
 

 

  
Abstract—Difference equations or exact numerical integration 

scheme, which have general solutions, are treated algebraically. 
Eliminating the symmetry in mixed functions, we can construct 
numerical integration schemes correspond to some ordinary 
differential equations that have same mixed functions. When arbitrary 
functions are given, whether we can construct numerical integration 
schemes that have solution functions equal to given function or not are 
treated. 
 

Keywords—Exactly integrable numerical scheme, Algebraic 
treatment, Ordinary difference equation.  

I. INTRODUCTION 
ERE we concentrate the problem what difference equation 
have solution function, in other words, it is solvable 

(integrable) or not. This problem seems hard to clear by 
straight way at present. Then we treat this problem from other 
side. We change this problem as follows. Firstly, we assume 
solution function is given. Secondly, we construct difference 
equation that has such function as the solution function. 

We often use difference equations as an approximation of 
differential equations. However, it is wonderful if the 
difference equation has same solution function to the one of 
some differential equation. From this point, correspondence 
between difference equations and differential equations was 
investigated [1]. As for extension of the previous study, we 
treat the case when given solution functions are arbitrary one, 
not limited to solution functions of some ordinary differential 
equations (ODE) at the goal.  

Here we shortly review the procedure in [1] to construct 
difference equation that has same solution function to the one 
of some differential equation. 

We assume given solution function as,   
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Then we get differential equation (2), using (1) and derivation 
of (1), by eliminating integral constant C1 and C2  in second 
derivation of (1).     
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We can also construct difference equation. Deforming (1) to 
linear equation respect to integral constant gives, 
 
 1 2 .C C y xy+ =  (3) 
 
Taking appropriate independent point set {{x(1), y(1)}, {x(2), 
y(2)}} and substituting these point to (3) gives two equation. 
From these equations, we obtain C1 and C2. Then substituting 
them to (3), we get difference equation, 
 
 (1) (2) (1) (1) (2) (2) (2) (1)( ) ( ) ( ) 0.xy y y x y y y x y y y− + − + − =   

  (4) 
 
It is clear, (2) and (4) have same solution function (1). Here we 
have simple question, what functions that include integral 
constants are possible to give difference and differential 
equations. We treat this problem by concentrate on making 
difference equations from such given functions. Here we use 
the word “symmetry” or “invariant” as the same meaning to 
“integral constant” when it is appropriate for the problem.  

 

II. PROCEDURE FOR EVOLUTIONAL DIFFERENCE EQUATION 
WITH INITIAL CONDITIONS 

We prepare the classification of simultaneous equations 
respect to initial conditions, which are necessary to construct 
evolutional difference equations within scope of previous 
section. 

A. Linear case without derivative (Case 1) 
Let consider linear simultaneous equation which are induced 

from following given solution function, 
 

 1 1 2 2( ) ( ) ( )n ny C f x C f x C f x= + + +  (5) 
 
here, Cj are invariant (symmetry or integral constant) of the 
difference equation which we will construct, and fj(x) are 
appropriate function of x. As for elimination of all Cj in (5), we 
use following simultaneous equations, 
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with well posed initial conditions that are independent 
respectively, 
 { } { }(1) (2) ( ) (1) (2) ( ) ( ) ( ), , , , , , , , ( )n n i ix x x y y y y y x=… …  (7) 

 
here, lower suffix (j) for x and y corresponds to sampling point 
number and 0( ) ( )jf x C x∈ . We assume (7) are explicitly given.  

  

B. Linear case with derivative (Case 2) 
In case 2, we also assume the form of solution function as 

(5), but use derivatives in simultaneous equations with well 
posed initial conditions,  
 

(1) 1 1 (1) 2 2 (1) (1)
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 { }(1) (2) ( )

(1) (2) ( ) (1) (1) (1), , , , , , , n s
sy y y y y y −… …

,
 (9) 

 
here, upper suffix (j) of y and f corresponds to j-th derivative 

/j jd y dx  and /j jd f dx . We assume 

{ , ( )} ( )n s
jy f x C x−∈  and (9) is given. In this case, we take 

s<n to treat initial condition same to the one for differential 
equation. With ease extension, we can consider more general 
case defined by other initial conditions, for example 
{ }(1) (1) (1)

(1) (2) ( ) (1) (2) ( ), , , , , , ,s n sy y y y y y −… … and 

{ }( ) ( )
(1) (2) ( ) ( ) ( ), , , , , ,r u

s t vy y y y y… …  , etc. We leave these cases 

by complicate combination with arbitrary derivatives and 
sampling points, because of simple description of the problem. 
Clearly, Case 1 is a part of Case 2. 

