INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Control and simulation of a robot of two degrees of
freedom (Implementation of a new control
algorithm)

P. Sanchez-Sanchez®, F. Reyes-Cortés®, A. Michua-Camarillo®, J. Cid-Monjaraz® BUAP
and M. Arias-Estrada INAOE

Abstract—The objectives of this paper are to present a
simulator program of a robot of two degrees of freedom and
introduce a new controller scheme on joint space. The simulator
is designed based on the dynamic model of the prototype and
using a controller with stability proof we can locate the end-
effector of the robot in a specific point. The kind of control that
we use to programming the simulator is the position control type.

Index Terms—Forward and inverse kinematics, Dynamic
model, Simulator, Parametric identification, Performance index,
Energy shaping, visual C++ compiler, OpenGL libraries, events
driver.

I. INTRODUCTION

The robot manipulators offer interesting theoretical and prac-
tical challenges to control researchers due to nonlinear and
multivariable nature of their dynamic model [1].

The dynamic model describes the behavior from a mechanical
system to an applied force. The energy applied at the robot ma-
nipulator, as well-known as controller structure, takes charge
of providing to the mechanical structure the necessary force
to fulfill the assigned task [1].

From a practical point of view, the real time implementation
of robot controllers can be an expensive project and a time
consuming activity if an adequate test system is not availa-
ble [1], [2].

For this reason, using a simulator programm that describes the
relationship between a controller and a specific prototype we
can evaluate the system. This evaluation is used to validate
the controller’s behavior and to guarantee the viability of the
design [3], [4].

From the point of view of the robotics, a simulator is a
program based on the dynamic model of a robot manipulator
and the control scheme. The dynamic model is a nonlinear
structure with certain very defined characteristics. A computer
simulation is an attempt to model a real-life situation on a
computer so that it can be studied to see how the system
works. By changing variables, predictions may be made about
the behavior of the system [1]-[3].

Issue 4, Volume 1, 2007

This work focuses on the position control for robots ma-
nipulators, the goal of this kind of control is to move the
manipulator’s end-effector from initial position ¢y to a fixed
desired target g4 (constant in time).

When we control the position of general manipulators, we are
confronted with their nonlinear dynamics in many degrees of
freedom. In much of the literature concerned with the dynamic
model of manipulators, the complexity of nonlinear dynamic is
emphasized and various methods that compensate all nonlinear
terms in dynamics in real time are developed in order to reduce
the complexity of control systems [5].

However, these methods require a large quantity of compli-
cated calculations so that it is difficult to implement these
methods with low level controllers such as micro-computers.
In addition, the reliability of these methods may be misplaced
when a small error in computation or a little change in the
parameters of the system occurs, since these are not considered
in the control [1], [3], [5].

Nevertheless, convergence to a target position has not been
sufficient investigated for general nonlinear mechanical sys-
tems. In this work we have described a simulator program
for research and development of control algorithms which
allows the easy simulation test of control strategies. We
used a particular case of nonlinear position controller, this
controller preserves the asymptotic stability in a global way,
it’s supported by a rigorous stability analysis including the full
Lagrangian analysis [3].

This paper is organized as follows: section 2 describes the
mathematical representation of the prototype. In section 3 we
describe a proposed controller, the control problem formula-
tion and the main stability proof. Section 4 summarizes the
main components of the simulator and finally we present some
conclusion remarks in section 5.

II. MATHEMATICAL DESCRIPTION OF THE PROTOTYPE

To understand the complete movement of a prototype it is
necessary to analyze their kinematics and their dynamics, with
the objective of obtaining a mathematical representation of the
forces that act in the robot. The following diagram describes
the prototype used to make the mathematical analysis.

356

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Observe you that the prototype is located in home position.

z

é

shoulder

elbow end-effector

v

—Zz

Fig. 1. Experimental prototype (home position)

II-A. Robot kinematics

The robot manipulator’s kinematics is used to analyze the
forces that act with the system without considering the causes
that produce them. In the robotics, this analysis is divided in
two: forward kinematics and inverse kinematics. The forward
kinematics is good us to locate the position of the end-effector
in function of their joints.

