and) the completion time
of the latest scheduled job so far. In the former case, if the
machine is not idle and the current job is not finished, it is
interrupted by a newly released job with a smaller deadline.

We call the job selected at the current scheduling time
t the incoming job at that time and denote it by i(¢) or just
by ¢ when this will cause no confusion.

It is straightforward to see that the described algorithm
will give the minimal overall completion time for the se-
lected (included) set of jobs.

We denote by .S = S(t) our ED-schedule constructed
to the current scheduling time ¢, and by p; (.S) yet unsched-
uled part of job [in S (we may omit the argument S when
this will cause no confusion).

An ED-schedule (one constructed by ED-heuristic)
consists of a number of blocks, that is, a sequence of jobs

Issue 2, Volume 1, 2007

96

scheduled in turn without any idle time (a gap) in between.
Thus any gap in an ED-schedule is left outside any block
and it arises only if there is no released job that can be
scheduled within that gap.

As it is not difficult to see, not necessarily the ED-
heuristic gives an optimal schedule. Consider the follow-
ing problem instance with 3 jobs with the processing time
p =10, and withry =4, d; = 14,12 = 2, ds = 15 and
rg = 0, dg = 20. The ED-heuristic will schedule job 3
at time 0, will interrupt this job at time 2 scheduling job 2
and will interrupt the latter job at time 4 scheduling job 1.
The latter job completes at time 14. But now neither job 2
nor job 3 can be completed (scheduled) on time. We have
YU =2

At the same time, two optimal schedules exist for the
above problem instance. The first one does not interrupt
job 2, completes it at time 12 and schedules job 3 at time
12 completing job 3 by its deadline 20. The second optimal
schedule ignores job 2. It processes the first portion of job
3 in the interval [0,4). Then schedules (already released)
job 1 at time 4 till its completion at time 14, and resumes
job 3 at that time till its completion that occurs by time 20.
For both above schedules,) - U; = 1 (for the first and the
second schedules jobs 1 and 2, respectively, contribute in
this sum).

2.2 The algorithm

In this section, we describe our algorithm and prove its
soundness and time complexity.

In the previous section, we have seen that ED-heuristic
does not guarantee the optimality of the solution that it gen-
erates. Let j be a job that could not have been included on-
time by ED-heuristic. j might be a new incoming job or it
might also be a partially scheduled job which unscheduled
part cannot be completed on time (the second portion of job
2 in our example from the previous section).

In general, each current schedule .S contains a (possi-
bly empty) set of the partially scheduled jobs. Due to ED-
heuristic, they are scheduled by decreasing order of their
deadlines. We shall construct S in such a way that each job
from the above set can be completed on time if all these
jobs are completely scheduled.

Let us say that the incoming job i(¢) can be perfectly
scheduled at time ¢ if job i(t) and all partially scheduled
jobs in S(t) can be completed on time.

It can be checked whether ¢ can be perfectly sched-
uled in a constant time as follows. A temporary schedule
o = o(S5), generated just for this checking purposes, keeps
the track of the latest possible starting time of all uncom-
pleted job portions of all the partially scheduled jobs from
S in a feasible schedule (o is an auxiliary schedule gener-
ated just for the testing purpose). The processor is assigned
jobs (more precisely, their unscheduled in S parts) back-
wards so that they are completed on time as late as possible

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

without overlapping with the earlier included job parts in
0. Due to ED-heuristic, each incoming job ¢ has a dead-
line, smaller than that of any uncompleted preempted job
in S (if there is such a job). It follows that the preempted
uncompleted jobs in S are scheduled by the decreasing or-
der of their deadlines. Symmetrically, the unscheduled por-
tions of these jobs are included in the same order in o, but
backwards (from right to left).

Now we may “join” .S with o and see whether there oc-
curs an intersection; if it does not occur, ¢ can be perfectly
scheduled, otherwise ¢ cannot be perfectly scheduled. We
describe this in more details below.

