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Abstract－This paper proposes probabilistic neural network (PNN) to monitor the operation statues for the 
compressor of air-conditioning systems. The field data including the high/low pressures and the high/low 
temperatures of refrigerants are measured in a practical system. PNN analyses the refrigerants’ 
pressures/temperatures of air-conditioning systems to monitor the operation conditions of compressor and 
identifies the abnormal status, while using the ratio of refrigerants’ pressures/temperatures to create training 
data-set. PNN method is suitable for application in a dynamic environment by using new data-set and new hidden 
without doing any computed iteration. The commonly used EXCEL was integrated to provide a convenient 
man-machine interface. Computer simulations were conducted with refrigerants’ records, test results showed the 
effectiveness of the proposed system.   
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1. Introduction 

 
The capacity of air-conditioning apparatus has occupied 

more than 40% of overall energy consumption in Taiwan. 
The air-conditioning systems used promoted not only 
comfortable environments but also the quality of products. 
Although some techniques [1-3] have been effectively 
applied in saving energy, the system operation need still 
have potential to ensure the comfort of building occupants 
and the reliability of equipment. Preventive techniques for 
early detection can find out the incipient faults and avoid 
outages during the operating periods. Parameters available, 
such as the high/low pressure and high/low temperature of 
refrigerants in an air-conditioning, compressor, and so on, 
can tell the conditions of air-condition systems. Based on 
the operating data, it is the important information to 
identify the faults. Although there are few concerns on the 
faults diagnose of air-conditioning system [4-6], they 
generally have high development costs and relatively high 
initial hardware and software costs. Therefore, its designs 
need high efficiency, simplicity, and low cost for faults 
diagnose is need. 

The compressor of air-conditioning systems moves the 
refrigerant molecules from low-pressure side to 
high-pressure side during the compression cycle. The 
pressure and temperature of refrigerants are the sum of  
bombarded molecules and the speed of molecules motion, 
respectively. In normal operation, the pressure and 
temperature of refrigerants are maintained on an interval. 
If the abnormal pressure or temperature of refrigerants 
were produced in any compression refrigeration system, it 
will be led to a fault in the air-conditioning systems. For 
example, the operated pressure of R12 refrigerant are 
served on 50psi~70psi and 220psi~280psi for low- 
pressure side and high-pressure side, respectively. If  
the low-pressure of refrigerants is under 50psi, the  
system may be occurred the abnormal operation of 
electromagnetic valves. Similarly, the abnormal pressure 
and temperature of refrigerants can produce the various 

alarms and faults in the system. The purpose of this paper 
is to discriminate the behaviors of refrigerants in order to 
diagnose the operating status of the air-condition systems. 
To reduce the outage duration and promptly restore power 
services, fan effective tool is helpful for fault estimation. 

In literatures, artificial neural network (ANN) have 
been applied in the fault diagnosis [7-10]. ANN is very 
useful owing to its parallel distributed process, training 
capacity, implicit knowledge representation, and pattern 
recognition capability. However, ANNs have some 
drawbacks, including the determination of network 
architecture and network parameters assignment. When 
networks are applied in dynamic environments, especially 
for online applications, traditional networks can become 
the bottleneck in adaptive applications [11]. Considering 
these limitations, probabilistic neural network (PNN) is 
proposed in this paper for faults identification. 
Accordingly adaptation methods such as PNN and general 
regression neural networks (GRNN) have been presented 
[12-14], and are recognized as having expandable or 
reducible network structure, fast learning speed, and 
promising results. PNN can function as a classifier, and it 
has the advantage of a fast learning process, requiring only 
a single-pass network training stage without any iteration 
for adjusting weights, and it can adapt itself to 
architectural changes [14]. 

In this paper, the PNN-based diagnosing system is used 
to monitor the operation conditions and identify six 
abnormal types. Experimental results are provided to show 
the effectiveness of the proposed method. 

