
 

 

  
Abstract—Often CFD programs are used for solving flow 

problems that are based on finite volume methods (FVM). The FVM 
solves the balance equations in an iterative process. Since the single 
balances are coupled, different coupling methods like the SIMPLER 
(Semi Implicit Method for Pressure Linked Equations Revised) are 
used. Since the solving algorithm is passed through several times 
during the iteration, all time critical branching like if statements 
should be avoided. But branching appears several times, because of 
the different handling of volume elements in the middle and volume 
elements with boundary conditions. This differentiation can be done 
once during the initialization of the algorithm and it is not necessary 
to repeat the differentiation several times during the iteration. For 
example the sorting of the calculation functions can be done by the 
polymorphism of object orientated program languages like C++. 
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I. INTRODUCTION 
OR solving flow problems like in heat exchangers partial 
differential equations for momentum, mass and energy 

appear. These balances are solved by using the finite volume 
method that discretizes the balance equations over location 
and time. The single balance equations are coupled by 
velocity, pressure and density. For solving this coupling 
several algorithms for solving the momentum and mass 
balance equations at the same time are developed. The 
algorithm that is used as an example in this article is the 
SIMPLER (Semi Implicit Method for Pressure Linked 
Equations Revised). All solving algorithms work in an 
iterative loop that solves the single balance equations one after 
the other. 

 
To set up the balance equations for each volume element 

several coefficients have to be calculated (see Fig. 2) that 
differ from each other depending on the time period and the 
location of the volume element. Fig. 1 shows the array of the 
volume elements for the case of an one-dimensional transient 
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flow through a pipe. Two boundary condition types are 
regarded: 

 
1.constant pressure at both sides of the pipe 
2.constant velocity at the inlet and constant  
   pressure at the outlet of the pipe 

 
If the position of a volume element is checked during the 

iteration to find the correct calculation instructions for the 
coefficients of the balance equations, the algorithms would be 
slow and difficult to understand. Therefore a solution, using 
modern object orientated program languages, needs to be 
found, that orders the calculation instructions of the 
coefficients of the balance equations in the initial phase before 
the iteration starts. During the iteration no further checking is 
required. An efficient kernel can be achieved by an analysis of 
the SIMPLER and of the virtual inheritance of object 
orientated program languages. 
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Fig. 1 Arrays of the volume elements with different 
         boundary conditions; Source: [8] 
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II. ANALYSIS OF THE SIMPLER-ALGORITHM 
 
The SIMPLER-Algorithm was published by Patankar in 

[2]. Walter has found in [3] a very good representation of the 
SIMPLER-Algorithm for one-dimensional transient pipe 
flows that is used in this article. There is just one difference in 
the calculation of the source term. The transient summand of 
the source term is calculated in a separate operation. All 
calculation instructions of all coefficients are listed in  
Fig. 2. 

 
The iteration of the SIMPLER-Algorithm for a transient 

one-dimensional flow through a pipe can be explained as 
follows: 
 
1) With the help of an estimated velocity array *

5.0+iw , an 

estimated pressure array *
ip and an estimated temperature 

array *
iT the array of the pseudo velocity 5.0

~
+iw  is 

calculated. 
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2) The pressure array ip is calculated by using the array of 

the pseudo velocity iw~ .  

eiimEiimWiimPi bpapapa ++= +− 11  (2)

3) The estimated velocity array *
5.0+iw  is calculated. 
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4) With the improved velocity array *
5.0+iw  the pressure 

correction array ip̂ is calculated. 

eiimEiimWiimPi bpapapa ++= +− 11 ˆˆˆ  (4)

5) The pressure correction array ip̂ is used to calculate the 

velocity array 5.0+iw . 
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6) The energy balance is solved.  

hiihEiihWiimPi bhahaha ++= +− 11  (6)

 
7) All other physical state variables like density or viscosity 

are recalculated. 
 

Fig. 2 Arrays of the volume elements with different boundary conditions; Source: [8]
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8) Return to the step 1) and repeat the entire procedure until 
a converged solution is obtained. 

 
There are temporal boundary conditions (stationary, 

transient) and local boundary conditions (pipe inlet, pipe 
outlet) that holds different constant physical values like 
pressure, velocity or enthalpy. Fig. 1 shows that a coefficient 
holds a local or temporal boundary condition, but never a 
local and temporal boundary condition at the same time. This 
fact can be used to implement efficiently volume elements 
with combined boundary conditions (temporal and local) at 
the same time by using the virtual inheritance (see [4]). 

 

III. POLYMORPHISM AND VIRTUAL INHERITANCE 
 

The polymorphism is beside the encapsulation and the 
inheritance one of the three most important parts of object 
orientated programming. It is a mechanism to implement 
software interfaces. That means, that an object has the same 
syntax but a different semantic is hidden behind this syntax. 
This mechanism is useful during iterations, when the 
calculation of coefficients looks always the same, but the 
coefficients are calculated internally in a different way 
depending on the boundary conditions. The C++ 
programming language uses the mechanism of the inheritance 
and the key word virtual. 