Initially, o =). The current scheduling time 7 in o is
the starting time of the latest scheduled job in o; initially,
T = 400. Assume job [€ S is to be interrupted by the
incoming job 7 and we are to check whether ¢ can be per-
fectly scheduled. Yet unscheduled part of job [is included
in o at time d; — p; if d; < 7 (note that this will be the
case if 7 = +00), otherwise we schedule [at time 7 — p;
(recall that the deadline of each newly included job in o is
less than that of all the earlier included ones). We update
current 7 each time we schedule a job in 0. Whenever any
preempted job from o is completed, it is removed from the
current o and 7 is respectively updated. Since the latest
scheduled jobs in o (the ones scheduled at earlier time mo-
ments in o) will be completed first, such removal can cause
no gap in . We will denote by S, the ED-schedule ob-
tained from S by completing all partially scheduled jobs,
as described above.

The next lemma immediately follows.

Lemma 1 The incoming job i(t) can be perfectly sched-
uledin S(t) iff T > t+pandt+ p < d;, and it takes a
constant time to verify this.

Now we are ready to give our algorithm. It basically
verifies whether the next incoming job ¢ can be perfectly
scheduled. If yes, ¢ is included, otherwise ¢ is discarded.

ALGORITHM SINGLE_PROCESSOR

Initial Settings:
S := empty schedule;
t := the release time of the earliest arrived job

REPEAT

from all jobs released by time ¢ select job 7 with
the earliest deadline (break ties by selecting the
partially scheduled job)

IF ¢ can be perfectly scheduled

THEN schedule 7 in S till the next job with a
smaller deadline arrives or ¢ is completed;
set ¢ to the completion/interaption time of ¢

ELSE {i cannot be perfectly scheduled}
disregard job j and all (current/future) jobs with
Issue 2, Volume 1, 2007

97

the same deadline

UNTIL there are no more jobs

The next lemma immediately follows from the fact that
each job is perfectly scheduled in S:

Lemma 2 Any partially scheduled job can be completed
on time in S.

Theorem 3 Algorithm SINGLE_PROCESSOR finds an op-
timal schedule in time O(nlogn).

Proof. Let t be the earliest scheduling time such that the
incoming job ¢ = i(¢) cannot be perfectly scheduled. We
first show that there is an optimal schedule in which all
partially scheduled jobs in S are completely scheduled. To
see this, assume [is a partially scheduled job in S and we
apply the ED-heuristic to the jobs from S\ . In the resulting
schedule either there will arise a new gap or (and) another
job with a no smaller (the same) processing time and with a
no smaller deadline will occupy the liberated by job [time
interval(s). It is straightforward to see that this cannot lead
us to an increased number of the on time scheduled jobs.

Job 7 cannot be perfectly scheduled because of one, or
both of the following reasons. (1) ¢t + p > d; or/and (2)
t + p > 7. By ED-heuristic, in case (1) there is no job
j € S scheduled after time r; with d; > d;. Hence i can-
not be completed on time without the removal of some job
scheduled at or after time r;. Obviously, such a schedule
alteration cannot lead us to a greater number of included
jobs.

In case (2), To complete on time all partially scheduled
jobs, either (i) job ¢ together with all unscheduled jobs with
the same deadline have to be disregarded or (ii) a job from
S has to be removed.

We show that option (i) will always work. Note that
with this option all partially scheduled jobs in S will be
scheduled on time (since the previous incoming job was
perfectly scheduled). If the current block B can be com-
pleted without disregarding any other job, the number of
on time jobs scheduled by the completion time of that
block is clearly maximal (the disregarding of job ¢ raised
no gap between the current scheduling time ¢ and the com-
pletion time of B). Otherwise, assume that the incoming
job j = i(t') with d; > d, cannot be perfectly scheduled
at the scheduling time ¢’ > ¢ in B. Notice that by the dis-
regarding job ¢ at time ¢ we have shifted to the left by p all
successively scheduled jobs in B (observe that no gap may
occur before the completion of B). On the other hand, the
removal of any other job of S at time ¢ could have shifted
these jobs of B by no more than p. Then we would be
forced to remove some other job before or at point ¢’ (“in-
stead” of j). Let 7’ be the completion time of the latest
scheduled job in S(¢'),. Then it follows that by time 7/,
any feasible schedule can contain no more on time sched-
uled jobs than S(¢') does, and we can complete the proof

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

by repeatedly applying the same reasoning up to the end of
the current block.