The forward kinematics of the first link (shoulder-elbow) are:

1 I1 cos (@) cos (q1)
y1 | = | licos(a)sin(q1) (D
z1 —ll sin (OZ)

where o is a structural characteristic. While the forward
.) T
kinematics of the system elbow-shoulder [w2 y2 22]
are defined as:

—lz cos () cos (q1) — l2sin (B) sin (¢1) sin (g2)
—lg cos (B) sin (q1) + o sin (B) cos (g1) sin (g2) (2)
Iz sin (3) cos (g2)

where (3 is a structure characteristic. To obtain the total
forward kinematics of the system it is necessary to add the
equations (1) and (2).

x T To
y|l=1vn |+ v 3
z z1 Z9

Issue 4, Volume 1, 2007

The forward kinematics is used to be able to obtain the kinetic
energy of the system X(q, §):

1 d|* d|” .
K@) =gsm| 2| v | 2| +=1¢* 4
z z
1]2

The importance of the forward kinematics resides in applica-
tion to obtain the kinetic energy of the system which is good
us to obtain the dynamics from the robot when applying the
equation of Lagrange.

II-B. Robot dynamics

We use Lagrangian’s dynamic to obtain the mathematical
equations. We begin our development with the general La-
grange’s equation of motion [1], [2], [6], [7].

Consider then Lagrange’s equations for a conservative system
as given by:

i [aﬂ(qf q):| 3 0L(q,q) =7 — f(1,9) ©)

dt a4 Jdq

where ¢ is a n-vector of generalized coordinates, 7 is an n-
vector of generalized force, f(7, ¢) is the vector of friction and
the Lagrangian L(q, ¢) is the difference between the kinetic
and potential energies [1], [2], [6], [7],

It is well-known that in the absence of friction and other
disturbances, the dynamics of a serial n-link rigid robot can
be written as [1], [2], [6], [7]:

M(q)i+C(q,4)q+g(q) =T @)

where ¢,¢,§ € R™¥! are vectors of joint displacements,
velocities and accelerations respectively, M(q) € R™*"™ is
the symmetric positive definite manipulator inertial matrix,
C(q,q) € R™ ™ is the matrix of centripetal and Coriolis
torques and g(q) € R™*1 is the vector of gravitational torques
obtained as the gradient of the robot potential energy [6], [7].

Although the equation of motion (7) is complex, it has several
fundamental properties which can be exploited to facilitate
control system design.

357

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

We use the following important properties:

Property 1: Considering all revolute joints, the inertial ma-
trix M (q) is lower and upper bounded by [8], [9]:

p(g)I < M(q) < pa(q)! ®)

where [stands for the m x n Identity matrix. We should
consider that M (q) it is symmetric positive definite inertial
matrix.

Property 2: The matrix M (q) — 2C(q,4) = 0 is skew-
symmetric, that is [8], [9],
M(q) = C(q,9) + C(g,)" ©)

Furthermore, the matrix C(g, ¢) is linear on ¢ and bounded
on ¢, hence for some k. € R4 [8], [9]:

1C(a: @I < ke(@)dl

Property 3: The generalized gravitational forces vector

(10)

ou
9(q) = —aéq) (11)
satisfies [8], [9]: 9a(a)
e

for some k, € R, where U(q) is the potential energy is
supposed to be bounded from below [8], [9].

After a rigorous analysis the dynamic model that describes the
prototype illustrated in the figure 1 is:

[mu m12][d1}+{011 612}{41]—#9{%]:7
Moy Mo Go Co1 Co2 Go 42
(13)

where:

may = mqlZ, cos? (@) + malZ, cos® (3)

I + myl2, sin? () sin? (¢z)
mig = —mgl2, sin (B) cos () cos (q2) (14)
ma1 = —malZ, sin (3) cos (3) cos (g2)

Moy = mglg2 sin? (8) + I,

The values of the matrix of centripetal and Coriolis torques
are:

and the gravitational torque is defined by:

g1=0
(16)
g2 = gmaly sin (B) sin (q2) g2

I11.