 

C. Case 3 
Case 3 are defined by generalization of (5), 

 
 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )n ny g f x g f x g f x= + + +C C C" , (10) 
 
here 1{ , }nC C=C …  and gjs are polynomial functions of Cjs. 
Formulation for simultaneous equations and initial conditions 
are the same to Case 1 or Case 2. We also leave more general 
cases, for example, generalizing ( ) ( )j jg f xC to ( , )jG xC , and 

( , ,H y x )= 0C , here Gj and H are analytic function of C, etc. 
 

III. ELIMINATION  AND IMPLICITIZATION OF SEYMMETRY  
We consider elimination of Cjs from simultaneous equations 

in each case. Analytically, local existence of each 
function ( )j jC C= y x, can be verified by implicit function 

theorem. Here we use notation, (1) (2) ( ){ , ,..., }ny y y=y , 

(1) (2) ( ){ , ,..., }nx x x=x  and   
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 (11) 

 
If det( ) 0≠F , then we can solve Cj explicitly in case 1 and 
case 2, because (6) and (8) are linear equation by C. 
Substituting Cj to (5), we get explicit evolutional difference 
equation. Evolution is given by following sequential mapping,  

(1) (2) ( ) (2) (3) ( ) ( 1) ( )

(1) (2) ( ) (2) (3) ( ) ( 1)

{ , ,..., } { , ,..., , },

{ , ,..., } { , ,..., , },
n n n n

n n n

x x x x x x x x x x

y y y y y y y y y

δ+

+

→ = = +⎧⎪
⎨ → =⎪⎩

, 

here we assume δ is given. These formulations are discrete 
correspondence to well known Wronskian treatment in 
differential equation. For the case 3, we use Jacobian matrix 
instead of (11), 
 

 (1) (2) ( )

(1) (2) ( )

( , ,..., )
( , ,..., )

n

n

y y y
C C C

∂
=

∂
F  (12) 

 
here y(j)=y(x(j),C) by (10). If det( ) 0≠F , then 

( )j jC C= x, y exist implicitly and locally by implicit function 

theorem. However, it is not sufficient to construct difference 
equation from (10), we must use another approach. Then we 
change approach from solving Cj to eliminate Cj. 

We assumed gj(C) are polynomial functions in (10), 
therefore we can use algebraic elimination theorem (or 
implicitization) using Gröbner basis [2-4]. Here after we treat 
case 3, but procedures in the following are available to all 
cases. 

We rewrite (10) as, 
 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( )n nI g f x g f x g f x y= + + + −C C C" .      (10)’ 
 

We define (1) (2) ( ){ , ,..., }nI I I=I and  

 
I(j)= 1 1 ( ) 2 2 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )j j n n j jg f x g f x g f x y+ + + −C C C" . 

 
Then we regard I as generating set of ideals in O(x)[y, C]. O(x) 
is coefficient function filed for polynomial function of C and y. 
We abbreviate ( )( )j if x  as j if  and disrespect x for a while. It 

means we neglect the case when O(x) is not algebraically 
closed field. 
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We only show difference between solving Cj and eliminating 
Cj by MathematicaTM example. At the first, we define 
I={I1,I2,I3} and C={c1,c2,c3} as follows,  

 

  
 

Following gives elimination ideal to “temp”, 
 

  
 

 We can obtain y3 explicitly without branch using “Solve”,  
 

 

. 
 
