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The 2-Dimensional Probabilistic Bin Packing
Problem : An average case analysis

Leila Horchani,and Monia Bellalouna

Abstract—In the probabilistic two-dimensional Bin Packing
problem (2D-PBPP), one is asked to pack a random number
of rectangular items, without overlap and any rotation, into
the minimum number of identical square bins. In this paper
we consider the re-optimization procedure used for solving
probabilistic combinatorial optimization problems and an ap-
proximation of this strategy: the redistribution strategy according
to an heuristic. According to computational results we show that
the redistribution strategy according to some efficient heuristics
generates results near those given by the re-optimization strategy
which is impossible to be carried out.

Index Terms—Probabilistic Combinatorial Optimization Prob-
lem; Two Dimensional Probabilistic Bin Packing Problem; Re-
optimization strategy; Redistribution strategy; Approximation
algorithms.

I. INTRODUCTION

IN the Two-Dimensional Bin Packing Problem (2D-BPP),
one is given a collection of rectangles specified by their

widths and heights that need to be packed into larger square
bins. The most interesting and well-studied version of this
problem is the so-called orthogonal packing without rotation
where each rectangle must be packed parallel to the edge of
a bin and cannot be rotated. The goal is to find the feasible
packing i.e. a packing where rectangles do not overlap using
the smallest number of bins. The great interest of 2D-BPP
is mainly due to the tremendous number of its real-world
applications: From packing newspaper commercials to cutting-
stock problems. Bin Packing and its multi-dimensional varia-
tions are classical problems in the Combinatorial Optimization
Problem and have been studied extensively. Since the one-
dimensional Bin Packing problem in which n items of lengths
{hi : 1 ≤ i ≤ n} have to be packed in the minimum number
of bins of capacity c so that the capacity of none is exceeded,
is known to be NP-hard (Garey and Johnson (1979)), the same
holds for the 2D-BPP.
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Let’s consider the problem of the allocation of advertise-
ments in newspapers. It can be seen as a 2D-BPP, where
the advertisements are the items and the pages are the bins
of the packing. But in reality, the number of items to be
published varies from a day to another so in this packing
problem the items appears as a random variable, so we have
to solve several new problems which are a simple variation
of the initial one. This new problem can be formulated as
a 2D-BPP where the number of the items to be packed
is a random variable, called Two-Dimensional Probabilistic
Bin Packing Problem (2D-PBPP). The 2D-PBPP involves in
the field of Probabilistic Combinatorial Optimization Problem
(PCOP). The idea of Probabilistic Combinatorial Optimization
Problem (PCOP) comes from Jaillet (Jaillet (1988) and Jaillet
(1993)) who introduced it for the Travelling Salesman Problem
(see also (Bertsimas (1988),Bertsimas et al (1990),Bertsimas
and Hell (1988)). Among several motivations for the PCOPs
studies, we are mostly interested in two: The first is the wish of
formulating and analyzing models which are more appropriate
for real-world problems where randomness is present, the
second motivation is an attempt to study a perturbation of
an initial problem, simulated by either the presence or the
absence of subsets of the given list of items. The Probabilistic
Bin Packing Problem was first studied in (Bellalouna (1993))
where we assume that a list Ln of n items is given, and that
some items disappear from Ln and in (Bellalouna et al(2004))
an average case analysis is proposed for the one-dimensional
probabilistic bin packing problem.
To solve such problem, we consider two strategies. The natural
one is the re-optimization strategy (find optimal solution for
each potential instance) but the problem is NP-hard then
this strategy is not realistic. As an alternative we propose
a near optimal strategy : find solution according to efficient
heuristic A for each potential instance; we call it redistribution
strategy according to A. An exact analysis of these strategies
seems to be quite difficult, then we propose in this paper an
asymptotic analysis. For an estimation of the performance
of the redistribution strategy, we have first to know the
asymptotic average behavior of re-optimization strategy. Under
assumption, we show that redistribution strategy according to
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FBS is asymptotic to the re-optimization strategy.

