

Abstract—Often CFD programs are used for solving flow

problems that are based on finite volume methods (FVM). The FVM
solves the balance equations in an iterative process. Since the single
balances are coupled, different coupling methods like the SIMPLER
(Semi Implicit Method for Pressure Linked Equations Revised) are
used. Since the solving algorithm is passed through several times
during the iteration, all time critical branching like if statements
should be avoided. But branching appears several times, because of
the different handling of volume elements in the middle and volume
elements with boundary conditions. This differentiation can be done
once during the initialization of the algorithm and it is not necessary
to repeat the differentiation several times during the iteration. For
example the sorting of the calculation functions can be done by the
polymorphism of object orientated program languages like C++.

Keywords— C++, Optimization, Polymorphism, SIMPLER

I. INTRODUCTION
OR solving flow problems like in heat exchangers partial
differential equations for momentum, mass and energy

appear. These balances are solved by using the finite volume
method that discretizes the balance equations over location
and time. The single balance equations are coupled by
velocity, pressure and density. For solving this coupling
several algorithms for solving the momentum and mass
balance equations at the same time are developed. The
algorithm that is used as an example in this article is the
SIMPLER (Semi Implicit Method for Pressure Linked
Equations Revised). All solving algorithms work in an
iterative loop that solves the single balance equations one after
the other.

To set up the balance equations for each volume element

several coefficients have to be calculated (see Fig. 2) that
differ from each other depending on the time period and the
location of the volume element. Fig. 1 shows the array of the
volume elements for the case of an one-dimensional transient

Manuscript submitted November 27,2006; Revised April 15, 2007
Zindler, H. Dipl. Ing. is with Institute of Heat- and Fuel Technology,

Braunschweig, CO 38106 Germany (corresponding author to provide phone:
++49-531-3913032; fax: ++49-531-391-5932; e-mail: h.zindler@ tu-bs.de).

Leithner, R. Prof. Dr. techn. is with Institute of Heat- and Fuel Technology,
Braunschweig, CO 38106 Germany
(e-mail: r.leithner@tu-bs.de).

Hauschke, A. Dipl. Ing. is with Institute of Heat- and Fuel Technology,
Braunschweig, CO 38106 Germany (e-mail: a.hauschke@ tu-bs.de).

flow through a pipe. Two boundary condition types are
regarded:

1.constant pressure at both sides of the pipe
2.constant velocity at the inlet and constant
 pressure at the outlet of the pipe

If the position of a volume element is checked during the

iteration to find the correct calculation instructions for the
coefficients of the balance equations, the algorithms would be
slow and difficult to understand. Therefore a solution, using
modern object orientated program languages, needs to be
found, that orders the calculation instructions of the
coefficients of the balance equations in the initial phase before
the iteration starts. During the iteration no further checking is
required. An efficient kernel can be achieved by an analysis of
the SIMPLER and of the virtual inheritance of object
orientated program languages.

Optimization of the Finite Volume Method
Source Code by using Polymorphism

R. Leithner, H. Zindler and A. Hauschke

F

Fig. 1 Arrays of the volume elements with different
 boundary conditions; Source: [8]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 1, 2007 228

II. ANALYSIS OF THE SIMPLER-ALGORITHM

The SIMPLER-Algorithm was published by Patankar in

[2]. Walter has found in [3] a very good representation of the
SIMPLER-Algorithm for one-dimensional transient pipe
flows that is used in this article. There is just one difference in
the calculation of the source term. The transient summand of
the source term is calculated in a separate operation. All
calculation instructions of all coefficients are listed in
Fig. 2.

The iteration of the SIMPLER-Algorithm for a transient

one-dimensional flow through a pipe can be explained as
follows:

1) With the help of an estimated velocity array *

5.0+iw , an

estimated pressure array *
ip and an estimated temperature

array *
iT the array of the pseudo velocity 5.0

~
+iw is

calculated.

ei

eiiwiieei

i a

bwawa
w

++
=

−+

+

*

2
1

*

2
3

2
1

~

(1)

2) The pressure array ip is calculated by using the array of

the pseudo velocity iw~ .

eiimEiimWiimPi bpapapa ++= +− 11 (2)

3) The estimated velocity array *
5.0+iw is calculated.

eiieeiiwiiei bwawawa ++= +−+
*

5.1
*

5.0
*

5.0 (3)

4) With the improved velocity array *
5.0+iw the pressure

correction array ip̂ is calculated.

eiimEiimWiimPi bpapapa ++= +− 11 ˆˆˆ (4)

5) The pressure correction array ip̂ is used to calculate the

velocity array 5.0+iw .

