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Abstract - This paper shows a set of tuning equations, 
based on the sliding surface response to forecast changes in 
the parameters of the process, which are used to enhance and 
to tune the predictive dynamic matrix controller parameters. 
The controller presents a fixed algorithm and its tuning 
parameter equations were developed relating the 
characteristics values of the sliding surface and the 
characteristic parameters of the first order plus deadtime 
model. Simulations on a blended tank with variable level that 
presents non linear behavior are considered.  
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I. INTRODUCTION 
 

ime delays or dead times appear commonly in 
the problem of control of different systems, 

such as chemical and manufacturing processes. 
Time delays can be originated by several situations 
like transportation lags, the effects of recycle loops 
on systems or by the approximation of higher order 
systems by lower dimension ones. Also time delay 
systems can be originated naturally as a 
consequence of the modeling process, as in the 
case of chemical processes [1]. 
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Several controllers have been developed for stable 
processes. When the time delay is located at the 
input (or output) of the system, a commonly used 
strategy is to eliminate the effect of the delayed 
signal to obtain a free delay system. This method 
works only in the case of sufficiently small delay. 
An alternative approach consists in the 
approximation of the delay term by the 
consideration of a Taylor series expansion or the 
use of Padé approximations via a rational transfer 
function. In the case of linear systems, the classical 
strategy is to use the well-known Smith predictor 
compensator (SPC) [1], which provides a future  
estimation of the output signal that can be used in 
the design of a control feedback 
 
The main limitation of the original SPC is related 
to the class of systems for which it could be used,  
since it is restricted to stable plants. Later on this 
research field, Model Predictive Control (MPC) 
[2] begins at the end of the 70. These kinds of 
controllers use a dynamical model of the process, 
to predict the effect of the future controller actions 
on the system output. 
 
MPC includes a series of algorithms among which 
the Dynamic Matrix Controller (DMC) is one of 
the most important ones. DMC were developed for 
Cutler and Ramaker [3], and it has been used in the 
industrial world, mainly in the petrochemical 
industries. DMC is a linear control technique 
where the process is represented by a first order 
plus deadtime (FOPDT) model. The model 
response to an unit step change is used to predict 
the future response of the dependent variables and 
formulates a series of control actions for all the 
independent variables. The actions are selected to 
minimize the error of the process on the time 
horizon.   
 
DMC presents some advantages, they can be 
mentioned as follows:  Intuitive and simple tuning, 
it can be used for systems with complex dynamic, 
the multivariable case is easily implemented, it is 
favorable  for systems with long delays and  the 
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inclusion of  restrictions is  simple for controller's 
design. DMC also presents inconvenience such as 
the necessity of an appropriate process model.  
Sliding Mode Control (SMC) is a type of Variable 
Structure Control (VSC) that was developed in the 
Soviet Union [4, 5]. The techniques of SMC have 
been employees in diverse systems; robustness is 
one of its principal advantages in the control of 
non linear and time variant systems and systems 
with uncertainties. However, also presents 
disadvantages such as when the delay is too big the 
performance of the system decreases. 
 
This paper tries to take advantages of both 
techniques, from the DMC the predictive 
advantages and from the SMC the robustness 
attributes.  
 
The paper is divided as follows: Section II presents 
a brief description of the DMC and a SMC brief 
summary; section III shows the methodology, 
section IV presents the results and finally in 
section V the conclusions are presented. 
 

II. CONTROLLERS. 
 

A. The Parametric DMC 
The conventional DMC was designed as a strategy 
to work with linear systems, or processes with 
small deviations from its operating point. 
Unfortunately, the industrial processes are 
complex with nonlinear characteristics. Several 
articles report that when the DMC is used in non 
linear processes the process response can go from 
very slow to oscillatory [6], [7], [8] and [9]. For 
this reason, several proposals to modify the 
algorithm DMC and to improve its performance 
for non linear processes have been proposed. One 
of these approaches was developed in 2006 by 
Iglesias and Smith [10], where they proposed the 
structure of the Parametric DMC called PDMCr. 
The new structure was designed to include variable 
terms whose values can change as necessary 
adaptation of process variations.  
 