II. DEFINITIONS FOR 2D-PBPP

The 2D-PBPP is essentially a 2D-BPP in which the number
of items to be packed is a random variable: On any given
instance of the problem, only a subset I of Ln is present
with a probability P (I). We denote N the number of present
items (0 ≤ N ≤ n). In this paper, we will concentrate
on the particular case where each item has a probability
p of being present independently of the others. Hence, N

is a binomial random variable with parameters p and n.
Under these assumptions, we propose to study re-optimization
strategy to solve 2D-PBPP. These strategies will be detailed
in the following paragraphs.

A. Re-optimization strategy

The re-optimization strategy is the most natural one. It
consists in finding the optimal solution for each potential
instance. The smallest number of bins needed to pack the
present items of the list Ln is a random variable. We note
it

∑
opt(Ln), its expected value is defined by :

E(ΣOpt(Ln)) =
∑

I⊆Ln

P (I)Opt(I), (1)

where Opt(I) is the smallest number of bin need to pack
instance I .
But the 2D-BPP is NP-hard, so we have to solve an expo-
nential number of NP − hard problems, this is impossible
to perform in the practice. As an alternative, we propose a
near-optimal procedure: Find solution according to an efficient
heuristic A for each potential instance; we call it redistribution
strategy according to A.

B. Redistribution strategy

For the redistribution strategy, according to an heuristic
A,we consider a list of items Ln = {(wi, hi)} where (wi, hi)
is the size of the ith item, we suppose that we have a
probability distribution P on all the possible subset of Ln

i.e every potential subset I ⊆ Ln has probability P(I) of
occurring.
the total number of bins needed to pack the present items of
the list Ln by the heuristic A is a random variable, we denoted
it

∑H
redist(Ln), its expected value is defined by the expression

:

E(ΣA
Redist(Ln)) =

∑

I⊆Ln

P(I)A(I), (2)

where A(I) is the total number of bins needed to pack I

by the heuristic A.

C. Approximation algorithms

In this section, we survey some algorithms devoted to the
Two-dimensional Bin Packing Problem (For a larger survey
see [10], [12], [11]). Up to the mid-nineties, almost all
result in the literature concerned heuristic algorithms. Many
approximation heuristics have been proposed and studied
(See [6] for an exhaustive survey).
Most of the approaches are shelf algorithms, i.e., the packing
is obtained by placing the item, from left to right, in rows
forming levels (shelves). The first shelf is the bottom of the
bin, and subsequent shelves are produced by the horizontal
line coinciding with the top of the tallest item packed on the
shelf below.
In what follows, we present the heuristics used in our
experimental study in section III.

1) The Next Fit Level algorithm (NFL): NFL packs the
current item on the current level of the current bin if it fits. If
not, a new level is created in the current bin if the height of
the item is less than or equal to the height of the bin minus
the hight of the current level, the current level is closed off,
and the item is packed in the new level created. When the
next item to be packed cannot be packed on a new level in
the current bin, a new bin is opened.

2) The First Fit Level algorithm (FFL): FFL packs the
current item in the lowest shelf on the first bin where it fits.
If no shelf can accommodate it, a new shelf is created either
in the first suitable bin, or by initializing a new bin (If no bin
have enough vertical space available).

3) The Finite First-Fit algorithm (FFF): First the items are
stored by non increasing heights, the FFF packs the current
item in the lowest level of the first bin where it fits; if no
level can accommodate it, a new level is created in the first
bin having sufficient vertical space, otherwise, the new level
is created in a new bin.

4) The Finite Best Strip algorithm (FBS): FBS sorts ini-
tially the items by decreasing heights and consists of two
phases. First, items are packed into an infinite height strip
using a Best Fit algorithm, the resulting strip packing is made
up of ”shelves” each corresponding to a different level, having
equal width and different heights. In the second phase, the
shelves are packed into finite bins using the well known Best
Fit (BF)1 heuristic for the 1D-BPP.

