
 

 

  
Abstract—In this paper we shall discuss a weighted curvature 

flow for a regular curve in the 2D Euclidean space.  The weighted 
curvature flow for planar curves is a generalization of the well-know 
curvature flow discussed by Gage, Hamilton and Grayson. Under the 
suitable weighted curvature flow, convex curves will remain convex  

under the deformation process. However, the curve may not 
converge to a round point for general weights. Indeed, for a 
nonnegative weight function )(uω with k isolated zeros, a curve will 
converge to a limiting k-polygon. The weighted curvature flow will 
have many useful properties which have applications to image 
processing as the usual curvature flow does. We shall also present 
some numerical simulations to illustrate how curves deform under the 
weighted curvature flow with different weight functions )(uω . 
 

Keywords—A weighted curvature flow, convex curves, regular 
k-polygons.  

I. INTRODUCTION 
It is well known that the curvature flow can be used to 

smooth  shape. In this note, we discuss a generalized version of 
the curvature flow. Indeed, we shall modify the curvature flow 
by adding a nonnegative weight function. Thus, we call it the 
weighted curvature flow.  As shown in Gage, Hamilton (1986) 
and Grayson (1987), the curvature flow will shrink an 
embedding planar curve to a point, becoming round in the limit 
without developing singularities. 

Our weighted curvature flow may not shrink a planar curve 
to a point, instead a k-polygon when the weight function has k 
isolated zeros. For the positive weight function, the weighted 
curvature flow will still shrink a planar curve to a point in finite 
time. However, it may not become round in the limit in the case 
that the weight function is not constant. 

The weighted curvature flow still has some nice properties 
which are useful for the deformation of shape. For instance, the 
inclusion order preservation, the length, area and the total 
curvature decreasing property, and the convexity preserving 
property. 

    This paper is organized as follows. In section two we 
discuss the existence theorem for the weighted curvature flow. 
We present some basic properties for the weighted curvature 
flow in section three. In section four, a discrete approximation 
of the weighted curvature flow is given. This provides a 
framework for the numerical simulation. In section five we give 
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some computational results to illustrate the properties of the 
weighted curvature flow discussed in sections two and three.  

II. A WEIGHTED CURVATURE FLOW FOR REGULAR CURVES 
The general form of deformation of a regular curve in the 2D 

Euclidean space can be described as 
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with the initial smooth curve )0,(uα where ),( tuα  is the 

position vector of the curve, T
r

 is the tangent, N
r

 is the inward 
normal, u  is the path parameter, t  is the time parameter of the 
deformation, and ba, are arbitrary smooth functions. By a 
reparametrization of the parameter u , Equation (1) can be 
reduced to the form 
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for a smooth function c . This form of deformation contains 
some well-known methods in image processing, such as the 
prairie fire model of Blum(1973).  

   The curvature flow discussed by Gage, Hamilton (1986) 
and Grayson (1987) is a special case of Equation (2): 
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where the function ),( tuk  is the signed curvature of the 

planar curve ),( tuα .  The results of Gage, Hamilton (1986) 
and Grayson (1987) about the curvature flow (3) cab be stated 
as 
 
Theorem 1. Let )0,(uα  be a parametrized simple closed 

smooth planar curve. Then there exists some 0>T , and  a 
smooth family of curves ),( tuα  with 

Tt <  such that  ),( tuα  satisfies Equation (3) and it 

converges to a  “round” point as Tt → . 
In this paper we consider a weighted version of Equation (3): 
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where the nonnegative smooth function )(uω  is called a 

weight function.  When )(uω is the constant function 1, 
Equation (4) reduced to Equation (3). Equation (4) is also 
useful in image processing. When we want to fix certain part of 
the shapes under the deformation, then we can take value 0 for 
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the weighted function )(uω at that part of the shape boundary 
curve.  

     Using the techniques in the proof of Theorem 1, one can 
prove the following existence result. 