Since whether next incoming job can be perfectly
scheduled or not can be checked in a constant time (Lemma
1, the time complexity of the algorithm is the same as that
of the ED-heuristics, i.e., O(nlogn).]

3 Multiprocessor algorithm

3.1 Some additional preliminaries

Unlike the single-processor algorithm, for multiprocessor
case the next incoming job ¢ which cannot be perfectly
scheduled not necessarily is disregarded: we may include ¢
into the current schedule S = S; at the expense of moving
some already scheduled jobs (with no less deadline) still
keeping these jobs scheduled on time.

Let us first describe the multiprocessor version of the
ED-heuristic (MED-heuristic) that we employ. A new in-
coming job ¢ is again considered at each scheduling time
t defined now as follows. Initially, when all processors
are idle, ¢t := min{r;|j € J}. Iteratively, among all un-
scheduled jobs released by time ¢, a job ¢ with the minimal
d; is determined. If there is an idle processor at time r;
or (and) there is a processor handling at moment r; a job
with a deadline, greater than d; then ¢ := r; (in the for-
mer case ties are broken by scheduling ¢ on the processor
with the minimal index; in the latter case, ties are broken
by scheduling ¢ on the processor with the minimal index
among the processors handling the job with the maximal
deadline). Job 7 is schedules at time ¢ on the selected pro-
cessor. If neither of the above two conditions hold, no new
job is scheduled at the current time, ¢ is set to the next to r;
minimal job release time and the checking is repeated until
one of the conditions hold. The MED-heuristic stops when
no unscheduled job is left (as before, ¢ and .S stand for the
next incoming job and the current schedule, respectively).

Recall that we were able to check in a constant time
whether each incoming job can be perfectly scheduled for
the single-processor case. This checking becomes essen-
tially more complicated for the multiprocessor case. A
straightforward extension of the single-processor proce-
dure does not lead to an optimal strategy. In particular, such
a procedure may fail to include i(¢) but it still might be pos-
sible to include i(t) perfectly, i.e., there may exist a partial
schedule with job i(¢) and all the partially scheduled jobs
feasibly included. We were not able yet to derive a rea-
sonable polynomial time procedure for verifying whether
i(t) can be perfectly scheduled. Instead, we use the follow-
ing O(m) procedure INCLUDE(%) for deciding whether to
include i(¢). If INCLUDE(%) returns a “yes” answer then
it succeeds in accommodation of job i(t) feasibly; other-
wise, it gives a “no” answer in which case i(t) might be
discarded. INCLUDE (%) may return a “no” answer but it

Issue 2, Volume 1, 2007

98

still might be to schedule i(¢) perfectly. That is why our
multiprocessor algorithm produces sub-optimal solutions.

INCLUDE(%) is as follows. A temporary schedule
o = o(95), generated as in the single-processor case just
for the checking purposes, keeps the track of the latest pos-
sible starting times of the uncompleted job portions of all
partially scheduled jobs from .S in any feasible schedule
(again, o is just a fictitious schedule generated for the test-
ing purpose, i.e., a job (portion) is not actually scheduled
while included in o). The processors are assigned jobs
(more precisely, their unscheduled in S parts) backwards
so that they are completed on time as late as possible with-
out overlapping with the earlier included jobs in o. Because
of the MED-heuristic, each incoming job ¢ has a deadline,
smaller than that of any uncompleted preempted job in S
(if there exists such a job). It follows that the preempted
uncompleted jobs in S are scheduled by the non-increasing
order of their deadlines. Symmetrically, the unscheduled
portions of these jobs will be included in the same order in
o, but backwards (from right to left, or from up to down).

Initially, o = (). Assume job [€ S is to be interrupted
by the incoming job ¢ and we are to check whether ¢ can
be perfectly scheduled. Yet unscheduled part of job [is
included in o at the latest possible time so that [finishes by
its deadline and it does not overlap with any job currently
in o; if there is more than one processor on which this time
is reached, ties are broken by scheduling ! on the processor
with the minimal index. Whenever any preempted job from
o is completed, it is removed from the current 0. Since
the latest scheduled jobs in o (the ones scheduled at earlier
time moments in o) will be completed first, such a removal
can cause no gap in 0. Hence, since d; < d; forany j € o,
[will be completed no later than any earlier included job in
.