)ˆˆ(1
2
1

*

2
1

2
1 +

+

+
−+=

+
ii

ei

i

i
pp

a

A
ww

i

(5)

6) The energy balance is solved.

hiihEiihWiimPi bhahaha ++= +− 11 (6)

7) All other physical state variables like density or viscosity

are recalculated.

Fig. 2 Arrays of the volume elements with different boundary conditions; Source: [8]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 1, 2007 229

8) Return to the step 1) and repeat the entire procedure until
a converged solution is obtained.

There are temporal boundary conditions (stationary,

transient) and local boundary conditions (pipe inlet, pipe
outlet) that holds different constant physical values like
pressure, velocity or enthalpy. Fig. 1 shows that a coefficient
holds a local or temporal boundary condition, but never a
local and temporal boundary condition at the same time. This
fact can be used to implement efficiently volume elements
with combined boundary conditions (temporal and local) at
the same time by using the virtual inheritance (see [4]).

III. POLYMORPHISM AND VIRTUAL INHERITANCE

The polymorphism is beside the encapsulation and the
inheritance one of the three most important parts of object
orientated programming. It is a mechanism to implement
software interfaces. That means, that an object has the same
syntax but a different semantic is hidden behind this syntax.
This mechanism is useful during iterations, when the
calculation of coefficients looks always the same, but the
coefficients are calculated internally in a different way
depending on the boundary conditions. The C++
programming language uses the mechanism of the inheritance
and the key word virtual.

In Fig.3 is represented an example of a polymorphic

allocation. The basic class CalcKoeff defines a virtual method
calc. A class CalcKoeffA is derived from the class CalcKoeff
and overwrites the virtual methods. A pointer to the object of
the classes CalcKoeff and CalcKoeffA would always call the
own method of the object.

CCalcKoeff *z_K = new CCalcKeoff;
CCalcKoeffA *z_KA = new CCalcKoeffA;

std::cout << z_K->calc(...);
// Output: 0.0
std::cout << z_KA->calc(...);
// Output: -3.0

The polymorphism respectively the polymorphic allocation

is defined as the setting of a pointer of the type CCalcKoeff to
an object of the type of the derived class CCalcKoeffA.
Whereas accessing a method that is defined by the key word
virtual, the pointer accesses the overwritten method of the
derived class.

CCalcKoeffA *z_KA = new CalcKoeffA;
// polymorphic allocation
CCalcKoeff *z_K = (CalcKoeff*) z_KA;
z_K->calc(...);
// output: -3.0

Using this mechanism it is possible to define several classes
that are derived from the basic class that implements their own
specific methods to calculate the coefficients depending on the
position of the volume element. The instances of the derived
classes can be collected in an array of the type of the basis
class. In this way the calculation methods can be evaluated in
a loop.

// instances of the derived classes
CCalcKoeffA *z_KA = new CCalcKoeffA;
CCalcKoeffB *z_KB = new CCalcKoeffB;
...

// array of the basic class
CCalcKoeff **z_K_array = new CCalcKoeff*[n];

// polymorphic allocation
 z_K_array[0] = (CCalcKoeff*) z_KA;
 z_K_array[1] = (CCalcKoeff*) z_KB;
...

// calculation of the coefficient in a loop
for (int i = 0; i < n; i++)
 cout << z_K_array[i]->calc(...) << endl;

IV. SOLVING THE PROBLEM BY VIRTUAL INHERITANCE

Using the polymorphism it is possible to overwrite single
function of the basic class. This functionality would be
sufficient if just a temporal or a local boundary condition
exists. But there are volume elements that hold both boundary
conditions at the same time. This difficulty can be overcome
by using the virtual inheritance. The polymorphic allocation
uses the key word virtual with functions of the basic class.
The virtual inheritance uses the key word virtual with classes.