In this section, we present our main results concerning the used
controller’s stability proof. Typically we propose controllers on
joint coordinates using the energy shaping methodology [8]-

[11].

PROPOSED CONTROLLER

The energy shaping is a controller method design, this metho-
dology considerate the dynamic model without friction and
others disturbances [8]-[11].

We use the following control scheme:

T = Kpq — Kuibg + 9(q) a7)

where ¢ denotes the error position, K, and K, are proportional
and derivative gains matrices, respectively, and the terms ¢ are
defined as:

tanh (§) /2 cosh? (§) — 1
i cosh (q)

(18)
tanh (¢) 1/2cosh? (¢) — 1
Vi = cosh (§)

The closed-loop system equation obtained by combining the
robot model, equation (7), and control scheme, equation (17),
can be written as:

35

which is an autonomous differential equation and the origin of
the state space is its unique equilibrium point. For ¢ we have:

—q

{M@-l Kytbg — Koty — Clgyya)]

G=0=14=0

=¢=0 (20)
c11 = 2m2l§2 sin? (B) sin (g2) cos (g2) 4o
and for ¢ we get:

Cl2 = m2132 sin () cos () sin (q2) g2
ca1 = mal?, sin (B) cos (B) sin (g2) do (15) M(q)" Kp,g=0

+mpl?2, sin® () sin (¢2) cos (¢2) G1d2 =q=M(q)K,"(0) (21)
Con = +mgl§2 sin () cos (3) sin (q2) 1o =q¢=0

Issue 4, Volume 1, 2007 358

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

To make the stability proof of the equation (17), we proposed
the following Lyapunov’s candidate function based in the
energy shaping’s methodology [10], [11]:

In(cosh(qy)) g
T ; n(cosh(g:
Vg g - T2, | Vinleoshide)
In(cosh(gn))
(22)
In(cosh(q))

K, ln(co.sh(G2))

ln(co.sh(q}))

The first term of V(q,q) is a positive define function with
respect to ¢ because M(q) is a positive definite matrix. The
second one of Lyapunov’s candidate function (22) is a positive
definite function with respect to error position ¢, because K,
is a positive definite matrix.

Therefore V (¢, q) is a globally positive definite and radially
unbounded function. The time derivative of Lyapunov’s can-
didate function (22) along the trajectories of the closed-loop
(19):

V(d.4) = a0+ LA
n(cosh(@)) 1"

In(cosh(g 2
N n(CO} (32)) Kp[

tanh ¢

: ln(cosh((j))] a
In(cosh(gyn))

and after some algebra and using the property 2 it can be
written as:

tanh (¢1) /2 cosh? (¢1) — 1
cosh (1)
tanh (g2) 1/2 cosh? (¢2) — 1
V(4,d) = —qK. cosh () <0
tanh (¢,,) y/2 cosh® (¢,) — 1
L cosh (¢,,)]
(24

which is a negative semidefinite function, therefore we con-
cluded that the equilibrium point is stable.

Issue 4, Volume 1, 2007

In order to prove the asymptotic stability in a global way, we
make use of the autonomous nature of closed-loop (19) when
we applied the LaSalle’s invariance principle:

V(¢,q) <0.

o= () vaa-1

. . et 1T
the unique invariant is [qT qT} =0 e R>".