On the contrary, we obtain multiple root of Cj using “Solve” 

directly,  
 

 
 

Then we must substitute each root of Cj into I3 to construct 
evolutional difference equation. Clearly, we cannot construct 
single equation. We note that elimination ideal induces Zariski 
closure of I. From this point, we can regard elimination as 

( )[ ]O⊂I x C,y and elimination gives ( )[ ]O∩I x y . 
We found that construction of difference equation from 

given function with symmetries are appropriately obtained by 
ideal elimination theorem [3]. It is clear that this result mainly 
depends on assumption by gjs in (10) are polynomial functions 
of Cjs. 

 

IV. EXPLICIT EVOLUTIONAL DIFFERENCE EQUATION 
We found difference equations are obtained by elimination 

theorem, though we cannot construct explicit evolutional 
difference equation by the theorem. We need more condition 
for construction, because difference equations should be 
evolutional form with appropriate initial conditions. This is 
difference between implicitization problem and this problem. 
As a result, we must search suitable simultaneous equations 
that give evolutional form from considerable combination of 
variables and initial conditions as in case 2.  

 

A. Algorithm for construction 
We shortly summarize procedure to make evolutional 

difference equation. Here we neglect other factor of 
construction for simplicity. 

 
Step 1: Construct polynomial from (10)’ by expanding and 

arranging coefficient respect to each i jC Cα β"  term.  

Step 2: Construct ( )[ ]O⊂I x C, y using equation from step1 
with (7). Try elimination. If elimination gives single 
evolutional equation for some y(j), then stop 
construction. We got suitable evolutional difference 
equation for y(j) to y(j+1).  

Step 3: We try construction of I that includes derivatives with 
initial condition (9), and varying value of s from s=n-1 
to 1. If elimination gives single evolutional equation 
by s for some y(j), then stop construction. 

 
We can proceed to construction of evolutional equation 

when above all step are in fail. Variable transform is one 
direction, and modification of original function is other 
direction. For example, in rare occasions, if we consider 
evolution of ( ) ( 1)j jy yα α

+→ instead of ( ) ( 1)j jy y +→ , we can 

obtain evolutional equation by hiding multiplicity. For other 
direction, we must back step1. We change subsection for detail 
treatment by example. 

B. Some condition for constructability of unique 
evolutional equation 

Let consider following simultaneous equation with 
assumption that appropriate initial conditions are given. This 
example is more general case than (10)’.  
 

2
(1) (1) 1 2 11(1) 1 2 12(1) 3 13(1)

2 2
(2) 1 2 (2) 1 2 21(2) 1 2 22(2) 3 23(2)

(3) (3) 1 2 31(3) 1 2 32(3) 3 33(3)
2

(4) (4) 3 41(4) 1 2 42(4) 1 2 43(4)

3( )
( )

( ) ( )
( )

I y C C f C C f C f
I C C y C C f C C f C f
I y C C f C C f C f
I y C f C C f C C f

⎧ = − + + +
⎪ = − + + +⎪
⎨ = − + + + +⎪
⎪ = − + + +⎩
  (13) 

 
Following step 1 in previous subsection, we obtain 
 

 

2
(1) (1) 1 11(1) 2 11(1) 3 13(1) 1 2 12(1)

2
(2) 1 21(2) 2 21(2) 3 23(2) 1 2 (2) 22(2)

(3) (3) 1 32(3) 31(3) 2 32(3) 31(3) 3 33(3)
2

(4) (4) 1 43(4) 2 43(4) 3 41(4) 1 2 42

3 3
( )

( ) ( )

I y C f C f C f C C f
I C f C f C f C C y f
I y C f f C f f C f
I y C f C f C f C C f

= − − + +
= − − + + +
= + − + + +
= + + − + (4)

⎧
⎪
⎪
⎨
⎪
⎪⎩

  (14) 
 
It can be rewrite to matrix form  
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(1) (1) 11(1) 11(1) 13(1) 12(1)
1

(2) 21(2) 21(2) 23(2) (2) 22(2)
2

(3) (3) 32(3) 31(3) 32(3) 31(3) 33(3)
3

(4) (4) 43(4) 43(4) 41(4) 42(4) 2
1 2

1
3 3

0
0

I y f f f f
C

I f f f y f
C

I y f f f f f
C

I y f f f f
C C

⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟− − +⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟− + ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜

⎝ ⎠
⎟
⎟

  (15) 
 

From (15) we found it is wrong construction, because (15) have 
too many base variables 2

1 2 3 1 2{ , , , }C C C C C . Clearly it is 
better to rewrite (13) as,  
 

(1) (1) 13(1) 11(1) 12(1)

(2) 23(2) 21(2) (2) 212(2) 3

(3) (3) 33(3) 32(3) 31(3) 1 2
2

(4) (4) 41(4) 43(4) 42(4) 1 2

3 1
0

0

I y f f f
I f f y f C
I y f f f C C
I y f f f C C

−⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟− +
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠

.

  (16) 
 
We can easily found that (16) gives difference equations by 

eliminating base variables 2
3 1 2 1 2{ , , }C C C C C+ . We also 

require condition det( ) 0=F , here 
   

 

(1) 13(1) 11(1) 12(1)

23(2) 21(2) (2) 212(2)

(3) 33(3) 32(3) 31(3)

(4) 41(4) 43(4) 42(4)

3
0

0

y f f f
f f y f

y f f f
y f f f

−⎛ ⎞
⎜ ⎟− +⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

F . (17) 

 
As a result we found following. If we can rewrite 

simultaneous equations for constructing difference equations 
with appropriate polynomial base by C in O(x)[y, C] and its 
coefficient matrix F satisfies det( ) 0=F , then we can construct 
evolutional differential equations. Here, appropriate 
polynomial base means that dimension of base by C equal to 
order of difference equation respect to initial condition. Since, 
the order of difference equation equal to number of 
simultaneous equations minus one that are generator of 
elimination ideals for C. We assume that the condition 
det( ) 0=F  should be satisfied by initial conditions or selection 
of functions and their derivatives. Example (13) is a simple 
case, because we can easily obtain evolutional difference 
equation by expanding condition det( ) 0=F itself.  

Algebraic treatment of implicit function theorem relate to 
regular (Cohen-Macaulay) property. Therefore, if we treat 
condition det( ) 0=F  more exactly, we have to notice 
regularity. We will return this topic later section.  At the end of 
this section, we show Mathematica result for this sample.  

We define ideal generator for elimination by following input, 
 

  
 

Then, we get elimination ideal, 
 

 
 
We can confirm the uniqueness of y4 by elimination with 
“Solve” from calculated result “temp”, 

 
. 

  
 
We found y4 are unique, that is 1 2 3 4{ , , }y y y y→ . We can 
easily confirm base variable are appropriate or not by Gröbner 
basis also, 
 

, 

. 
 
It shows {c1, c2, c3, c1^2c2} is not appropriate bases. On the 
contrary,  
 

, 
. 

 
The result shows dimension of these bases are unchanged and 
equal to order of difference equation. It means these are 
appropriate bases for the example.  

V. SYZYGY AND FREE RESOLUTION IN C 
We introduce more algebraic treatment in this section. In the 

previous section, we found that bases of polynomial function 
by Cjs are induced by Gröbner bases. These bases correspond 
to difference operation or differentiation (We regard Cjs to 
integral constant at the start point of this study). Therefore if we 
put some base equal to zero, it corresponds to introduction of 
special solution to the system. For example, if we put Cn=0 for 
(5),  
 

1 1 2 2 1 1( ) ( ) ( ), 0.n n ny C f x C f x C f x C− −= + + + =" (18) 
 
Clearly, (18) become general solution function of (n-1)th-order 
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difference equation. In other word, (n)th-order difference 
equation is integrated, or reduced its order by special condition.  

If we call solution of difference equation as kernel of 
following mapping DCE,  

 

Elimination of
with initial conditions

Intgeration

Substitution of into
with initial conditions

: Solution function( ) that include polynimial basis of

: Diffrence Equation,

: (

j

j

C

y

y C

y y

⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯

⎯⎯⎯⎯⎯⎯⎯→DCE

Sol

DCE

DCE DCE ), .y ∈ Sol

 

 
Then, putting each base polynomial function by Cjs equal to 
zero makes a element of kernel of DCE (special solution). In 
addition, it is clear that syzygies (perpendicular space to the one 
defined by original base) by these base polynomial functions 
also generate the part of kernel of DCE (Free resolution). 
Syzygies are also invariants of DCE because they are consist 
from only Cjs (integral constants).    

