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Abstract— Recent studies have revealed that neurons are replaced
in the dentate gyrus of the adult hippocampus. Although it is believed
that the hippocampus is essential to store some kinds of memory,
the role of neuronal turnover in the hippocampus have not been
understood yet. In this paper, we examine the effect of neuronal
turnover by using a hippocampal model. Computer simulation results
show that the similarity of patterns to be stored is reduced by neuronal
turnover, and this contributes to storing similar patterns easily and
increasing the storage capacity. Moreover, we show that the number
of learning epochs required to store all patterns can be reduced as
the neuronal turnover rate becomes large.

Keywords— Dentate gyrus, hippocampus, neural networks, neuro-
genesis, neuronal turnover.

I. I NTRODUCTION

Our high level information processing such as thinking,
inference and so on is based on the declarative memory
which can be recalled consciously. Recent studies show that
the hippocampus plays a vital role in acquisition of the
declarative memory. Therefore, in order to construct an in-
telligent information processing system like human brain, it
is very important to clarify how memory is formed in the
hippocampus.

The hippocampus is a bilateral structure located in the
temporal lobes of the hemispheres (Fig. 1). In the hippocam-
pus, Dentate Gyrus (DG) and Cornu Ammonis (CA) con-
stitute the so-called trisynaptic circuit, the entorhinal cortex
(EC)→DG→CA3→CA1, which is known as an important
path in the hippocampus [1]. Adult hippocampal neurogenesis
has been found in DG where the first station of the trisynaptic
network. That is, some granule cells in DG are replaced by
new born cells every day. A lot of researchers have focused on
this phenomenon to reveal its role in the hippocampus [2]. So,
there is a lot of literature on neurogenesis in DG, and there
are several hypotheses on the role of neuronal turnover [3],
[4]. For example, Kempermann has suggested that new born
neurons do not add memory, but are inserted strategically to a
network to increase in the complexity that can be processed by
the network [5]. Nottebohm has suggested that new neurons
are used for storing new memories, thereby protecting old
memories from interference [6]. The other hypotheses and
suggestions on neurogenesis are found in the review [7].
Among them, Becker has suggested that newly born neurons
may be used to generate novel codes for highly similar
events by using computational model of the hippocampus [8].
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However, the role of neurogenesis in the hippocampus is still
not clear.

In this paper, in order to examine the role of neurogenesis,
we construct a computational model of the hippocampus and
simulate the process of neuronal turnover in the model. By
using the model, we examine how the similarity of input pat-
terns changes in each region of the hippocampus with/without
neuronal turnover and its relation to the storage capacity of the
model, and its influence on the number of learning epochs.

In Section II, we briefly review anatomical background
of the hippocampus and neurogenesis. In Section III, the
computational model of the hippocampus is explained. Then,
computer simulation results are shown in Section IV.

Fig. 1: The hippocampus (gray part) of the human brain.

II. A NATOMICAL BACKGROUND

Here, we briefly review the hippocampal architecture and
neurogenesis in DG.

A. Structure of Hippocampus

As shown in Fig. 2, the hippocampus consists of DG and
CA, and CA is divided mainly into CA1 and CA3. DG
consists of granule cells, while CA3 and CA1 consist of
pyramidal cells. Entorhinal Cortex (EC) which is adjacent to
the hippocampus works as an interface to the hippocampus.
External input is given to the hippocampus from the second
layer of EC, and output of the hippocampus is given to the
fifth layer of EC. Neurons of each region are connected with
each other. The connection between EC and every region is
called Perforant Path (PP). The connection from CA3 to CA1
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is called Schaffer Collateral (SC), and that from DG to CA3
is Mossy Fiber (MF). This connection is known as very sparse
and powerful. CA3 has recurrent connection from CA3 to
itself, which is called Recurrent Collateral (RC).

CA1

DG

EC

CA3

Perforant Path
Schaffer Collateral

Reccurrent 
Collateral Mossy Fiber

Fig. 2: Hippocampal circuitry.

External input is given to the hippocampus via EC, and it
is sent to each region through PP, MF, SC and RC. Elec-
trophysiological experiment has revealed that the dominant
path in learning and that in recall is different [9]. The path,
EC→DG→CA3→CA1 is dominantly used during learning. In
contrast, the path, EC→CA3→CA1 is dominantly used during
recall. Therefore, DG becomes dominant only when learning.
In addition, neurogenesis occurs only in this region of the
hippocampus.

B. Neurogenesis

Neurogenesis in DG of the human hippocampus was dis-
covered in 1998 by Erikson and Gage [10]. Fig. 3 shows the
process of neurogenesis in DG. DG consists of the granule cell
layer and the subgranular zone. First, precursor cells in the
subgranular zone divide asymmetrically. Following division,
one cell remains in the subgranular zone and retains the
capacity to proliferate, and the other cell moves the granule
cell layer of DG and grows up. Most of the newly born cells
that enter the granule cell layer acquire neuronal characteristics
[10]. Therefore, some time is necessary until a new cell can
be used as a neuron in DG.

Granule Cell Layer

Subgranular Zone

Fig. 3: Neurogenesis in DG.

According to the investigation of Cameron and McKay,
about 9,000 new cells are generated per day in the adult rat
DG, and the survival rate of generated cells is about 50% with
5-12 days [11]. Since the number of granule cells in the rat DG
can be estimated about a million, the rate of neuronal turnover
is about 0.45% per day. While, according to the data of young
adult rats (35-days-rats), new cells were born about 10,000 per
day, and 70% survive two weeks, suggesting a daily neuronal
turnover rate of about 1% [8].

III. H IPPOCAMPAL MODEL IN CONSIDERATION OF

NEURONAL TURNOVER

Here, we describe the hippocampal model for this study.
First, we show the architecture of our hippocampal model, and
then describe process of learning, recall and neurogenesis.

A. Architecture of Hippocampal Model

The hippocampal model for this study is shown in Fig.4.
The model consists of EC, DG, CA3 and CA1. EC is used
as input layer to the hippocampus, and CA1 is used as output
layer. Table I shows the number of neurons and the firing
rate in the hippocampal model. These data are based on
physiological findings and as same as those shown in [12].
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Fig. 4: A hippocampal model.

In the model, we use McCulloch and Pitts neuron model in
each region. Therefore, each neuron in the hippocampal model
takes 0 or 1 as its output:

Yj = φ(
∑

wijXi), (1)

whereXi shows the output of a neuron in a layer,Yj shows
that in the subsequent layer,wij denotes the connection weight
between these neurons.φ is the output function:

φ(x) =

{
1 for winner neurons

0 otherwise.
(2)

The number of neurons firing in each region is decided by the
k-winner-take-all manner [12] based on the firing rate of each
region. The rates of connection between two regions are as
follows: 25% for PP, 4% for MF, and 100% for RC and SC.
For example, in the case of PP, one neuron in DG connects to
25% of neurons in EC. Input from DG to CA3 is assumed 25
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times stronger than other input because there is physiological
evidence that the connection from DG to CA3 is very strong.

TABLE I: Details of each region in the hippocampal model.

Region EC DG CA3 CA1
Number of neurons 240 1600 480 240

Firing rate (%) 10.0 1.0 4.0 10.0

B. Flow of Data

The flow of data in the hippocampal model is as follows:

1) A pattern is inputted to EC.
2) DG receives input from EC, and a pattern is formed by

using thek-winner-take-all manner.
3) CA3 receives input from EC, DG, and CA3 itself, and

a certain number of neurons become active by thek-
winner-take-all rule.

4) CA1 receives input from EC and CA3. We regard the
pattern formed in CA1 as an output of the hippocampal
model.

C. Learning

All of connection weights in the model are learned by Oja’s
rule [13]. Although Hebbian learning was used in the model
[8], we have employed Oja’s learning rule because it can
constrict the divergence of weights. Oja’s rule is expressed
by

∆wij = ηYj(Xi − Yjwij), (3)

whereXi shows the output of a neuron in a layer,Yj shows
that in the subsequent layer,wij denotes the connection weight
between these neurons, andη is the learning rate.

In learning, we examine the pattern formed at CA1. When
all patterns appeared at CA1 are different from each other, we
have regarded it as successful learning.

D. Recall

Based on an evidence from electrophysiological experiment,
only the path, EC→CA3→CA1 is used in recall. Therefore,
DG is not used in recall. When recall, we examine the pattern
formed at CA1 for each input. If it is as same as the pattern
formed in learning, we have regarded it as successful recall.

E. Neuronal Turnover

Neuronal birth and extinction, namely neuronal turnover has
been modeled as follows. Assume that the rate of neuronal
turnover is set toα%. First, α% of neurons are chosen ran-
domly in DG. Then the connection weights of those neurons
are initialized according to the connection rate of PP and MF.

IV. COMPUTER SIMULATION RESULTS

A. Storage Capacity

Here, we examined the relation between the similarity
of patterns and the storage capacity under various neuronal
turnover rates.

Fig. 5: An example of input patterns when the direction cosine
was set to 0.42. A white square shows an inactive neuron, and
others show active neurons. Gray neurons are common in all
patterns.

In this experiment, we made a set of 10 different patterns
in which every two patterns have the same value of the
direction cosine. In order to construct such patterns, a random
pattern was generated according to the firing rate of EC first.
That is, a pattern which has 24 active neurons was randomly
generated. Then, we let a certain number of the active neurons
inactive and choose substitute active neurons randomly again.
Repeating this process, we can produce a set of patterns
which has given similarity. In our experiments, the similarity
was measured by the averaged direction cosine between two
patterns. The direction cosine between two patterns,P (i) and
P (j) (j �= i) is defined as follows:

P (i) · P (j)

||P (i)||||P (j)|| , (4)
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where P (i)={p(i)
1 ,p(i)

2 ,· · · ,p(i)
240}, P (j)={p(j)

1 , p
(j)
2 ,· · · , p

(j)
240}

andp
(i)
k ={0,1} (i = 1, 2, · · · , 10, k = 1, 2, · · · , 240).

Fig. 5 shows an example of input patterns when the direction
cosine was set to 0.42. White squares show inactive neurons
and others denote active neurons. Gray neurons were common
in all patterns.

Input patterns were given to EC one by one. A pattern was
learned by the model for 20 times (20 epochs), then the next
pattern was given to the model and learned. Namely, each
pattern was learned in an additional or incremental fashion.
Neuronal turnover occurred between learning. We examined
the number of patterns which could be successfully learned
and recalled in the model under various neuronal turnover
rates and similarity of patterns. Fig. 6 shows the results of
the experiment based on 20 trials.
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Fig. 6: Storage capacity based on 20 trials. The numbers in
the figure show the similarity of patterns measured by the
direction cosine.

In general, when patterns to be stored are very similar (that
is, the direction cosine is close to 1), it is very difficult to
learn them. As seen in the figure, as the similarity of patterns
becomes large, the storage capacity decreases. However, we
can see that the rise of neuronal turnover can much improve
the storage capacity. Namely, neuronal turnover makes it easier
to learn similar patterns.

B. Similarity of Patterns in Each Region

In this experiment, we examined how the similarity of
patterns changes in each region during learning. Tables II, III
and IV show the similarity of every two patterns appeared at
DG, CA3 and CA1, respectively. In the tables, each pattern is
represented by an alphabet. In this experiment, the similarity
of input patterns and the neuronal turnover rate was set to 0.42
and 0%, respectively.

TABLE II: Similarity of patterns in DG. Neuronal turnover
rate: 0%.

B C D E F G H I J

A .21 .22 .22 .22 .22 .21 .21 .20 .22
B .36 .39 .39 .39 .39 .38 .38 .39
C .44 .47 .44 .44 .44 .42 .45
D .52 .50 .51 .51 .49 .53
E .54 .55 .55 .55 .56
F .55 .56 .54 .57
G .57 .57 .61
H .57 .61
I .60

TABLE III: Similarity of patterns in CA3. Neuronal turnover
rate: 0%.

B C D E F G H I J

A .04 .04 .05 .06 .06 .06 .07 .06 .07
B .11 .15 .17 .18 .20 .18 .18 .19
C .18 .25 .20 .23 .23 .23 .23
D .33 .31 .34 .29 .30 .35
E .45 .49 .47 .47 .47
F .54 .52 .47 .53
G .55 .56 .62
H .60 .62
I .61

TABLE IV: Similarity of patterns in CA1. Neuronal turnover
rate: 0%.

B C D E F G H I J

A .00 .00 .00 .00 .00 .00 .00 .00 .00
B .01 .00 .03 .03 .03 .03 .01 .02
C .01 .07 .05 .04 .06 .05 .05
D .10 .12 .15 .05 .07 .16
E .30 .32 .31 .32 .32
F .46 .48 .39 .52
G .52 .54 .62
H .61 .68
I .64

TABLE V: Similarity of patterns in DG. Neuronal turnover
rate: 60%.