Let us call the reversed completion time of a proces-
sor in o the starting time of the latest scheduled job on that
processor. The processors in ¢ and S are “matched” as fol-
lows. A processor with the minimal reversed completion
time in o is matched with a processor with the maximal
completion time in S, a processor with the next minimal
reversed completion time in o is matched with a processor
with the next maximal completion time in .S, and so on,
a processor with the maximal reserved completion time in
o is matched with a processor with the minimal comple-
tion time in S (ties are broken arbitrarily). This matching
defines an order on the processor couples. Note that the
overlapping on the first couple of the matched processors
can be no less than that on the second couple, in general,
the overlapping on the & — 1th couple of processors can be
no less than that of the kth couple.

Note that if there occurs no overlapping in time on the
first couple of the matched processors then obviously ¢ can
be perfectly scheduled in S (note that in this case no job
from o starts earlier than at its release time). At the same
time, ¢ cannot be perfectly scheduled if there occurs the

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

overlapping on the last couple of processors. For the in-
termediate cases when there occurs the overlapping on the
first 4 (1 < p < m) couple of processors, INCLUDE(%)
will still return a “no” answer (but it might be the case that
1 can be perfectly scheduled).

3.2 The algorithm

Let us call an incoming job ¢ deserted if r; < tg and it
INCLUDE(%) =“no”. It follows that no part of ¢ could have
been earlier scheduled in S, hence tg + p > d;. Likewise,
there can be no interrupted and uncompleted (by time ?)
jobin S. Since r; < t, job i could have been potentially
scheduled earlier at the expense of the shifting some job(s)
from S to the right. Next we define such jobs.

Let us call a job processed in .S within the time inter-
val [r;, ts] and completed strictly before its deadline (i.e., at
least one time unit before) a standby job for ¢. Potentially,
standby jobs and only these can be rescheduled later in fa-
vor of the deserted job ¢ that might be possible to insert into
the released time intervals within [r;, ts]. The lower and
upper limits, respectively, for the number of the standby
jobs for 7 is 0 and the total number of jobs processed in .S
within the time interval [r;, ts], respectively. Notice that
we can have no gap in S within this time interval, since
otherwise job ¢ would have been considered by the MED-
heuristic at the beginning of such a gap (which, as we have
already noted, cannot be the case). Thus if we wish to
shift to the right a standby job without delaying succes-
sively scheduled jobs in S then it can only be rescheduled
within the external gaps which arise after time g in S: an
external gap on machine M in S is an open idle-time in-
terval (tg(M),00) in M, where tg(M) is the completion
time of machine M in S (note that ¢ = miny{ts(M)}).
But since the first part of job i is to be inserted into the
interval [t, d;], a standby job is to be rescheduled after the
time moment t’s, t’s being the second element in the non-
decreasing list of machine completion times in S. Hence,
from now on, we require that the deadline of any standby
jobin S is greater than ¢'s.

Let S be a schedule with a partially scheduled job ¢ in
it. The deficit of job i in S, def(i,S) is yet unscheduled
part of job ¢ in S. Initially, de f (i, S") = t+p—d;, S" being
the extension of S with job ¢ scheduled into the internal
[t7 dz]

The procedure INSERT is called by the main algorithm
MULTIPROCESSOR whenever the next incoming job ¢ is
deserted. Initially, INSERT assigns to job ¢ the time in-
terval [t, d;] (here and further ties are broken by selecting
the processor with the minimal index). It inserts the rest
of job ¢ iteratively, portion-by-portion. The first part of ¢
is inserted at the earliest time moment no less than r; at
which a standby job k is processed in S. A part of job k
is extracted and rescheduled from the time moment t; on
the corresponding processor and the equal part of job ¢ is