The control law proposed by Cutler and Ramaker 
for the conventional DMC is expressed as follows:   

        ( ) EAIAAM TT 12 −
+=Δ λ               (1)   

Where:   
:A  Is the dynamic matrix  

:MΔ Is the output vector 
:λ Is the suppression factor 

 :I  Is the identity matrix 
 

In the PDMCr structure, equation (1) can be 
expressed as function of the characteristic 
parameters of the process. For the case of an 
FOPDT model are gain, time constant, dead time 
besides the suppression factor, therefore, the new 
model can be represented  as follows:   

              ( ) EtKfM p ⋅=Δ λτ ,,, 0         (2)   
Equation (2) has the advantage of including the 
effect of the process parameters in the control law. 
Therefore, Eq. (2) can be adjusted taking into 
account changes in process parameters. As 
mentioned above, this control law was proposed in 
2006 by Iglesias and Smith as:   
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Where:      

ik  is the i-th term in the D row, Ts  is the sampling 

time, nuevoτ is the new time constant of the 

process, prevτ is the old time constant D  is the 

transient information after dead time. CH is the 
control horizon, PH is the prediction horizon, Z is a zeros vector, I is the identity matrix, n 
represents the periods of sampling.  
 
 
B. Sliding Mode Control. 
Sliding mode control (SMC) [4], [11] is well 
known for its robustness to modeling errors, 
insensitivity to parameter variations and 
disturbances, which are expected in practice. It is 
the property of the SMC that made it useful for 
many successful practical applications, [12]. There 
are two parts in the SMC, namely the reaching part 
and the sliding mode part. In the reaching stage, 
the system state is derived onto a specified and 
user chosen surface, which is called sliding 
surface, in a finite time. Once in the sliding mode, 
the system dynamics are strictly determined by the 
dynamics of the sliding surface and therefore the 
closed loop system becomes insensitive to 
parameter changes and disturbances [11]. 
However, no such insensitivity to parameter 
variations and disturbances can be possessed 
during the reaching phase. For that reason, to 
guarantee a good closed loop system response, the 
control system should be designed in such a way 
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that the initial reaching phase is as short as 
possible [11]. 
  
To design a SMC controller, the first step is 
choosing the sliding surface that is usually 
formulated as a linear function of the system 
states. The proposed sliding equation is composed 
of the reference signal, the model output, and the 
modeling error. Therefore, s(t) can be represented 
 

( ))(eym(t),R(t),f)( m ttS =  (5) 
 
where R(t) is the reference, ym(t) is the model 
output, em(t) is the modeling error. 
 
Filippov’s construction of the equivalent dynamics 
is the method normally used to generate the 
equivalent sliding mode control law [5]. It consists 
of satisfying the following sliding condition 
 

0
)(
=

dt
tdS

 (6) 

 
And substituting it into the system dynamic 
equations, the control law is thereby obtained.  
 
To design the reaching mode control law, the 
signum function of s(t) affected by a constant gain 
can be used [5,11]. However, this produces the 
undesirable effect of chattering, normally not 
tolerated by the actuators. A more appropriate 
solution is to use the sigmoid-like function, instead 
of the signum one, to smooth the discontinuity and 
to obtain a continuous approximation to the 
surface behavior and avoid chattering [4,5,11] in 
the control signal when the surface is 
(pseudo)reached. In a general way, let us propose a 
general discontinuous control part. 
 

( ) )(tKtU DD Ψ=  (7) 
 
Where KD is the tuning parameter responsible for 
the speed with which the sliding surface is 
reached, and  ( )tΨ  is a nonlinear function of s(t). 
 
Then, the complete SMCr can be represented as 
follows 
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Equations 8a and 8b constitute the controller 
equations to be used. These equations present 
advantages from process control point of view, 
first they have a fixed structure depending on the 
λ’s parameters and the characteristic parameters of 
the FOPDT model, and second the action of the 
controller is considered in the sliding surface 
equation, by including the term sign(K), in Eq. 
18b. Note, that sign(K) only depends on the static 
gain, therefore it never switches. From an 
industrial application perspective, Eq. 8b 
represents a PID algorithm [5]. 
 
To complete the SMCr, it is necessary to have a set 
of tuning equations. For the tuning equations as  
first estimates, using the Nelder-Mead searching 
algorithm [5], the following equations were 
obtained [5].  
 