(25)

In the region

(26)

III-A. Performance Index

Robot manipulators are very complex mechanical system,
due to the nonlinear and multivariable nature of the dynamic
behavior. For this reason, in the robotics community there
are not well established criteria for appropriate evaluation of
controllers for robots. However, it is accepted in practice to
compare the performance of controllers by using the scalar-
valued £2 norm as an objective numerical measure for an
entire error curve. The £2[G] norm measures the root-mean-
square average of the ¢ position error, which is given by:

t
. 1 .
= |y [l @)
0
to

where %p,t € R, are the initial and final times, respectively.
A L£?[q] smaller represents lesser position error and it indi-
cates the best performance of the evaluated controller. The
overall results are summarized in figure 2 which includes the
performance indexes for the analyzed controllers. To average
out stochastic influences, the data presentation in this figure
represents the mean of root-mean-square position error vector
norm of ten runs.

[degrees]

0.5 -

04 7

0.266
0.3

0.213

0.2 A

Performance index

0.1 7

0.0 t i
TPD Ty

Fig. 2. Performance Index.

We compared the propose controller against the simple PD
controller.

359

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

In general, the performance of the PD controller is improved
roughly 21,6 % by its counterpart, the proposed controller as
show in figure 2. 7pp has a £2[Gpp| = 0,266 [degrees] over
the range of the experimental results, while the performance
indexes for 7, are 0,213 [degrees].

IV. SIMULATOR

The steps to design and to build a prototype are the following
ones:

1. Obtain the forward and inverse kinematics through a
geometric analysis of the prototype.

2. Obtain the dynamic model by means of the application
of the Euler-lagrange’s equation.

3. Propose of the controller with the stability proof.

4. Draw the prototype in 3D in any design software, in our
case AutoCAD was used.

5. Simulator’s programming using the dynamic model and
the control structure.

6. Propose a test values to be able to execute an assig-
ned task using the simulator, in this step we proof the
algorithms.

7. Prototype construction

8. Acquisition of the robot’s specific parameters by means
of the parametric identification.

9. To substitute the real values of the prototype in the code
of the simulator.

Until this moment we have define the dynamic model of the
rotational robot and we have prove the stability of the con-
troller; now using this information we will get the simulator.

The platform characteristics of the simulator are:

= The programming of the system was made in Visual C++
6 compiler of the Microsoft Company.

= To create the 3D graphics we used OpenGL libraries of
Silicon Graphics Company Version 1.1.

= The program was implements in a Pentium IV processor
a 2 GHz of speed.

= The compiler uses the libraries for made the graphics of
the robot using the forward kinematics.

The next diagram of flow shown the process used to display
the 3D image used in the simulator of the system.

The figure 3 shows the form in that displays a 3D graphics
in Windows, the part where the user can implement his
algorithms is in the block Background. This place is managed
through a events driver, since Windows is a system guided to
events.

The events driver is the responsible one of managing the

entrances and exits of the program, as well as the instructions
of conclude the program [12], [13].

Issue 4, Volume 1, 2007

Initialization ’

A 4

A

Main loop

A 4

Background, pro-

Event handler > .
cessing, procedures

A

A

Input, processing

procedures

Termination

Fig. 3. Diagram to display the 3D image.

The basic steps for graphic in Visual C++ using the OpenGL
libraries are the following ones:

= Getting a device context

= Selecting and setting a pixel format

= Creating, making, and setting a rendering context
= Drawing with OpenGL commands

= Deleting the rendering context

= Releasing the device context

In the simulation two routines are believed in charge of
evaluating the forward and inverse kinematics, to the forward
kinematics we are get the joint values (g1, ¢2) and this give
us the (z,y, z) point of the end-effector that is generated by
this joints, the next step is generated the graphic of the robot.
The second routine receives the point (z,y, z) of the inverse
kinematics and it returns the joint values of this point (g1, g2).
The prototype was designed using AutoCAD, we used this
program for the 3D tools. The image of the implemented
program is presented next.

 Som il - FE N

o 1] ar

Fig. 4. Main screen of the simulator.

