
 

 

  
Abstract— Testing the stationarity of real traffic remains a 

problem worth studying. Due to the importance of traffic theory in the 
Internet, to find a solution to such a problem brooks no delay. This 
paper presents a way to do the weak stationarity test of traffic with 
long-range dependence (LRD) as a single history traffic series of finite 
length. How to apply this method to real traffic on a packet-by-packet 
basis is demonstrated. 
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I. INTRODUCTION 
E start with the concept of weak stationarity (stationarity 
for short) in mathematics and the problem statements 

regarding stationarity test of traffic in the Internet. Let {yl(t)} 
(−∞ < t < ∞) be a random process, where yl(t) is a sample 
function. In practice, a sample function (or some time series of 
finite length from a sample function) may be thought as the 
observed result of a single experiment. For a positive integer L 
and any fixed times, t1, t2, … tL, yl(t1), yl(t2), … yl(tL) stands for L 
random variables over the index l. 

Let E be the mean operator. Then, 
µy(t) = E[yl(t)] 

is the ensemble mean at arbitrary fixed values of t and 
r(t1, t2) = E[yl(t1)yl(t2)] 

is called autocorrelation function (autocorrelation for short). 
Usually, µy(t) and r(t1, t2) are dependent on time. For a weakly 

stationary (stationary for short below) process, µy(t) and r(t1, t2) 
are independent of time such that 

µy(t) = const, 
and 

r(t1, t2) = E[yl(t + τ)yl(t)] = r(τ), 
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where τ = t1 − t2 is time lag [1-3]. 
In the field of traffic engineering, one may meet the difficulty 

to directly apply the definition of stationarity in mathematics to 
test the stationarity of traffic with long-range dependence 
(LRD) because traffic is such a fractal time series that its mean 
does not exist, see e.g. [16]. Therefore, the mean of traffic 
cannot be used as a quantity to test the stationarity. We use the 
following two statements to further interpret the difficulty of the 
stationarity test of traffic with LRD. 

Problem statement 1 [4, Sentence 1, Paragraph 3, Section 1, 
pp. 629]. “Unfortunately, it is not possible to tell with certainty 
whether or not a realization is stationary from its observation.” 

Problem statement 2 [5, Sentence 1, Section 3, pp. 7]. “The 
testing of the stationarity hypothesis is particularly difficult in 
the presence of LRD, where many classical statistical 
approaches cease to hold.” 

It is noted that stationarity test of traffic can also be regarded 
as an issue of nonstationarity test. Thus, the above statements 
imply that the reality of either the stationarity or the 
nonstationarity of traffic remains ambiguous though there are 
descriptions about the stationarity or nonstationarity of traffic, 
see e.g. [4-6,9,21,22]. The reality of stationarity (or 
nonstationarity) of real traffic to be processed greatly affects the 
research of the network of interest as stationary processes are 
substantially different from nonstationary ones in analysis and 
data processing [1,3]. For this reason, studying a method for the 
stationarity test of traffic is vital to traffic theory which plays an 
important role in the Internet in both theory and practice [7-10]. 
In this regard, [5] states particular test method specifically for 
LRD processes by investigating the time invariability of the 
Hurst parameter. However, the concept of stationarity does not 
relate to the statistical dependence of a process [1-3, 11]. Thus, 
this paper presents a general method that is irrelevant of the 
statistical dependence of a series. 

Note that the difficulty of the testing of the stationarity 
hypothesis is mainly caused by the fact that the mean of traffic 
does not exist. However, one can use the autocorrelation to do 
the stationarity test from a view of second order processes. 

In this research, we adopt the following expression of 
autocorrelation [2,3]: 

r(t, t + τ) =
1

1lim ( ) ( ).
N

l lN
l

y t y t
N

τ
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+∑                            (1) 

A key point we should pay attention to is that any real-traffic 
series to be studied is of single history and of finite length. 
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Hence, we first focus on the stationarity test regarding a single 
history traffic series of finite length. Then, a demonstration with 
a real-traffic series is given as an application case. We address a 
method for the stationarity test of a single history traffic series 
with LRD for finite length in Section 2 and demonstrate case 
study in Section 3. Discussions are given in Section 4 and 
Section 5 concludes the paper.  