Issue 2, Volume 1, 2007

99

inserted into the released time interval. We denote the re-
sultant schedule by Sy ;). The length of the rescheduled
part of job k in S ;) is determined in such a way that it
is completed at the maximal time moment 7 with 7 < dj,
and 7 — t'(S) < def(j,5"). Let c}(S,;)) be the com-
pletion time of the inserted portion of job 4 in S ;). If
i (S(k,5)) > ts, then INSERT returns with a “no” answer.
Otherwise, if def(j, S(,;)) > 0, on the next iteration, an-
other part of job 7 is inserted at the earliest time moment no
less than ¢} (S(x ;)) at which a standby job £’ is processed
in S(1 ;); if there exists no k" INSERT returns again a “no”
answer. Otherwise, INSERT returns with the earliest gen-
erated schedule in which the deficit of job ¢ is 0 and the
main procedure MULTIPROCESSOR is resumed (the next
scheduling time is determined and the next incoming job is
considered). Whenever INSERT returns “no” MULTIPRO-
CESSOR disregards job 7 and all possible unscheduled jobs
with the same deadline and considers the next incoming job
(with the deadline more than d;) at time tg.

At each iteration in INSERT, ties are broken by select-
ing a standby job with the earliest starting time, called an
active standby job (further ties are broken arbitrarily). In
the description below k is an active standby job.

ALGORITHM MULTIPROCESSOR

FUNCTION INSERT(j, S)

BEGIN {INSERT}

IF there exists no (active standby job) k in S or
i (S(k,5)) > ts THEN INSERT:="no";

RETURN

ELSEIF def(j, S(x,5)) = 0 THEN INSERT:= S(;, jy;
RETURN ELSE INSERT(j, S ;))

END {INSERT}

BEGIN {MULTIPROCESSOR}

S :=0;tg :==min{r;|j € J};

basic step: From all jobs released by time tg, select
job ¢ with the earliest deadline (break ties by selecting a
partially scheduled job)

IF INCLUDE(:) =“yes”

THEN schedule ¢ in S until its full completion if no
job with a smaller deadline is meanwhile released, oth-
erwise interrupt ¢ at the release time of the latter job;
S = S+j

ELSE {INCLUDE(i) =“no”

IF 7 is not deserted

THEN disregard job ¢ and all (current/future) jobs
with the same deadline

ELSE {i is deserted} assign ¢ the time interval
[ts,d;] in S; INSERT(j, S)

IF INSERT="no”
THEN disregard job ¢ an all (current/future) jobs
with the same deadline
ELSE S :=INSERT
IF there is an unprocessed job left
THEN REPEAT basic step ELSE Stop

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

END. {MULTIPROCESSOR}

Theorem 4 The time complexity of the algorithm MULTI-
PROCESSOR is O(n?).

Proof. The time complexity of MED-heuristic
is O(nlogn), that of INSERT(j,S) is O(n) and
INCLUDE(%) takes time O(m). The number of scheduling
times in obviously O(n). Hence, the worst-case time com-
plexity is O(nlogn) + O(n)(O(n) + O(m)) = O(n?)
(assuming without the loss of generality that m < n).

Acknowledgement

The author is grateful to Wojciech Jawor for his useful
discussions and comments.

References:

[1] P. Baptiste. "An O(n*) algorithm for preemptive
scheduling of a single machine to minimize the num-
ber of late jobs”. Operations Research Letters 24,
175-180 (1999)

[2] M. Chrobak, C. Durr, W. Jawor, L. Kowalik and M.
Kurowski. “A note on scheduling equal-length jobs to
maximize throughput”. Journal of Scheduling 9, 71-
73 (2006)

[3] J.Du, 1.Y. Leung and C.S. Wong. "Minimizing the
number of late jobs with release time constraint”.
Journal of Combinatorial Mathematics and Combi-
natorial Computing 11, 97-107 (1992)

[4] E.L. Lawler. ”A dynamic programming algorithm for
preemptive scheduling of a single machine to mini-
mize the number of late jobs”. Annals of Operations
Research 26, 125-133 (1990)

[5] E.L. Lawler. “Knapsack-like scheduling problems,
the Moore-Hodgson algorithm and the tower of sets
property”. Mathematical Computer Modelling 20, 91-
106 (1994)

[6] J.M. Moore. An n job, one machine sequencing
algorithm for minimizing the number of late jobs.”
Management Science 15, 102-109 (1968)

[7] N.Vakhania. “Scheduling unit-length jobs to mini-
mize the number of late jobs on a single-machine”.
Proceeding of 7th Workshop on Models and Al-
gorithms for Planning and Scheduling Problems
MAPSP 2005, 273-276 (2005).

Issue 2, Volume 1, 2007 100