360

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

To program the simulator the following test values we were
used, which allow us to evaluate the controller’s behavior and
the dynamic model.

mp; = 1,618kg

me = 3,236 kg

I, = 0,809

I, = 0,809

ll = 1,00 m

lo, = 1,00m (28)
le, = 054m

le, = 063m

a = 60°

g = 45°

With the simulator we can obtain the curves of the position,
error position, torque, what allows to be carried out design
considerations.

Substituting the physic parameters, equation (28), on the
dynamic model of the simulator, equation (7), we can des-
cribed many characteristics of the prototype using a graphical
interface, figure 4.

The simulator platform was programming using the following
structure:

Dynamic
Model

N

Control
Structure

N

Physic
parameters

N

3D Object
(Solid)

2

Fig. 5. Programming structure flow

V. CONCLUSION

In this paper we have described the steps of a robot’s design
emphasizing our interest in the simulator, it which has the
function of evaluating the behavior of the dynamic model
and the controller to fulfill an assigned task, the advantage is
that by means of this simulation we can readjust calculations
and considerations it stops later to build the robot with more
security.

Issue 4, Volume 1, 2007

Besides the simulator, we were proven used controller’s stabi-
lity and it was applied in the dynamic model to do the position
control. The goal of the simulation system is to support the
research as well as to develop control algorithms for robot
manipulators. We have shown global asymptotic stability for
Lyapunov functions.

We can conclude that the realization of a program simulator is
important because it allows us to evaluate the characteristics
of the prototype before building it.

REFERENCES

[1] Mark W. Spong and M. Vidrasagov, Robot Dynamics and Control, (John
Wiley and Sons., 1989)

[2] A. K. Becjzy. Robot arm dynamics and control. Technical Memo 33-
669, Pasadena, CA: NASA Jet Propulsion Laboratory, 1976.

[3] P. Fritzson, "Principles of object-oriented modeling and simulation with
modelica 2.17, (Wiley Interscience, IEEE Press Editorial, 2004)

[4] H. Goldstein, ”“Classical Dynamics” (Reading: MA. Addison-Wesley,
1950).

[5]1 A. Barrientos, L. Pefiin, C. Balaguer and R. Aracil, ”Fundamentos de
Robdtica” (Madrid: McGraw Hill, 1997).

[6] L. Sciavicco and B. Siciliano, ”"Modeling and Control of Robot Mani-
pulators” (Napoles: McGraw Hill, 1996).

[71 R. Kelly, R. Haber, R. Haber-Guerra and F. Reyes, “Lyapunov Stable
Control of Robot Manipulators: A Fuzzy Self-Tunning Procedure”,
Intelligent Automation and Soft Computing, 5(4), 1999, 313-326.

[8] A.Loria and R. Ortega, “Force/Position Regulation for Robot Manipula-
tors with Unmeasurable Velocities and Uncertain Gravity”, Automatica,
36(6), 1996, 939-943.

[9]1 P. Sénchez-Sanchez, F. Reyes-Cortés and R. Reyes-Ruiz, “Cartesian
Controllers for Robot Manipulators”, Proceedings of the International
Symposium on Robotics and Automation. Querétaro, México, 2004, 347-
351.

[10] R. Kelly, "Regulation of Manipulators in Generic Task Space: An Ener-
gy Shaping Plus Damping Injection Approach”, IEEE Transactions on
Robotics and Automation, 15(2), 1999, 381-386.

[11] R. Kelly, V. Santibanez and F. Reyes, "On Saturated-proportinal deriva-
tive feedback with adaptive gravity compensation of robot manipula-
tors”, International Journal of Adaptive Control and Signal Processing,
10(4-5), 1996, 465-479.

[12] S. Dick, A. Riddle and D. Stein, "Mathematica®® in the Laboratory”,
(Cambridge University Press, United Kingdom, 1997).

[13] C. Pidgeon, "Tutorials for the biomedical sciences, Animations, Simu-
lations and Calculations using Mathematica®®”, (Wiley-VCH, Canéda,
1998)

361

	Manuscript received in April 3, 2007; Revised received October 30, 2007:

