
 

 

  
Abstract- The aim of this paper is to investigate finite element 
methods for the solution of the Sokolovski elliptic partial differential 
equation. The problem of solving such equations without 
triangulating surfaces is of increasing importance in various 
applications, and their discretization has recently been investigated in 
the framework of finite difference methods. For the two most 
frequently used implicit representations of surfaces, namely level set 
methods and phase-field methods, we discuss the construction of 
finite element schemes, the solution of the arising discretized 
problems, and provide error estimates. The variation of reacting force 
was plot under different solution methods and different input data. 
Results showed that the level set method outputs have less error than 
the phase- field method. Also the soil cohesion and mesh density 
have significant effect on the soil cutting forces. 
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I. INTRODUCTION 

The solution of partial differential equations on curves and 
surfaces has received growing interest in the last years due to 
a variety of applications in computer graphics [3, 4], materials 
science, and inverse problems. In many applications, elliptic 
or parabolic partial differential equations have to be solved on 
varying geometries, which means that after time-discretization 
a large number of elliptic problems remain to be solved 
numerically on different curves or surfaces. The standard 
approach to discretize these elliptic problems are finite 
element methods on curve or surface triangulations, which can 
cause a tremendous computational effort for varying 
geometries, since the triangulation has to be recomputed for 
each change in the geometry. Moreover, the approximation 
properties of such triangulations are not yet well understood 
except for simple geometries, and it is not clear how higher 
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order geometric characteristics such as curvatures are to be 
represented on the triangulation. The soil failure mechanism 
under tillage tools operation can be represented by Sokolovski 
partial differential equation. Some analytical methods have 
been introduced to solve the soil- tools interaction problem [5, 
6, 7, and 11].  Finite element method as a numerical 
approximation method have used by some researchers to 
model the soil tools interaction problem [12, 13]. The aim of 
present study is to introduce the numerical solution for 
Sokolovski equation and comparison the output of solution 
under different solution methods.  

 

II. MATERIALS AND METHODS 
In order to avoid surface triangulations, it seems reasonable to 
consider Eulerian methods based on implicit surface 
representations, which were used with great success in the 
construction of computational schemes for evolving curves 
and surfaces. By now the two standard Eulerian approaches 
for evolving surfaces are level set methods [8, 9] and phase-
field methods [1, 2]. Level set methods are based on an 
extension of the equation on the surface to all level sets of an 
implicit representation function, ideally the signed distance 
function. Phase-field methods approximate the equation by a 
parameter-dependent reaction-diffusion equation, whose 
solution is an approximation of a rescaled signed distance 
function. 
Eulerian schemes based on a level set representation of the 
surface have been proposed recently by Bertalmio et. al. The 
starting point of their analysis is an implicit representation of 
the surface, i.e., as the zero level set of a continuous function 
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The basic idea of the approach in is to rewrite the derivatives 
with respect to surface variables as projections of derivatives 
in Rd (with projection operators defined in terms of the level 
set function), and to extend the equations to a set D of positive 
Lebesgue measure in Rn. In particular, the surface gradient 
can be written as: 
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Using extensions of the coefficients, one can then extend the 
partial differential equation to all level sets. 
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For all |α| sufficiently small, and thus, to a neighborhood of Σ, 
the implicit dependence on Σ is then replaced by dependence 
on ϕ∇ . The benefit of this extension is the fact that standard 
discretization methods can be used in a small domain D, and 
therefore no surface triangulations are needed. The numerical 
methods in [4] and subsequent work were developed for the 
solution of time-dependent parabolic and hyperbolic 
equations, using explicit time-stepping. Stationary elliptic 
equations such as e.g. the Laplace-Beltrami equation, which 
appear in many applications either of interest for themselves 
[10] or as a sub problem in some larger system of equations 
have not yet been investigated. Moreover, all the schemes 
developed so far were based on finite differences on parts of a 
regular grid, while finite element methods allowing much 
more flexibility with respect to the grid have not yet been 
investigated in this respect. Phase-field methods for equations 
on surfaces have not yet been investigated in detail; such 
approaches are so far only considered as sub problems in the 
second-order splitting of fourth- order equations, with few 
rigorous arguments as the phase-field parameter tends to zero. 
The fundamentals of a phase-field representation are a phase-
field function ψ, asymptotically of the form 
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Where d denotes the signed distance function to Σ, ε > 0 is a 
small parameter, and p is a monotone function such that P (-
∞) =-1 and P (+∞) =1. Prototypes for the function p are: 
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The first order expansion satisfies q = 0 on Σ, ||q||∞ = O (1), 
and || q∇ ||∞ = O (1). In this paper, we shall investigate 
Eulerian methods for linear elliptic equations of the form: 

fcuudiv s =+∇− )(α ,             on Σ 

Where divS and s∇  denote the surface divergence and 
gradient, respectively. 
 
Level set representation: For an implicit representation with 
level set function φ, we can follow the formal argumentation 
given in [4] and extend as: 
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With α^, c ^, and f ^ being appropriate extensions of the 
coefficients a, c, and. In order to obtain a consistent extension, 
one needs that 

α^(x,0)= α(x)     c^(x,0)= c(x)    f^(x,0)= f(x),          Σ∈∀x  
Phase-field representation: For an implicit representation 
with a phase-field function ψ, an approximation is given by: 
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With a, c, and f being appropriate extensions of the 
coefficients a, c, and f. Consistency of the extension 
corresponds to the condition 

α (x,0)= α(x)   c (x,0)= c(x)     f (x,0)= f(x),      Σ∈∀x  
The phase-field function is assumed to satisfy an expansion. 
For simplicity we shall assume below that a, c, and f are 
constant extensions of a, c, and f in normal direction, but 
analogous results can be derived (with more complicated 
computations) for other sufficiently regular extensions. 

A.   Finite element formulation 
The Elastic-Plastic model describes an elastic, perfectly 
plastic relationship. Stresses are directly proportional to 
strain until the yield point is reached. Beyond the yield 
point, the stress-strain curve is perfectly horizontal. A 
function which describes the locus of the yield point is 
called the yield function. The yield function of the 
Drucker- Prager elastic perfectly plastic material model 
(F) can be expressed as follows [14]:  

5.0}]]{[}{
2
1[3 SMSF T

m += βσ
           

Where: 

mσ = the mean or hydrostatic stress= 
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{S}= the deviatoric stress equation 

β = material constant and is equal to )3(3
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The material yield parameter is defined as 
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Where: 
 C and ϕ  are the input soil cohesion value and angle of soil 
internal friction, respectively. 
Soil plasticity is formulated using the theory of incremental 
plasticity. Once a material begins to yield, the incremental 
strain can be divided into elastic and plastic components. 
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Only elastic strain increments
edε  will cause stress changes. 

As a result, stress increments can be written as follows: 
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A yield function, F, is a function of normal and shear stress, 
so an incremental change in the yield function is given by: 
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The theory of incremental plasticity dictates dF will be equal 
to zero when the stress state is on the yield surface. This 
condition is termed the natural loading condition, and can be 
written mathematically as: 
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The plastic strain is postulated to be: 
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Where, G and λ  are plastic potential function and plastic 
scaling factors, respectively. 
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Finally the incremental stress corresponding to a given 
incremental strain is obtained as follows: 

}]){[]([}{ εσ dCCd pe −=      
B.          Finite element mesh and boundary conditions 

The soil media is modeled as 100×70×80 Cm, (length× 
width× height) cube of solid material (fig.1). At the places that 
the cutting blade contacts with soil, the shape of the blade is 
carved into the soil. For both soil and blade, element solid 45 
is used. Solid 45 is a brick element with 8 nodes and 3 degrees 
of freedom at each node (Ux, Uy, Uz).  
Due to the symmetric geometry of the model, one half of the 
model was simulated but all the results consider the complete 
model. Two failure surfaces were predefined, one along the 
horizontal plane in front of the blade-cutting tip and the other 
along a vertical plane at a distance of 100mm from the 
symmetric plane and of height 200mm, i.e. along the blade 
vertical boundary, as shown in Fig. 1. The concept of master 
and slave contact (contact and target element) was used to 
simulate the interface between the cutting blade and the soil; 
and soil itself along the predefined failure surfaces. Relative 
motion was allowed with friction along the soil–tool and soil–
soil interface surfaces.  The model was meshed in a manner 
that increased the mesh density near the blade and the 
predefined failure surfaces. 
The boundary conditions of the model are (Fig. 1) 
1. Bottom base nodes, at Y=0, are fully constrained. 
2. Nodes on vertical boundaries parallel to the Y–Z plane, at 
X=0 and X=1000mm, are constrained in the horizontal 
direction along X axis. 
3. Nodes on vertical boundaries are constrained in the lateral 
direction along z axis.   
4. The blade is constrained in the vertical direction and from 
any rotation but it is free to move in the horizontal direction 
along X axis. 
 

 
Fig.1. Soil–tool interface model dimensions. 

 
The effects of variables on the soil reaction forces were 

investigated. Variables are: 
Solution methods at two methods (level set and Phase- 

field methods) 
Soil cohesion in three levels (10, 25 and 40 kpa) 
Mesh density in two levels (fine and coarse meshing)  

 

III.        RESULTS AND DISCUSSION 
The finite element results extracted from sensitivity 

analysis were calculated. The sensitivity of the reacting forces 
with respect to the input data was measured. The rate of 
increase of draught force is relatively high at low 
displacement, and levels out as displacement further increases. 
The reason for this process is that the plastic strain in each 
element occurs under very low displacement. In the next step 
of tool motion, the yielded elements transfer forces to their 
adjacent element and their force tends to become constant. 
The trend of reaction force variation with respect to the tillage 
tool displacement in different solution methods and different 
level of soil cohesion and mesh density was calculated and 
compared. The results in summery are: 