II. METHODOLOGY 
According to the concept of stationary processes, in the case 

that the  mean of traffic does not exist, we shall do the 
stationarity test of traffic with LRD by checking if the 
autocorrelation of {yl} is time invarying or not. For a single 
history traffic series of finite length, we need completing three 
tasks as follows. 
1) First, to construct a process of a single history traffic series 

of finite length. 
2) Then, to describe a meaning of stationarity of a single 

history traffic series of finite length in practical terms. 
3) Finally, to determine a measure to test the stationarity. 

For completing the first task, we let y(i) be a traffic series of N 
length and divide y(i) into M non-overlapped intervals. Each 
interval is of L length. Denote 

yl(i) = y(i) for i ∈ [(l − 1)L, lL − 1], l = 1, 2, …, M.    (2) 
Then, yl(i) represents the lth sample series and {yl} a traffic 
process. In this case, the autocorrelation of yl(i) is estimated 
over an interval L by 

r(k; l)
1

( 1)
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Thus, r(k; l) is a series of M length over the index l. 
Usually, 

r(k; l) ≠ r(k; n) for l ≠ n. 
However, this may not mean that {yl} is nonstationary because 
each yl is of finite length, the number of samples is finite and 
there are errors in measurement or computation. In practice, 
therefore, we say that a single history traffic series of finite 
length is referred to as being stationary if r(k; l) defined by (3) 
does not vary significantly as l changes. Here, that r(k; l) does 
not vary significantly implies that r(k; l) and r(k; n) are similar in 
the sense of pattern matching according to a certain rule in 
pattern recognition for all l and n. The above completes the 
second task. 

To consider the third task, we introduce the correlation 
matrix of sample autocorrelations. Without losing generality, 
only normalized autocorrelations are considered here and 
below. 

As known, correlation matching is a commonly used tool in 
pattern matching [12,13,15]. Let 

corr[rl, rn] = cln 
be the correlation coefficient between two sample 
autocorrelations rl and rn. Then, 

C = [cln] =
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is an M × M matrix. For matrix C, |cln| = 1 if l = n and |cln| < 1 for 
l ≠ n. 

Let γ be the threshold regarding pattern similarity. Then, if 
|cln| ≥ γ for all l and n, we say rl does not vary significantly as l 
varies in the sense of |cln| ≥ γ. In practical terms, the patterns of rl 
and rn are reasonably similar in many cases for γ = 0.8 and quite 
satisfactorily similar for γ = 0.85 [13]. As a matter of fact, from 
a view of engineering, γ = 0.7 is an acceptable threshold, see e.g. 
[15]. This paper adopts |cln| ≥ 0.85 as a similarity threshold for 
the following discussions, though, generally, from a view of 
engineering, it may be suitable to claim that a series is 
nonstationary if γ < 0.7. 

Remark 1. If |cln| ≥ 0.85 for all l and n, we say that the series 
is stationary in the sense of |cln| ≥ 0.85. Otherwise, nonstationary 
in that sense. 

Remark 2. To test whether {yl} is stationary or not is to 
check if r(k; l) is time invarying according to Remark 1. This 
completes the third task. 

III. CASE STUDY 
We use a real-traffic trace named DEC WRL-4, which can be 

obtained freely in the Internet Traffic Archive [14]. This trace 
contains 5.7 million packets for the time length of an hour. It 
was measured at Digital Equipment Corporation. The following 
shows two cases. 

A. Interarrival Times  
Let t(i) be a timestamp series, indicating the timestamp of the 

ith packet on a packet-by-packet basis for i = 0, 1, ⋅⋅⋅. Then, the 
timestamp increment series (also called interarrival times in 
communication networks) s(i) is given by 

s(i) = t(i + 1) − t(i).                                                      (5) 
Fig. 1 shows t(i) and s(i) of that trace. 
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Fig. 1. Real traffic DEC WRL-4. (a) Timestamp series. (b) Timestamp 
increment series. 

 
According to (3), the sample autocorrelations of s(i) are given 

by 

rl(k)
1

( 1)

1 ( ) ( ).
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s i s i k
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= +∑  

Ninety sample autocorrelations are computed for s(i). Fig. 2 
indicates the sample autocorrelations r1 and r90 of s(i). By 
computing correlation matrix, we obtain the correlation matrix 
for s(i) as indicated in Fig. 3. 
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Fig. 2. Sample autocorrelations of timestamp increment series of 
DEC WRL-4. (a). The autocorrelation r1. (b). The autocorrelation r90. 
 

1

0.95

C  
Fig. 3. Correlation matrix consisting of 90 sample autocorrelations of 

s(i) of DEC WRL-4. 
 

Fig. 3 indicates that the minimum value of the element in C is 
greater than or equal to 0.95, implying that rl(k) of s(i) of DEC 
WRL-4 does not vary significantly as l changes. Thus, s(i) of 
DEC WRL-4 is stationary. 

It should be noted that interarrival traffic has the property of 
LRD [26]. By LRD, we mean that the following holds for an 
autocorrelation of a traffic series: 

r(k) ~ ck − β (k → ∞), β ∈ (0, 1),                                 (6) 
where c > 0 is a constant, ~ stands for asymptotical equivalence 
under the limit k → ∞ [11]. Considering the autocorrelation R(k) 
that is the mean of 90 sample autocorrelations and by using the 
lease-square curve fitting of the autocorrelation estimation, we 
attain. 

R(k) ~ k − 0.026 (k → ∞).                                                (7) 
The above expression clearly shows the LRD of that series as 
R(k) of (7) is nonsummable. 

B. Series in Packet Size 
Let x[t(i)] be a series, representing the packet size at time t(i) 

on a packet-by-packet basis. Then, x(i) stands for a series, 
indicating the packet size of the ith packet. Traffic series in 
packet size is of LRD, see e.g. [5-9,23,24,25]. 

Fig. 4 is the plot of the first 1024 points of x(i) for DEC 
WRL-4. Fig. 5 is the correlation matrix consisting of 90 sample 
autocorrelations of x(i). From Fig. 5, one sees that the minimum 
value of the element in C is greater than or equal to 0.912, 
meaning that rl(k) of x(i) of DEC WRL-4 does not vary 
considerably as l changes. Thus, x(i) of DEC WRL-4 is 
stationary. 
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Fig. 4. Real traffic DEC WRL-4 in packet size. 
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Fig. 5. Correlation matrix consisting of 90 sample autocorrelations of 

x(i) of DEC WRL-4. 
 

IV. DISCUSSIONS 
The research of traffic exhibits that traffic has the property of 

multifractal either on a point-by-point basis or on an 
interval-by-interval basis, see e.g. [17-20]. We note that the 
concept of the stationarity differs from that of multi-fractality. 
The former implies that r(k; l) does not vary significantly with l 
while the latter means that the statistical parameter, such as the 
Hurst parameter H or fractal dimension D, is time varying. To 
be precise, time varying H or D of the investigated traffic series 
may not imply that series is nonstationary unless r(k; l) changes 
considerably with l. 

Note that the meaning of ‘considerably’ or ‘significantly’ is 
characterized by the correlation threshold. The selection of the 
correlation threshold γ, however, relies on the individual 
researchers, usually ranging from 0.7 to 0.9 or greater than 0.9 
in engineering. Thus, high value of γ, e.g., γ = 0.95, implies 
strict classification. Nevertheless, over-high value of γ may be 
inappropriate when one takes into account measurement errors 
or computation errors, such as errors in autocorrelation 
estimation, and or uncertainties. On the other side, low value of 
γ, e.g., γ = 0.65, may yield rough classification. We use a traffic 
trace named Lbl-pkt-5 to explain this further. That trace was 
recorded at the Lawrence Berkeley Laboratory [14]. It contains 
710614 packets. 

Let x(i) be a series, representing the size of the ith packet of 

Lbl-pkt-5. Fig. 6 is the plot of x(i). Due to relatively short 
sample size, we only section x(i) into 10 non-overlapped 
sections. Thus, the correlation matrix for Lbl-pkt-5 is 10×10, 
see Fig. 7. 

The minimum element of C equals to 0.865. Therefore, x(i) of 
Lbl-pkt-5 is stationary in the sense of γ = 0.85 but it may be 
taken as nonstationary if one sets γ > 0.865. 

0 256 512 768 1024
0

500

1000

i

x(
i),

 B
yt

es

   

 
Fig. 6. Real traffic Lbl-pkt-5 in packet size. 
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C  
Fig. 7. Correlation matrix consisting of 10 sample autocorrelations of 

x(i) of Lbl-pkt-5. 

V. CONCLUSION 
We have discussed a method to do the weak stationarity test 

of traffic with LRD as a single history series of finite length. 
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