 
Theorem 2. Let )0,(uα  be a parametrized simple closed 

smooth planar curve. Then there exists some 0>T , and  a 
smooth family of curves ),( tuα  with 

Tt <  such that  ),( tuα  satisfies Equation (4). Moreover, 

when the weighted function )(uω has k isolated zeros at iu , 

ki ,...,2,1= , the limiting shape as  Tt →  is a k-polygon 

with vertice  )0,( iuα , ki ,...,2,1=  

III. SOME BASIC PROPERTIES FOR THE WEIGHTED CURVATURE 
FLOW 

In this section we shall give some basic properties about the 
weighted curvature flow (4). The weighted curvature flow is 
also a special case of the reaction-diffusion process. The 
maximum principle for parabolic differential equations (see 
Protter and Weinberger 1984) implies that disjoint curves will 
remain disjoint. Therefore, two shapes, one inside another, will 
never meet during the deformation. 

As in the curvature flow, the weighted one is also a 
curve-shortening flow. From now on we assume the 
nonnegative weighted function )(uω  can has only isolated 
zeros. 

 
Theorem 3 (Length and Area Decreasing Property): 
Let a smooth family of planar curves ),( tuα  satisfy 

Equation (4). Then the length function )),(()( tLtL ⋅= α  of 

the curve ),( t⋅α and the area function 

)),(()( tAtA ⋅= α bounded by the curve ),( t⋅α  are 

decreasing. That is, one has    )0()( LtL <  and 

)0()( AtA <  for Tt <<0 . 
The total curvature is a measurement of complexity for a 

curve and it is given by 

                  ∫=
L
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As for the Equation (3), we still have 
 
Theorem 4. ( Total Curvature Decreasing Property) 

Let a smooth family of planar curves ),( tuα  satisfy 

Equation (4). Then the total curvature stratifies )0()( ktk <  

for Tt <<0 . 
    Furthermore, if the initial curve )0,(uα  is convex (i.e., 

the signed curvature )0,(uk  is nonnegative.), it will remain so 
during the weighted curvature flow. 

This can be proved using the methods developed in Protter 

and Weinberger (1984). 
 
Theorem 5. (Convexity Preserving Property) 

Let a smooth family of planar curves ),( tuα  satisfy 

Equation (4).  If the signed curvature )0,(uk  is nonnegative, 

then ),( tuk  is still nonnegative for Tt <<0 .  

IV. DISCRETE APPROXIMATION FOR THE WEIGHTED 
CURVATURE FLOW 
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    Note that the vector '
it
r

 may not be normal to the tangent 

vector it
r

due to the discrete effect. Hence we can define the 

signed curvature  iκ of the discrete curve C  at ip  by  the 
formula   
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From these discussions, we can also define the derivative of 
a function f or a vector field V  on the discrete curve C  by 
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And 
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Indeed, when we know how to differentiate functions and 
vector fields on a discrete curve C , we can develop a 
differential theory on C .From the experience given in Chen, 
Wu (2004, 2005) and Chen, Chi and Wu (2006), we shall use 
the centroid weights for the weights 1ω  and 2ω . Namely, for 

the discrete curve },,2,1:{ 3 kiRpC i ⋅⋅⋅=∈= , we have at the 

point ip  
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Now we can approximate the weighted curvature flow by the 
discrete curvature flow: 
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where )()( ii up ωω =  is now viewed as a function 
defined on the discrete curve C. In the smooth case, Grayson 
showed that when 1=ω , embedded plane curves will flow to 
a “round point”. We shall give in section five the numerical 
simulation of our discrete curvature flow for some simple 
closed discrete plane curves for nonnegative weight function 
ω  with only isolated zeros. 

V. COMPUTATIONAL RESULTS 
From figure 1 to figure 4, we test the curvature flows (12) 

with different weight functions. In figure 1 and 2, we used the 
constant weight function, i.e. 1)( =tw . In our simulations, 

the graph of curve will deform to a circle. In figure 3 and 4, 

we chose the weight function by  )6sin()( ttw π= , six 

fixed points and )12sin()( ttw π= , twelve fixed points. 

Under these weight functions, the simple curves will 

deform to a n-polygon, where n is the number of fixed 

points. 
 

 
Fig 1. 1)( =tw  

 

 
Fig 2. 1)( =tw  

 
Fig. 3 |)6sin(|)( ttw ⋅= π  

 

 
Fig4. |)12sin(|)( ttw ⋅= π  
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