   We consider the form (10) with abbreviations,  
 

 F・C=y (19) 
 

here, F is matrix consist from fj(x)s, C is a row vector each 
element from appropriate gj(C) base, and y is a row vector from 
initial value of ( )j

iy . Matrix notation of (6) and (8) are those of 
simple examples.  By assumption, we can use F-1 for solving C,  
 
 C= F-1y (20) 
 
Using syzygy matrix Syz, we get  
 
 Syz・C= Syz・F-1y=0, (21) 
 
since we define Syz as,  Syz・C=0. Then Syz is matrix that each 
element is polynomial by Cjs, we can get additional other 
descriptions of solution function defined from Syz・F-1y =0. 

 

VI. GENERAL FORM FOR ORDINARY DIFFERENCING RESPECT 
TO ODE 

A. Parametric form for ordinary differencing respect to 
ODE 

We treat following form as an extension of previous section, 
because general solution function of ODEs are obtained as 
parametric forms in many cases. Here we put t is parameter and 
Fj, uj, vj, fj and gj are appropriate function (:= O(*)) of variables 
*. 

 
Solution: 1

2

( ,  ,  ) 0
( ,  ,  ) 0

F y t
F x t

=⎧
⎨ =⎩

C
C

 , here 1 ( , )

2 ( , )

( ,  , ) [ ]
.

( ,  , ) [ ]
C C
C C

y t

x t

F y t O
F x t O

∈⎧
⎨ ∈⎩

  (22) 

 

Example, 

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( ) ( ) ( )
C C C
C C C

n n

n n

u f t u f t u f t y
I

v g t v g t v g t x
⎧ + + + −

= ⎨
+ + + −⎩

"
"

 

 
We can also treat this form with previous procedure by 
discretizing both x and y in the same system algebraically. For 
example, we consider 1st order ODE 

2 2 2 2( 2 2 ) 2 2 ,dyy xy x ay ax y xy x ay ax
dx

+ + + − = − − − − +   (23) 

Its solution function is 
 

2 3 2 2 3 2( 4 / ) , ( 4 / ) .x C t t a Ct y C t t a Ct= + + = − + +   (24) 
 
In this special example, we can eliminate t from (24) directly 
using Gröbner basis putting elimination order of t is highest. 
Then, it is another form of solution function (24) without t,  

2 2
2 2 2 38 16 84 4 3 3 0.Cx Cxy CyCx x Cy x y xy y

a a a
− + − − + − + + =    (24)’ 

Generally, we have to eliminate C from parametric form 
solution function as (22).  

 

B. Projective treatment of C respect to particular solution 
of ODE and rationality 

We notice that example (13) gives intimation that projective 
treatment for the problem is more appropriate and consistent. 
Moreover following example forces us to the treatment. 
Consider Riccati equation, 
 

 2
2 1 0( ) ( ) ( ) ( ).dyg x f x y f x y f x

dx
= + +  (25) 

 
Using given particular solution y0=y0(x) of (25), the general 
solution can be written as,  
 

 

[ ]

1

2
0

2 0 1

( )( ) ( ) ( ) ,
( )

( ) exp 2 ( ) ( ) ( ) ,
( )

f xy y x x C x dx
g x

dxx f x y x f x
g x

−
⎡ ⎤

= + Φ − Φ⎢ ⎥
⎣ ⎦

⎧ ⎫
Φ = +⎨ ⎬

⎩ ⎭

∫

∫

 (26) 

 
here particular solution y0(x) corresponds C = ∞ . This sample 
implies projective treatment of Cj. In addition differential 
equations that have rational functions with moving singularity 
as its solution functions, give this form [7].     
 

 1 2

1 2

( )( ) ( ) .
( )( ) ( )

n

n n m

a x C x C x Cy
x C x C x C+ +

− − −
=

− − −
"
"

 (27) 

 
Therefore, we treat solution function in projective space and 
homogeneous polynomials as for C. For example, if solution 
function is given by affine from as for C,  
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 1 1 2 2( ) ( ) ( ) ( ),n ny C f x C f x C f x r x= + + + +"  (28) 
 
we change variables 

1 2{ , ,..., }nC C C  to 

1 0 2 0 0{ / , / ,..., / }nC C C C C C and multiply C0 to both side of (28). 
It gives, 
 
 0 1 1 2 2( ( ) ) ( ) ( ) ( ) 0.n nC r x y C f x C f x C f x− + + + + ="  
  (29) 

 
At a glance, we can obtain particular solution putting 

0 1 2{ , , ,..., }nC C C C ={1,0,0,...,0} . From the example, we can 
found that particular solutions, moving singularities and 
symmetry of equation can be treated properly by introducing 
projective space for C. 
 
 

VII. REGULARITY OF C AND UNIQUENESS OF ORDINARY 
DIFFERENCING 

We really want to know is whether Cj’s become regular 
coordinate system or not. If they are regular coordinate system, 
we obtain uniqueness of solution function by elimination of 
Cj’s with appropriate initial conditions. Algebraically 
following relations are known, Regular coordinate system → 
Complete intersection → Gorenstein → Cohen-Macaulay. 
From this chain, we can introduce many procedures for proving 
regularity of C, however we return analytic treatment of the 
problem. 

Local regularity of Cj’s is easily confirmed by Jacobian with 
condition det( ) 0≠F  in a simple case (12). We generalize this 
approach. We treat solution function as y(j)=y(x(j), CG), here CG 
means that Cj’s are reconstructed from Gröbner (standard) 
bases. As an example in (16), we find CG by GröbnerBases(C) 
→CG, then we change variables from {C3,C1+C2,C1^2C2} to 
{CG1, CG2, CG3} for simplicity. We rewrite y(j)=y(x(j), C) to 
y(j)=y(x(j), CG) and Jacobian matrix as  
 

 (1) (2) ( )

1 2

( , ,..., )
.

( , ,..., )
F n

G G Gn

I I I
C C C

∂
=

∂
 (30) 

 
The condition det( ) 0F ≠  gives regularity condition for 
{CG1, CG2, CG3} on affine formulation for C. In case of 
projective formulation, we use  
 

 (0) (1) (2) ( )

0 1 2

( , , ,..., )
.

( , , ,..., )
F n

G G G Gn

I I I I
C C C C

∂
=

∂
 (31) 

 
We can regards that the condition det(F) equals to zero or not 
gives additional integrable condition. 
 

VIII. CONCLUSION AND DISCUSSIONS 
In this study, we treated integrable difference equation 

algebraically from unusual side. We found that regular property 
of C in solution function is important, and conditions for the 
property are confirmed properly using theorems around 
Gröbner base theory. Obtained results relate to application, for 
example, integrability of finite difference schemes, limiting 
treatment of function and interpolation theorem, etc. As for 
constructible condition for the unique evolutional difference 
and differential equation using more general function including 
some analytic function should be given more explicitly. 
Stability problem for obtained difference equation is ignored. 
However, it seems to have good properties since it has 
invariants that are defined from constant polynomial bases by 
Cjs [6]. We simply treated rational form of functions and 
singularities in projective space. More details for this treatment 
should be study. In this study, we assumed evolutional rule of x 
is given. This condition should be treated more exactly respect 
to general case. We can also treat solution function that 
contains Ci and Ej. In other word, we consider partial difference 
equation regarding each Ci corresponds to taking difference for 
variable u, and Ej corresponds to taking difference for variable 
v. Then solution functions are defined by generally, 
 
 ( ,  ,  ,  ) 0F y u v C, E =  (32) 
 
If we can eliminate all C and E in (32) with appropriate initial 
conditions, we get partial difference equation that have (32) as 
general solution. We leave this natural extension for next study. 
These left problems should be cleared soon. 

Difference equational version of D-module theory [8] may 
be obtained by hard study for difference operator from 
algebraic point and contribution by elimination of symmetry 
from function space like this study, and many other related 
works, for example algebraic function theory. 
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