 
2. Methodological Description 

 
PNN consists of the input, hidden, summation, and 

output layer as shown in Figure 1. PNN can function as a 
classifier, used to learn to place test examples into one of 
two or more categories for classification tasks. The input 
vector X=[x1, x2, …, xi, …, xn], i=1, 2, 3, …, n, is 
connected to the input layer, and inputs are the  
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Figure 1.  Architecture of the PNN 

 
detectionunknown variables. The number of hidden nodes 
Hk (k=1, 2, 3, …, K) is equal to the number of training 
data, while the number of summation nodes Sj and output 
nodes Oj (j=1, 2, 3, …, m) equals to the classified types. 
The weights wki

IH (connecting the kth hidden node and the 
ith  input node) and wjk

HS (connecting the jth summation 
node and the kth hidden node) are determined by K 
input-output training pairs [11, 14]. The final output of 
node Oj is 
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The optimal σk can be performed to obtain the minimum 
misclassification error based on the testing data. The 
optimization method is used to adjust parameter σk  
with iteration process, and adjust the σk would refine the  
accuracy in the dynamic environment [13, 15]. The  
algorithm of the PNN contains two stages: “Learning  
Stage” and “Recalling Stage”. 

 
2.1.  Learning Stage 

 
Step 1)For each training data X(k)= [x1(k), x2(k), …,  
xi(k), …, xn(k)], k=1, 2, 3, …, K, i=1, 2, 3, …, n, create 
weights wki

IH between input node and hidden node Hk by 
    

)(kxw i
IH

ki =                                 (3) 
 

Step 2)Create weights wjk
HS between hidden node Hk and 

summation node Sj, j=1, 2, 3, …, m, by 
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where the values of wjk
HS are the predicted outputs 

associated with each stored pattern wki
IH. The value of  

wjk
HS will be equal to either “1” or “0”. The value will be 

set to “1” when the kth training data relates to jth type. 
Connection weights from hidden nodes Hk to summation 
node Σ are set 1. 

 
2.2.  Recalling Stage 
 
Step 1)Get network weights wki

IH and wjk
HS. 

Step 2)Apply input vector X=[x1, x2,…, xi, …, xn] to the 
input layer. Compute the output of hidden node Hk, k=1,2, 
3, …, K, by Gaussian activation function 
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where σ1=σ2=L=σk=L=σK=σ, the optimal value can be  
obtained by using optimization method, and can be  
adjusted to minimize misclassification error. 
Step 3)Compute the sum of overall outputs of hidden  
nodes in the node Σ, and then compute the outputs of node 
Oj by using the equation (2). 

 
In this paper, the inputs are the ratios of high-/low- 

pressures and high-/low- temperatures (n=4), and outputs 
represent eight types (m=8) as normal, over-load, below 
load, refrigerant overmuch, refrigerant deficiency, 
immediate frequency reduced in high/low pressure status, 
and abnormal electromagnetic valve in low-pressure pass 
as shown in Table 1. Training data creation will be shown 
with discussions provided in the next section.  

 
3.  The Proposed Diagnosis System 

 
3.1.  The Creation of Training Example 

 
The detection of abnormal conditions for air- 

conditioning systems requires the evaluation of refrigerant 
states. In operation condition, liquid refrigerant under 
high-pressure side flows from liquid receiver to vapor 
(low-pressure side). The temperature and pressure of 
refrigerants are different between high-pressure side and 
low-pressure side. Either a temperature or a pressure in 
refrigerant tube must operate in a state of equilibrium,  
and the pressure of the refrigerant at any particular 
temperature can be found by using the pressure- 
temperature curves [16]. If the abnormal operation 
occurred in system, either temperatures of refrigerants or 
pressures of refrigerants will violate their limitation. Each 
abnormal type produces certain conditions that may 
indicate the existence of thermal and electrical faults. In 
an air-conditioning compressor, key-data involving 
high-/low-pressures and high-/low-temperatures are the 
important information for fault diagnosis. The key-data 
could be obtained from the field test by operating 
experiences, and gives the values for the four key-data 
ratios (Normalization) corresponding to the suggested 
fault diagnoses. When key-ratios exceed specific limits, 
faults can be expected in an air-conditioning compressor. 
Ranges of ratios are assigned to classify the fault types as 
shown in Table 1. 
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Table 1.  The abnormal status corresponding to the suggested limitations  
Fault Type F1 F2 F3 F4 F5 F6 F7 