Fig. 3 Example of a polymorphic allocation; Source: [8]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 1, 2007 230

A basic class is constructed, that holds all methods that

calculate the coefficients of the general case of a middle
transient volume element and holds all physical state variables
(level 1). Virtual classes are derived from the basic class, that
overwrite methods for calculating coefficients for
implementing boundary conditions that are described in Fig. 2
(level 2).

Each virtual class implements just one temporal or local
boundary condition. A third group of classes combines
temporal and local boundary conditions by the derivation of
two classes at the same time, that hold one temporal and one
local boundary condition (level 3). To avoid ambiguity the
classes of level 2 must be derived virtual from the basic class
because if that classes would be derived in the normal way,
the classes of the third level access different variables of the
physical state. A simplified inheritance scheme is shown in
Fig. 4 and the full inheritance scheme is shown in Fig. 5

To save the derived classes a two-dimensional matrix (time,

location) of pointers of the basic class is used. The pointers of
the basic class are allocated to objects of derived classes in the
initial phase. In this way the coefficients could be calculated
in a loop without if-statements.

V. EXAMPLE
To check the efficiency of the new program design a

comparison between the old and the new program design was
made. The algorithm of the old program design has to check
the type of each volume element in the loop before choosing
the set of methods to calculate the coefficients.

The calculation example is a transient one-dimensional flow

through a pipe of a super heater of a steam power plant like it
is shown in Fig. 6.

The super heater is discretized by 10 volume elements. The

flue gas is calculated quasi-stationary.

The convergence behavior of the algorithm is not affected

by the new program design. Therefore the convergence

Fig. 5 Class diagram for the FVM; Source: [8]

Fig. 4 Principle of the virtual inheritance; Source: [8]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 1, 2007 231

conditions are not checked any more and the algorithm runs
just 1.000.000 times to compare the calculation speed.

The gas and steam properties are read from tables to reduce

the influence of gas and steam properties to the calculation
speed.

With the new program design the calculation velocity could

be improved by 7 \%.

CONCLUTION

The advantage of calculation velocity of the presented

program design is poor, because most of the calculation time
is used for calculating the properties of steam and gases and
solving the linear equation systems. But with the slightly
enhanced effort in program design, a very clear program code
is generated, that concentrates all calculation methods of a
special boundary condition in a specific class. The advantage
in calculation time is low in one-dimensional cases like it is
chosen here. But in cases of three-dimensional flow, difficult
geometries and constant gas properties the improvement will
increase.

Index of formulae

References

[1] T.Kato, Non--stationary flows of viscous and ideal fluids in R3,

J.Func.Anal. 9, 1972, pp. 296--305.
[2] S.Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere

 Publishing Corporation, 1980
[3] H. Walter, Modellbildung und numerische Simulation von Natur

 umlaufdampferzeugern, Fortschritt-Berichte VDI Reihe 6 Energie
 technik Nr.: 457, Wien 2001

[4] B. Stroustrup, Die C++-Programmiersprache, Addison-Wesley, 1998
[5] T.Löhr, Simulation stationaerer und instationaerer Betriebs zustaende

kombinierter Gas- und Dampfturbinenanlagen, VDI-Fortschritt-Berichte
Reihe 6 Nr.: 432, Braunschweig 1999

[6] H. Rohse, Untersuchung der Vorgänge beim Uebergang vom
 Umwaeltz- zum Zwangsdurchlaufbetrieb mit einer dynamischen
 Dampferzeugersimulation, VDI-Fortschritt-Berichte Reihe 6 Nr.: 327,
Wien/Braunschweig 1995

[7] K. Ponweiser, Numerische Simulation von dynamischen Stroe
 mungsvorgaengen in netzwerkartigen Rohrkonstruktionen, VDI-
Fortschritt-Berichte Reihe 6 Nr.: 378, Wiener Neustadt 1997

[8] H. Zindler, Dynamische Kraftwerkssimulation durch Kopplung von
FVM und PECE Verfahren mit Hilfe von Adjungiertenverfahren, VDI
Verlag

Fig. 6 Distribution of the volume elements over the
heat exchanger; Source: [8]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 1, 2007 232