• For the continuous part of the controller and 
the sliding surface   
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• For the discontinuous part of the controller 
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⎛
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tK
K D

τ
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112.068.0 λδ DKK+= [=]   [fraction TO/time] 

(9d) 
 
Eqs. 9c and 9d are used when the signals from the 
transmitter and controller are in fractions (0 to 1).  
Sometimes, the control systems work in 
percentages that are; the signals are in % (0 to 100) 
of range.  In these cases the values of KD  andδ  
are multiplied by 100.  
 

III. METHODOLOGY. 
To develop the new tuning equations a factorial 
experiment was designed, and an analysis of 
variance (ANOVA) was performed to determine 
the variables that have a significant effect on the 
optimal suppression factor λ. The experiment 
consisted in modeling a general process as a first-
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order-plus dead time (FOPDT) and determine, 
using constrained optimization, the best λ value to 
minimize a cost function. The FOPDT model 
contains three parameters, process gain, Kp, time 
constant, τ, and dead time to. 
 
Therefore, the proposed tuning equations set,  were 
obtained from experiments based on  FOPDT 
models, where  each one of the parameters were 
varied   in 10%, 30%, 50% as are shown in Table 
1. A total of 36 simulations were performed. 

 
Table1. Models used for the experiment   

     
ΔKp  

 

Kp  

 

τ  

 

τt0  10% 30% 50% 

0.5 5 0.5 0.05 0.15 0.25 

1.5 10 1.0 0.15 0.45 0.75 

2.5 15 1.5 0.25 0.75 1.25 

Kp  
τ  τt0  Δτ  

0.5 1.5 2.5 0.5 1.5 2.5 

1.0 3.0 5.0 1.0 3.0 5.0 

1.5 4.5 7.5 1.5 4.5 7.5 

Kp  
τ  τt0  τΔt0  

0.05 0.15 0.25 0.05 0.15 0.25 

0.10 0.30 0.50 0.10 0.30 0.50 

0.15 0.45 0.75 0.15 0.45 0.75 

 
The purpose of this conducted test is to observe if 
changes in the process parameters can induce 
changes in the sliding surface. Fig. 1 shows one of 
the tests. 
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Figure 1.  A test used in the experiment   

.   
 
 

A. Obtaining the Characteristic Values of the 
Sliding Surface response.   
Using the values presented in Table 1, all 
simulations were carried out. From the 
simulations, it was observed that the S(t) 
characteristic values response affected by changes 
in the process parameters are: minimum time, 
maximum time, minimum pick, maximum pick 
and the period (see Fig. 2).   
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Figure 2. Characteristic values of the sliding 

surface response   
 
 
B. Analysis of Variance. 
Once completed the 729 simulations,  taking into 
account the characteristic values of the sliding 
surface response as the output and  as independent 
variables the FOPDT characteristics parameters a  
variance analysis (ANOVA) were prepared. 
 
The variance analysis and the regression 
techniques are used to find out the non linear 
models that relate the sliding surface response 
characteristics and the FOPDT process parameters.    
 
Table 2.  ANOVA considering the minimum pick.   

 
Sour

ce 

Sum Sq d.f Mean Sq. F Pro

b>

F 

Kp 0.00579 2 0.0029 33.34 0 

τ 0.00499 1 0.00499 57.39 0 

t0/τ 0.00263 2 0.00132 15.13 0 

ΔKp 0.00294 5 0.00059 6.76 0 

Δτ 0.00195 6 0.00032 3.73 0.0

02

5 
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Δt0/τ 0.00132 7 0.00019 2.17 0.0

45

3 

Error 0.00713 82 0.00009   

Total 0.10155 107    

 
 

Table 3. ANOVA considering the maximum pick 
   
Sour

ce 

Sum Sq d.f Mean 

Sq. 

F Prob>F 

Kp 1582 2 791 41.47 0 

τ 4437 1 4436.9

5 

232.6

3 

0 

t0/τ 293.2 2 146.62 7.69 0.0009 

ΔKp 1062.9 5 212.59 11.15 0 

Δτ 331.7 6 55.28 2.9 0.013 

Δt0/τ 1130.4 7 161.49 8.47 0 

Error 1564 82 19.07   

Total 55956.7 107    

 
 

Table 4. ANOVA considering the minimum time 
  
Sour

ce 

Sum Sq d.f Mean 

Sq. 

F Prob

>F 

Kp 317.2 2 158.623 40.99 0 

τ 781.6 1 781.647 202.0

1 

0 

t0/τ 82.1 2 41.03 10.6 0.000

1 

ΔKp 92.5 5 18.494 4.78 0.000

7 

Δτ 121.2 6 20.205 5.22 0.000

1 

Δt0/τ 478.7 7 68.391 17.67 0 

Error 317.3 82 3.869   

Total 10991.6 107    

   
 
 

Table 5.  ANOVA considering the period  
 

Sour

ce 

Sum Sq d.f Mean 

Sq. 

F Prob>

F 

Kp 482.6 2 241.28 25.4

5 

0 

τ 1494 1 1494.02 157.

61 

0 

t0/τ 74.5 2 37.26 3.93 0.0234 

ΔKp 659 5 131.8 13.9 0 

Δτ 461.8 6 76.96 8.12 0 

Δt0/τ 380.8 7 54.4 5.74 0 

Error 777.3 82 9.48   

Total 19238.9 107    

 
   
To observe that values are significant on each 
output variable a limit is chosen for the value of P 
in the statistical F. this limit should be smaller than 
0.05.   
 
C.  Models of S (t) 
In the design of the different models were realized 
non linear regressions to adjust the parameters of 
the surface as a function of the changes in the 
process. Each pattern represents to an output 
variable of the sliding surface. To verify the good 
adjustment R2 is used to measure the global quality 
of the pattern. Therefore, the models obtained are:  
 
Y1: Model that considers the minimum peak  
   

( )
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Y2: Model that takes into account the minimum 
time    
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Y3: Model that takes into account the period 
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Where:  

1x : is the process gain.   
2x : is the time constant 
3x : is the controllability relationship 
4x : is the gain variation  ( )pKΔ   
5x : is the constant time variation ( )τΔ    
6x : is the controllability relationship variation 
( )τΔ /t0   

 
IV. SIMULATION RESULTS 

 
In this section a mixing tank [5], Fig. 3, is used to 
compare the proposed controller against the SMC 
and the DMC. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Mixing tank 
 
 
In Table 6 can be observed the characteristic 
FOPDT model parameters, they are used to tune 

the controllers. They are obtained by identification 
[1]. 

 

Table 6. FOPDT characteristic parameters. 

Parameter Value 

PK  -0.78503 Fraction TO/Fraction CO

τ  2.0906 min 

0t  3.5663 min 

 
 
 
Figure 4 shows how the process response is 
affected when the three controllers are used. As 
can be observed the proposed approach presents a 
better performance than the other two, the DMC 
presents a oscillatory response and the SMC is 
overdamped. 
 
Figure 5 plots other simulation. In this figure the 
proposed approach acquires the advantages of the 
original schemes, therefore same results as was 
shown in Figure 3 are obtained.  
 
The previous two charts have shown the 
advantages of this mixed scheme. The simulation 
results are also compared in a quantitative way 
using the performance indexes, the next part 
illustrates the results. 
 
 
A. Performance.   
 
Table 7 shows two performance indexes for the 
different controllers used in this work. IAE and 
ISE are used as the performance indexes.     
   

Table 7. Performance Indexes  
   

Index SMC DMC DMC+SMC

IAE 31.8981 75.1856 23.3072 

ISE 1.5875 4.8948 1.1888 

 
As can be observed in Table 7, both indexes show 
than the proposed approach, DMC+SMC, presents 
smaller indexes values than the others two 
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L=125ft
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Figure 4. Comparison among the different 

approaches
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Figure 5. Comparison among the different 

approaches,  
 
 

V. CONCLUSIONS 
      In this work a system of tuning equations has been 

designed based on the response of the sliding 
surface. The equations were used to improve the 
performance of the proposed approach. The results 
showed in all the cases improvements in the 
performance indexes with respect to the SMC and 
the DMC. In spite of robustness indexes were not 
presented in this paper, the results shown that the 
proposed approach is less oscillatory than the 
DMC and faster than the SMC. 
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