High Pressure > PHmax < PHmin > PHmax < PHmin > PHmax ⎯ ⎯ 
Low Pressure  > PLmax < PLmin > PLmax < PLmin ⎯ ⎯ < PLmin 

High Temperature > PHTmax ⎯ ⎯ > PHTmax ⎯ ⎯ > PHTmax

Low Temperature > PLTmax < PLTmin < PLTmin > PLTmax ⎯ < PLTmin ⎯ 
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Figure 2.  Specific range of normal condition 
 

 
 

Figure 3.  The abnormal ratio distribution 
 

  The ranges of key-ratios are used to create the training 
data. Four key-ratios R1 to R4 are defined as follows 

 
R1=PH/PHmax                              (6) 
R2=PL/PLmax                              (7) 
R3=PHT/PHTmax                            (8) 
R4=PLT/PLTmax                            (9) 

 
R1 and R2 are the ratios of refrigerant’s high-pressure and 
low-pressure. R3 and R4 are the ratios of refrigerant’s 
high-pressure temperature and refrigerant’s low-pressure  
temperature. Each pre-selected ratio R1 to R4 has a   

Table 2.  Training data for the PNN 

Fault Type The Number of 
Training Data 

N Normal Condition 108 
F1 Over-Load 81 
F2 Below-Load 54 
F3 Refrigerant Overmuch 54 
F4 Refrigerant Deficiency 81 

F5 Immediate Frequency Reduced in 
High-Pressure Status 48 

F6 Immediate Frequency Reduced in 
Low-Pressure Status 36 

F7 Abnormal Electromagnetic Valve in 
Low-Pressure Pass 54 

 Total 516 

 
 

 
Figure 4.  Cobwebby training pattern 

 
specific range with upper and lower limits as shown in 
Figure 2. Based on the field experiences, the abnormal 
operations are built by using a ratio distribution as shown 
in Figure 3. We can sample points for the four selected 
ratios with four sampling stages including “a”, “b”, “c”, 
and “d” points in the distribution ranges [17]. More points 
can be sampled for wider ranges. Considering the four 
stages, an event can be defined by multiplication rule with 

 
Event=a×b×c×d                           (10)         

 
The training data can be created from among all 

possible events. For example, for the event “refrigerant 
over”, we have a=3 for R1, b=3 for R2, c=2 for R3, and 
d=3 for R4, and the number of possible events are 54. We 
can create 54-set data for training PNN. The number of 
training data for all the other faults is shown in Table 2. 
The events and sampled points construct curves giving 
cobwebby patterns as shown in Figure 4. In the other 
words, according to the patterns, we can systematically 
create numerical training data for the PNN.  

 
3.2.  Architecture of diagnosis system 

 
The architecture of the diagnosis systems based on the 
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Figure 5.  The architecture of the diagnosis systems 

 
Table 3. Related data of the PNN 

Method Related Parameters 
Input layer 4 nodes 
Hidden layer 516 nodes 
Output layer 8 nodes PNN 

Ranges of σ 0.1~ 0.2 

 
PNN is shown in Figure 5. The diagnosis system has been 
implemented according to the 516 samples with associated 
fault types. 516 records for the PNN are stored in 
Database, and the diagnosis system can further record new 
generated samples. The PNN has four input nodes R1~R4, 
eight output nodes N and F1~F7, and 516 hidden nodes 
being equal to the number of training data. According to 
the various training patterns, the weights between input 
nodes and hidden nodes are determined by training data. 
The weights between hidden nodes and summation nodes 
are the predicted outputs associated with each input 
pattern by encoding signal “1” for “Abnormal”, when a 
training data relates to its fault type, and “0” for “Normal”. 
The procedure for diagnosis system is described below. 