B C D E F G H I J

A .09 .04 .02 .02 .01 .01 .00 .00 .01
B .14 .06 .03 .02 .01 .01 .01 .01
C .16 .06 .03 .02 .02 .02 .01
D .12 .06 .02 .02 .01 .01
E .13 .05 .02 .02 .01
F .11 .04 .03 .01
G .12 .06 .02
H .12 .05
I .12
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TABLE VI: Similarity of patterns in CA3. Neuronal turnover
rate: 60%.

B C D E F G H I J

A .03 .02 .02 .03 .02 .03 .03 .02 .02
B .04 .01 .01 .01 .03 .01 .02 .03
C .03 .03 .03 .03 .03 .03 .01
D .01 .03 .04 .03 .03 .02
E .04 .03 .03 .02 .01
F .05 .04 .02 .03
G .05 .02 .03
H .02 .02
I .04

TABLE VII: Similarity of patterns in CA1. Neuronal turnover
rate: 60%.

B C D E F G H I J

A .00 .00 .00 .00 .00 .00 .00 .00 .00
B .00 .00 .00 .00 .00 .00 .00 .00
C .00 .00 .00 .00 .00 .00 .00
D .00 .00 .00 .00 .00 .00
E .00 .00 .00 .00 .00
F .00 .00 .00 .00
G .00 .00 .00
H .00 .00
I .00

TABLE VIII: Similarity of patterns in DG. Neuronal turnover
rate: 100%.

B C D E F G H I J

A .01 .02 .01 .01 .02 .01 .01 .01 .01
B .01 .01 .02 .01 .01 .01 .01 .01
C .00 .01 .01 .01 .01 .01 .00
D .01 .01 .01 .01 .00 .02
E .01 .01 .01 .01 .01
F .01 .01 .01 .01
G .01 .01 .01
H .02 .01
I .01

TABLE IX: Similarity of patterns in CA3. Neuronal turnover
rate: 100%.

B C D E F G H I J

A .03 .03 .02 .03 .02 .01 .03 .03 .02
B .02 .02 .02 .02 .05 .02 .03 .02
C .02 .01 .02 .02 .03 .03 .03
D .04 .01 .03 .02 .03 .02
E .01 .02 .03 .04 .03
F .02 .04 .03 .03
G .02 .03 .02
H .01 .02
I .02

TABLE X: Similarity of patterns in CA1. Neuronal turnover
rate: 100%.

B C D E F G H I J

A .00 .00 .00 .00 .00 .00 .00 .00 .00
B .00 .00 .00 .00 .00 .00 .00 .00
C .00 .00 .00 .00 .00 .00 .00
D .00 .00 .00 .00 .00 .00
E .00 .00 .00 .00 .00
F .00 .00 .00 .00
G .00 .00 .00
H .00 .00
I .00

We can see that the connection from EC to DG can reduce
the similarity of patterns when the number of patterns to be
stored is small. Namely, the similarity was less than 0.42
before D was learned by the model. The similarity of CA3
was generally lower than that of DG.

Although similar results can be seen in CA1 as shown in
Table IV, the similarity of patterns was much reduced: the
similarity was less than 0.42 before G was learned. Note
that the neuronal turnover rate of this experiment was set to
0%. Therefore, we can say that the hippocampal model has
an inherent function that can reduce the similarity of input
patterns.

Tables V–VII show the result under the same condition,
except that the neuronal turnover rate was set to 60%. As seen
in these tables, the similarity of patterns were much reduced
owing to neuronal turnover. In this case, the patterns formed
at CA1 became completely orthogonal.

Tables VIII–X show the result when the neuronal turnover
rate was set to 100%. In these tables, the similarity of DG was
even lower than the other results.