 
In Fig.3 is represented an example of a polymorphic 

allocation. The basic class CalcKoeff defines a virtual method 
calc. A class CalcKoeffA is derived from the class CalcKoeff 
and overwrites the virtual methods. A pointer to the object of 
the classes CalcKoeff and CalcKoeffA would always call the 
own method of the object. 

 
CCalcKoeff *z_K = new CCalcKeoff; 
CCalcKoeffA *z_KA = new CCalcKoeffA; 
 
std::cout << z_K->calc(...);           
// Output:  0.0 
std::cout << z_KA->calc(...);          
// Output: -3.0 
 
The polymorphism respectively the polymorphic allocation 

is defined as the setting of a pointer of the type CCalcKoeff to 
an object of the type of the derived class CCalcKoeffA. 
Whereas accessing a method that is defined by the key word 
virtual, the pointer accesses the overwritten method of the 
derived class. 

 
CCalcKoeffA *z_KA = new CalcKoeffA; 
// polymorphic allocation 
CCalcKoeff  *z_K  = (CalcKoeff*) z_KA;  
z_K->calc(...);                        
// output: -3.0 
 

Using this mechanism it is possible to define several classes 
that are derived from the basic class that implements their own 
specific methods to calculate the coefficients depending on the 
position of the volume element. The instances of the derived 
classes can be collected in an array of the type of the basis 
class. In this way the calculation methods can be evaluated in 
a loop. 

 
// instances of the derived classes 
CCalcKoeffA *z_KA = new CCalcKoeffA; 
CCalcKoeffB *z_KB = new CCalcKoeffB; 
... 
 
// array of the basic class 
CCalcKoeff **z_K_array = new CCalcKoeff*[n]; 
 
// polymorphic allocation 
 z_K_array[0] = (CCalcKoeff*) z_KA; 
 z_K_array[1] = (CCalcKoeff*) z_KB; 
... 
 
// calculation of the coefficient in a loop 
for (int i = 0; i < n; i++) 
  cout << z_K_array[i]->calc(...) << endl; 
 

 
 

IV. SOLVING THE PROBLEM BY VIRTUAL INHERITANCE 
 

Using the polymorphism it is possible to overwrite single 
function of the basic class. This functionality would be 
sufficient if just a temporal or a local boundary condition 
exists. But there are volume elements that hold both boundary 
conditions at the same time. This difficulty can be overcome 
by using the virtual inheritance. The polymorphic allocation 
uses the key word virtual with functions of the basic class. 
The virtual inheritance uses the key word virtual with classes. 

Fig. 3 Example of a polymorphic allocation; Source: [8] 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 1, 2007                                                              230



 

 

 
A basic class is constructed, that holds all methods that 

calculate the coefficients of the general case of a middle 
transient volume element and holds all physical state variables 
(level 1). Virtual classes are derived from the basic class, that 
overwrite methods for calculating coefficients for 
implementing boundary conditions that are described in Fig. 2 
(level 2).  

Each virtual class implements just one temporal or local 
boundary condition. A third group of classes combines 
temporal and local boundary conditions by the derivation of 
two classes at the same time, that hold one temporal and one 
local boundary condition (level 3). To avoid ambiguity the 
classes of level 2 must be derived virtual from the basic class 
because if that classes would be derived in the normal way, 
the classes of the third level access different variables of the 
physical state. A simplified inheritance scheme is shown in 
Fig. 4 and the full inheritance scheme is shown in Fig. 5 

 
To save the derived classes a two-dimensional matrix (time, 

location) of pointers of the basic class is used. The pointers of 
the basic class are allocated to objects of derived classes in the 
initial phase. In this way the coefficients could be calculated 
in a loop without if-statements. 

 

 

V. EXAMPLE 
To check the efficiency of the new program design a 

comparison between the old and the new program design was 
made. The algorithm of the old program design has to check 
the type of each volume element in the loop before choosing 
the set of methods to calculate the coefficients. 

 
The calculation example is a transient one-dimensional flow 

through a pipe of a super heater of a steam power plant like it 
is shown in Fig. 6. 

 
The super heater is discretized by 10 volume elements. The 

flue gas is calculated quasi-stationary. 
 
The convergence behavior of the algorithm is not affected 

by the new program design. Therefore the convergence 

Fig. 5 Class diagram for the FVM; Source: [8]

Fig. 4 Principle of the virtual inheritance; Source: [8]
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conditions are not checked any more and the algorithm runs 
just 1.000.000 times to compare the calculation speed.  

 
The gas and steam properties are read from tables to reduce 

the influence of gas and steam properties to the calculation 
speed. 

  
With the new program design the calculation velocity could 

be improved by 7 \%. 
 
 

 

CONCLUTION 
 
The advantage of calculation velocity of the presented 

program design is poor, because most of the calculation time 
is used for calculating the properties of steam and gases and 
solving the linear equation systems. But with the slightly 
enhanced effort in program design, a very clear program code 
is generated, that concentrates all calculation methods of a 
special boundary condition in a specific class. The advantage 
in calculation time is low in one-dimensional cases like it is 
chosen here. But in cases of three-dimensional flow, difficult 
geometries and constant gas properties the improvement will 
increase. 

Index of formulae 
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Fig. 6 Distribution of the volume elements over the 
heat exchanger; Source: [8] 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 1, 2007                                                                   232