 

A. The effect of solution method 
The resulting errors for different discretization levels are 
given in figures 2 and 3. One observes that the magnitude of 
the errors is very low in the level set case. In order to compare 
the effect of the different extensions, we plot the solutions 
obtained with the level set and the phase-field representation 
in Figures 2 and 3. Comparison of the result extracted from 
experimental tests and two solution methods showed that the 
level set method data are closer to experimental one. 
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Figure.2. Variation of horizontal draft force according to 

the solution methods. 
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Figure.3. Variation of vertical reaction force according 

to the solution methods. 
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B. The effect of soil cohesion 
The variation of draft force with respect to tool 

displacement at three level of soil cohesion showed that any 
increase in soil cohesion cause an increase in the steady state 
level of horizontal draft force. The maximum horizontal draft 
force has seen in the maximum level of soil cohesion. The 
direct relation between the soil cohesion and soil stiffness 
might be the main reason of such difference (Fig.4). The trend 
of horizontal draft force variation with respect to tillage tool 
displacement is similar to the hyperbolic stress- strain curve. 
In the loosen soils the draft force will be reached to the 
maximum level sooner than that of in the soil with higher 
cohesion. This is the main reason that the finite element 
analyses were diverged in the loosen soil sooner than the hard 
soil, because the soil elements will reach to the maximum 
allowable plastic strain in a lower displacement.  
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Figure.4. Variation of horizontal draft force according to 

the tool displacement at various level of soil cohesion. 
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Figure.5. Variation of vertical reaction force according to the 
tool displacement at various level of soil cohesion. 
The variation of vertical reacting force according to the tool 
displacement at three levels of soil cohesion showed that the 
force will level out after initial fluctuations (Fig.5). The trend 
of the variation of the vertical force is the same at different 
level of soil cohesion but the steady state vertical force level is 
higher in more cohesive soils than less cohesive soils. The 
calculated results showed that in the range of 15-40 kg/cm3 
soil cohesion, the sensitivity of the variation of draft force and 

vertical force are 26.6 
2cm

kg
kN

 and 0.05 
2cm

kg
kN

 
respectively.  
 

C. The effect of mesh density 
The effect of mesh density on the reliability of the 3D finite 

element model was investigated at two level of mesh density. 
The soil was meshed to 10 elements per width of cutting blade 
in fine meshing while in coarse meshing the width of blade 
was divided into 5 elements.  Mesh density was found to have 
a very significant effect on the predicted results when using 
elastic-plastic material models to simulate soil–blade interface 
problem. To investigate the effect of the mesh density on the 
predicted finite element results of a 3D soil–blade interaction, 
a series of 3D finite element models was carried out for 
different various mesh densities and for 15mm of blade 
displacement. Predicted cutting forces acting on the blade in 
both draft and vertical directions were monitored during each 
finite element analysis and presented in Figs. 6 and 7, 
respectively, through 15mm of horizontal blade displacement. 
Fig. 9 represents the progress in draft cutting forces as the 
blade moves horizontally and Fig. 7 represents the progress in 
vertical cutting forces as the blade moves horizontally using 
various mesh densities. From these two figures it is noticeable 
that the mesh density has a very significant effect on the 
predicted forces in both draft and vertical directions in that as 
the mesh density increases the predicted forces decreases. For 
example, the reduction of the predicted forces can be in the 
order of 25% with slight increase in the mesh density. Results 
showed that to obtain a highly accurate quantitative analysis, a 
very dense mesh should be considered with an expected 2-day 
run time using a dual xenon 1 GHz processor PC with 500MB 
of memory. 
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Figure.6. Variation of horizontal draft force according to the 

tool displacement at various level of mesh density. 
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Figure.7. Variation of vertical force according to the tool 

displacement at various level of mesh density. 
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IV. CONCLUSION  
The 3D finite element analyses have been carried to simulate 
soil–blade interaction and study the effect of blade soil 
properties and mesh density on predicted cutting forces in 
both draft and vertical directions. The so called elastic-plastic 
constitutive model was used to describe the behavior of the 
simulated soil in monotonic loading. The mesh density was 
found to have a significant effect on the predicted results. So 
only a qualitative study has been reported here. A series of 
models were analyzed concerning various solution methods, 
soil cohesion and mesh densities using 3D models. From the 
various 3D analyses carried out, some concluding remarks can 
be made as follows: 
1. Comparison of the result extracted from experimental tests 
and two solution methods showed that the level set method 
data are closer to experimental one. 
2. Soil cohesion has a significant effect on the cutting forces. 
The trend of variation of reacting forces according to blade 
displacement is the same at various levels of cohesion. 
3. The mesh density has a significant effect on the predicted 
results in both draft and vertical directions in that as the mesh 
increases the predicted forces decreases. 
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