As shown in these results, the hippocampal model reinforces
the reduction of the similarity of input patterns with neuronal
turnover in DG. This may contribute to store a lot of similar
patterns in the hippocampal model.
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Fig. 7: Relation between the neuronal turnover rate and the
similarity of patterns in DG (left axis) and the storage capacity
(right axis). The similarity of input patterns was set to 0.42.
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Fig. 7 shows the relation between the neuronal turnover rate
and the average of the similarity in DG when the similarity
of input patterns was set to 0.42. As seen in this figure, the
larger the neuronal turnover rate is, the lower the similarity
of patterns is. Besides, the storage capacity becomes larger as
the neuronal turnover rate becomes larger.
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Fig. 8: Relation between the neuronal turnover rate and the
similarity of patterns in DG (left axis) and the storage capacity
(right axis). The similarity of input patterns was set to 0.50.
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Fig. 9: Relation between the neuronal turnover rate and the
similarity of patterns in DG (left axis) and the storage capacity
(right axis). The similarity of input patterns was set to 0.38.

Figs.8 and 9 show the results when the similarity of input
patterns was set to 0.50 and 0.38, respectively. As seen in
Figs.7–9, neuronal turnover becomes more effective when the
similarity of input patterns is large.

C. Learning Epochs

In this experiment, we examined the relation between neu-
ronal turnover and the number of learning epochs required
for successful learning. First, we made 5 different patterns
so that every two patterns have the direction cosine. Then,
these patterns were incrementally learned by the hippocampal
model one by one. We varied the learning epochs from 1 to

100, and examined the minimum learning epoch to store all
patterns successfully. We regarded it as unsuccessful learning
if learning did not succeed within 100 epochs.
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Fig. 10: Relation between the neuronal turnover rate and
learning epochs. The similarity of input patterns was set to
0.50.
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Fig. 11: Relation between the neuronal turnover rate and
learning epochs. The similarity of input patterns was set to
0.42.

TABLE XI: The number of successful learning based on 400
trials. The similarity of input patterns was set to 0.50.

Turnover(%) Number of successes
0 15
10 183
20 325
30 384
40 393
50 394
60 394
70 394
80 394
90 394
100 396
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TABLE XII: The number of successful learning based on 400
trials. The similarity of input patterns was set to 0.42.

Turnover(%) Number of successes
0 261
10 394
20 396
30 386
40 396
50 396
60 396
70 396
80 396
90 396
100 396

Figs.10 and 11 show the results when the similarity of input
patterns was set to 0.50 and 0.42, respectively. These results
are based on 400 trials. As shown in the figures, neuronal
turnover is more effective when the similarity of input patterns
is large (Fig.10): the larger the neuronal turnover rate is, the
smaller the number of learning epochs to store all patterns is.

Tables XI and XII show the relation between the neuronal
turnover rate and the number of successful trials in the
experiment. We can see that the number of successful learning
out of 400 trials is extremely small without neuronal turnover
when the similarity of input patterns is large: the number of
successful learning was 15 without neuronal turnover when
the similarity was 0.50 (Table XI), while it was 261 when
the similarity was 0.42 (Table XII). In other words, patterns
difficult to learn (without neuronal turnover) can be learned
by using neuronal turnover.

The reason why the number of learning epochs without
neuronal turnover is very small in Fig.10 is due to the small
number of samples, 15 (see Table XI).

V. CONCLUSIONS

In this paper, we have examined the role of neuronal
turnover in dentate gyrus (DG) by using an abstract model
of the hippocampal network. Neuronal turnover was modeled
by choosing neurons in DG arbitrarily and initializing their
weights randomly. Computer simulation results show the fol-
lowing features of the hippocampal model:

1) The storage capacity can be much improved as the
neuronal turnover rate becomes large, especially when
the similarity of input patterns are large.

2) The similarity of input patterns is reduced by the
hippocampal model even without neuronal turnover. It
seems that the hippocampal model has an inherent
function so that the similarity of input patterns can be
reduced.

3) The similarity of input patterns is much reduced with
neuronal turnover, and this contributes to enlarge the
storage capacity of the hippocampal model.

4) Owing to neuronal turnover, patterns difficult to learn
can be successfully stored. Moreover, when the simi-
larity of input patterns is large, the larger the neuronal

turnover rate is, the smaller the number of learning
epochs is.

In our experiments, we have varied the neuronal turnover
rate from 0 to 100%, which is clearly too high in comparison
with the biological turnover rate. However, a more biologically
realistic neuronal turnover rate did not produce a detectable
effect in the scale of our model. In [8], Becker have varied
the neuronal turnover rate from 25 to 100% in the almost same
scale of the model. In the future research, we enlarge the scale
of our model and employ a more biologically realistic neuron
model and recent biological findings so that we can examine
the features of the hippocampal network more precisely.
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