1Best Fit maintains a list of current bins, ordered by sizes, and upon arrival
of item x, puts it in the current fullest bin in which it fits, opening a new bin
for x if this fails

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 2, 2008 43



3

Fig. 1. First and second phase of algorithm FBS

5) Matching (KLM): The last heuristic KLM is considered
as an extension of matching to multi-dimensions. We recall
that in One Dimension Bin Packing Problem, the matching
consists, first, in sorting the pieces according the decreasing
heights, and then putting the current object with the biggest
that fits with, if it exists. Otherwise, it is kept in a single
bin. In the two dimensional case, the algorithm first divides
the items into four sets S1, S2, S3 and S4 containing items
with dimensions in the quadrants of the unit square in the
order

[
0, 1

2

]2
,
[
0, 1

2

] × [
1
2 , 1

]
,
[
1
2 , 1

] × [
0, 1

2

]
and

[
1
2 , 1

]2,
respectively. The algorithm then attempts to pack as many
bins as possible with four items, one from each set. This is
done by producing 3 one-dimensional (pairwise) matchings,
M12,M34 and M24, as follows. Let Ji = (hi, wi) denote the
size of the jth item. M12 provides a maximum matching of
items in S1 with those from S2 such that for all (Ji, Jj) ∈ M12

with Ji ∈ S1 and Ij ∈ S2 we have wi + wj ≤ 1 and hi ≤ hj .
Similarly, M34 is a maximum matching of items in S3 and
S4 such that if (Ii, Ij) ∈ M34 with Ii ∈ S3 and Ij ∈ S4 we
have wi + wj ≤ 1 and hi ≤ hj . Finally, M24 is a maximum
matching of items in S2 et S4 such that if (Ji, Jj) ∈ M24 with
Ji ∈ S2 and Jj ∈ S4 then hi + hj ≤ 1.

III. EXPERIMENTAL STUDY

In this section we attempt to do a comparison between
the re-optimization strategy and the re-distribution strategies
through an experimental study, in which we have implemented
the redistribution strategy according to the FBS heuristic.

A. Asymptotic behavior of the re-optimization strategy

We aim here to show that under assumption, the redis-
tribution strategy according to FBS is asymptotic to the re-
optimization strategy.
So for an estimate of the performance of a distribution strategy,
we have first to know the asymptotic behavior of the re-
optimization strategy. In fact, it can be easily proved that the
expected number of bins obtained by the re-optimization strat-
egy, when items are independently and identically distributed
on the the unit square [0, 1]2, and when each of them have the
same probability of being present p, divided by np is 1

4

lim
n→+∞

Eu(
∑

Reopt(Ln))
np

=
1
4

(3)

B. Asymptotic behavior of the redistribution strategy

According to the result (3) , we compute the following ratio:

RA
Redist =

Eu(
∑A

Redist(Ln))
np

. (4)

where Eu(
∑A

Redist(Ln)) is the expected total number
of bin needed to pack the present items of the random list
Ln = {(W1,H1); (W2,H2); ...; (Wn,Hn)} by the heuristic
A.
The strategy of redistribution according to FBS will be all
the more interesting as this ratio will be close to 1

4 .

C. Experimental results

The experience consists in generating a list Ln =
{(W1, H1); (W2,H2); ...; (Wn,Hn)} of n items uniformly
and independently distributed on [0, 1]2. We attribute the same
probability p of being present for each item. So we generate
the subset I of present items.
We implemented the redistribution strategy according to an
heuristic A, where A will be in turn NFL, FFL, FFF, FBS
and KLM, as an approximation to the re-optimization strategy
which is impossible to carry out since the problem is NP-
Hard. The runs were executed with values of n ranging
from 100 to 1000, with a step of 100 and with different
values of p ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.9999}. Fig.2 presents
the variation of RFBS

A
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We notice that:

• The redistribution strategy converges for the different
heuristics

• For all tested values of p, and for any heuristic A, the
ratio RFBS

A is almost constant for n ≥ 700, so we
can conclude that this ratio is asymptotically independant
from n.