 
Step 1) Obtain the key-data from air-conditioning system 
and calculate the key ratios R1~R4 by equations (6)~(9). 
Define the test vector X=[R1, R2, R3, R4]. 
Step 2) Calculate the outputs of the PNN as O=[O1, O2, O3, 
O4, O5, O6, O7, O8]=[N, F1, F2, F3, F4, F5, F6, F7]. 
Step 3) Find the maximum value Fmax=max{N, F1, F2, F3, 
F4, F5, F6, F7}. 
Step 4) Maximum value Fmax indicates fault type.  

 
The PNN is responsible for fault identification. Output 
vector O=[N, F1, F2, F3, F4, F5, F6, F7] is evaluated by 
the PNN, and a threshold value 0.5 is designed for element 
Oj (j=1, 2, 3, …, 8) to separate normal from abnormal 
values. The output values are between 0 and 1, where a 
value close to 0 means “Normal”, and 1 means 
“Abnormal”, and maximum Fmax then indicates the 
possible fault type. 

In a real world, training data could be collected from the 
field data. The new training data are presented to the PNN, 
and the corresponding hidden nodes will continue to grow, 
and use equations (3) and (4) to create the network 
weights without re-iteration to corrupt the previous 
database or structure. This process results in very fast 
training, and the network is adaptive to data changes.  

The diagnosis system is always database enhancible with 
each new sample added to the current database [15, 17]. 
Training data in the database can be selected for diagnosis, 
addition and deletion with Matlab-Excel link to construct 
the PNN. Matlab-Excel Link is a software add-on to 
integrate Matlab computing environment and Excel 
workspace. It also provides data management with data 
from the Excel workspace and the evaluation command 
from Matlab workspace. Excel workspace becomes a 
data-storage and application-development front end for 
Matlab, which is a computational processor for developing 
the diagnostic tool. 

 
4.  Test Results and Discussions 
 

The proposed diagnosis system was designed on a P-IV 
PC with 256-MB RAM and Matlab software. The Excel 
file was used to store 516 training data, with Matlab-Excel 
Link to construct a computational process. We have 516 
training data for the PNN with eight types, and relative 
smoothing parameter σ=0.1 is chosen in this study. The 
related data of PNN are shown in Table 3. To show the 
effectiveness of proposed diagnosis system, three cases 
were chosen for investigation, as follows: 

 
4.1.  Condition 1: Normal Operation Condition 

 
The performance of the diagnosis system was tested 

with unrecorded data. In normal operation condition, 
PH=256.7psi, PL=58.6psi, PHT=67.3°C, and PLT=18.4°C 
are measured from field data, the diagnostic procedures 
can be shown below: 

 
Step 1) Calculate the test vector: X=[R1, R2, R3, R4]= 
[0.9168, 0.8371, 0.9095, 0.8361]. 
Step 2) Calculate the output of the PNN: O=[N, F1, F2, 
F3, F4, F5, F6, F7]=[0.9976, 0.0000, 0.0000, 0.0000, 
0.0000, 0.0024, 0.0000, 0.0000]. 
Step 3) Find the maximum value Fmax: Fmax=max{O}= 
0.9996 → “N”. 
Step 4) Maximum value Fmax indicates “Normal Operation 
Condition”. It takes 0.031 seconds (CPU Time) to identify 
the fault with learning and recalling stage.  

 
The operated pressure of “R12 refrigerant” are served 

on 50psi ~70psi and 220psi ~280psi for low-pressure side 
and high-pressure side, and the operated temperature are 
located on 73.3°C~63.3°C and 12.2°C~21.1°C for 
low-pressure side and high-pressure side. The proposed 
method provides high confidences for judging the normal 
condition. 
 
4.2.  Condition 2: Immediate Frequency Reduced in 

           High-Pressure Status 
 

Test data are also obtained from the field data in March, 
2006, as follow: PH=311.9psi, PL=39.8psi, PHT=73.3°C, 
and PLT=15.6°C. The diagnostic procedures can be shown 
below: 

 
Step 1) Calculate the test vector: X=[R1, R2, R3, R4]= 
[1.1139, 0.5686, 0.9905, 0.7091]. 
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Step 2) Calculate the output of the PNN: O=[N, F1, F2, 
F3, F4, F5, F6, F7]=[0.0564, 0.0000, 0.0000, 0.0000, 
0.0000, 0.9371, 0.0000, 0.0065]. 
Step 3) Find the maximum value Fmax: Fmax=max{O}= 
0.9371 → “F5”. 
Step 4) Maximum value Fmax indicates “Immediate  
Frequency Reduced in High-Pressure Status”. It also takes 
0.031 seconds to identify the fault. 

 
The proposed method also provides confident results for 

judging the fault, and agrees with providing a suggestion 
to trip the air-conditioner by the electromagnetic valve. 

 
4.3.  Condition 3: Refrigerant Deficiency 

 
Test data are also obtained from the field data in April, 

2006, as follow: PH=206.7psi, PL=58.6psi, PHT=97.3°C, 
and PLT=29.4°C. The diagnostic procedures can be shown 
below: 

 
Step 1) Calculate the test vector: X=[R1, R2, R3, R4]= 
[0.7382, 0.8371, 1.3149, 1.3364]. 
Step 2) Calculate the output of the PNN: O=[N, F1, F2, 
F3, F4, F5, F6, F7]=[0.0000, 0.0000, 0.0000, 0.0000, 
1.0000, 0.0000, 0.0000, 0.0000]. 
Step 3) Find the maximum value Fmax: Fmax=max{O}= 
1.0000 → “F4”. 
Step 4) Maximum value Fmax indicates “Refrigerant 
deficiency”. It takes 0.015 seconds to identify the fault. 

 
The proposed method judges the fault and provides a 

suggestion to trip the compressor of air-conditioner due to 
the refrigerant deficiency. 

 
4.4.  On-line analysis 
 
  On-line analysis was also conducted to detect the 
proposed method with 120 samples (about 120 sec) as 
shown in Figure 6(a). The experimental data are obtained 
in the laboratory with a sampling rate of 1 sample/sec. 
Figure 6(a) shows that the high-pressure PH and 
low-pressure PL decrease gradually, and low-pressure  
temperature PLT gradually increases from 25th sample to 
120th sample. PNN can monitor the overall duration 
including the beginning and ending samples. For 120 
detection samples, Figure 6(b) shows that the proposed 
method has the high detection confidence for on-line 
analysis. The results can be observed for “Normal 
Operation Condition” as PH=223psi~278psi, PL=51psi~ 
70psi, PHT=73°C~64°C, and PLT=12.4°C~21°C. Type F4 
was gradually identified with pressures and temperature 
exceeding the upper and lower limits. This confirms that 
proposed method have higher confidence value of 
detection results in the tests. 

 
5.  Conclusions 

 
A diagnosis system of air-conditioner with a PNN has 

been developed in this paper. With field data, the diagnosis 
system provides fast and easy manipulation tool to detect 
the fault types. The diagnosis system uses a minimal 
number of connections, requires less computation time for  
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(a)  The variations of high-/low-pressure and temperature  
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(b)  Detection results of on-line analysis 

 
Figure 6.  Related data for on-line analysis 

 
operation, and doesn’t need more weight settings. It is 
based on a Matlab-Excel Link. By connecting Excel and  
Matlab, we can process the numerical computation, and 
data is easy to manage and maintain. Computer results can 
be shown that it could be very effective to identify faults 
from the field data. 
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