• The FBS heuristic is the most performant one in fact:

RFBS
Redist < RFFF

Redist < RFFL
Redist < RKLM

Redist < RNFL
Redist

Since the redistribution strategy according to FBS seems to
be the most efficient one, we present in the following figure
3 the variation of the ratio RFBS

Redist when p varies and when
n takes a large value, here n = 1000.

Fig. 3. Variation of RFBS
Redist for n = 1000

The figure 3 also shows that this same ratio computed
for the redistribution strategy according to FBS converges
toward a constant and this independently from the values of
n and p. This implies that for any probability p for being
present, the packing obtained by redistribution strategy is
asymptotically equivalent to O(np)

We notice that the ratio so calculated, for the heuristic FBS
diverges at most about 6% from the re-optimization strategy.

Therefore, we can conclude that under assumption, the
redistribution strategy according to FBS is asymptotic and the
re-optimization strategy are asymptotically equivalent.

IV. CONCLUSION

This paper has suggested an average case behavior of the
redistribution strategy for the probabilistic bin packing prob-
lem where to sorts of randomness was considered : the size of

the items to be packed and their presence. We tried to evaluate
how well the redistribution strategy can approximate the re-
optimization strategy, and through an experimental study we
can conclude that the redistribution strategy according to some
heuristics is asymptotic to the re-optimization strategy which
is impossible to carried out in the practice.

REFERENCES

[1] M. Bellalouna and S. Souissi and B. Ycart, Average case analysisi for
the probabilistic bin packing problem, In Mathematics and Computer
Science III,M. Drmota et al. Eds., Birkhuser, Basel, 2004, pp. 149-159

[2] J. O. Berkey and P. Y. Wang, Two dimensional finite bin packing
algorithms, Journal of the Operational Research Society 38, 1987,
pp. 423–429.

[3] D. Bertsimas, Probabilistic Combinatorial Optimization Problems, Ph.D
Thesis Massachusetts Institute of Technology, Cambridge, Mass, USA,
1988.

[4] D. Bertsimas and L. Howell, Further results on probabilistic travelling
salesman problem, MIT Sloan School of Management Working paper,
September, 1988, pp. 2066–2088

[5] D. Bertsimas and P. Jaillet, and A. Odoni, A priori Optimization,
Operations Research 38, 1990, pp. 1019–1033

[6] J.E.G. Coffman and M.R. Garey and D.S. Johnson, Approximation
algorithms,Approximation algorithms for bin packing - a survey, ed.
D. Hochbaum PWS, 1997

[7] M. Garey and D. Johnson, Computers and intractability, a guide to the
theory of NP-completeness, Freeman, New York, 1979

[8] P. Jaillet, Analysis of Probabilistic Combinatorial Optimization Problems
in Euclidean Spaces, Mathematics of Operations Research, 18, 2001,
pp. 51–71

[9] P. Jaillet, A priori solution of a traveling salesman problem in which
a random subset of the customers are visited, Operations Research 36,
1988, pp. 929–936

[10] A. Lodi and S. Martello and M. Monaci, Two-dimensional packing
problems: A survey, European Journal of Operational Research 141,
2002, pp. 241–252

[11] M. Boschetti, A. Mingozzi, The two-dimensional finite bin packing
problem. Part II: New lower and upper bounds, 4OR, 1 (2003), 135–
147..

[12] A. Lodi, S. Martello, D. Vigo, Recent advances on two-dimensional bin
packing problems, Discrete Applied Mathematics, 123(2002), 379–396.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 2, 2008 45



5

Fig. 2. Redistribution Ratio
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