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Parameter Identification of a Two Degrees of
Freedom Mechanical System

Domenico Guida, Fabio Nilvetti, and Carmine Maria Pappalardo

Abstract—A method for identifying parameters of a linear me-
chanical system is proposed. The method is based on ERA/OKID
identification method developed by Juang [1]. This procedure has
been tested on a light-damped mechanical linear apparatus.

Index Terms—Markov Parameters, Eigenvalues Realization
Algorithm, Observer/Kalman Filter Identification.

I. INTRODUCTION

SYSTEM identification is the art of determining a model of
a dynamical process by combining information obtained

from experimental data with that derived from an a priori
knowledge of the physical behavior of the system. In general,
the system or the physical process to be modeled can be of
any kind, even though applied system identification usually
considers only deterministic processes.

System identification is a discipline that can be studied at
different levels. From the basic point of view, the purpose of
identification is to determine just how many states or modes
are needed to construct a model of the system. Once past this
stage, one can begin an higher level system identification. On
the other hand, the most refined level of identification is the
parametric identification.

Between these two extremes there are many system identifi-
cation techniques whose purpose is to model the dynamic be-
havior of a physical system without determining its equations
of motion. In general, there is a wide range of identification
techniques and the choice of the technique to be used needs
to be decided from time to time. In the field of parametric
identification there are basically three possible approaches:
time-domain analysis, frequency-domain analysis and bifurca-
tions analysis. In the case of time-domain analysis, one should
find an approximate analytical expression, written in terms
of unknown parameters, and compare it with experimentally
measured data. In this case we need to measure only one
output signal and then is possible to perform an efficient
identification procedure. I wish you the best of success.

II. MATHEMATICAL BACKGROUND
A. State-Space model

The equations of motion for a finite-dimensional linear-
dynamic system are a set of n2 second-order differential
equations, where n2 is the number of independent coordinates.
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Let M, R and K be the mass, damping and stiffness matrices,
respectively. The equations of motion can be expressed in
matrix notation as:

M ẍ(t) + R ẋ(t) + K x(t) = F(t) (1)

where ẍ(t), ẋ(t) and x(t) are vectors of generalized accel-
eration, velocity and displacement, respectively, and F(t) is
the forcing function.

On the other hand, if the response of the dynamic system is
measured by the m output quantities in the output vector y(t),
then the output equations can be written in a matrix form as
follows:

y(t) = Ca ẍ(t) + Cv ẋ(t) + Cd x(t) (2)

where Ca, Cv and Cd are output influence matrices for
acceleration, velocity and displacement, respectively. These
output influences matrices describe the relation between the
vectors ẍ(t), ẋ(t), x(t) and the measurement vector y(t).

Let z(t) be the state vector of the system:

z(t) =
[

x(t)
ẋ(t)

]
(3)

If the excitations of the dynamic system is measured by
the r input quantities in the input vector u(t), the equations
of motions and the set of output equations can both be
respectively rewritten in terms of the state vector as follows:

ż(t) = Ac z(t) + Bc u(t) (4)

y(t) = C z(t) + D u(t) (5)

where Ac is the state matrix, Bc is the state influence matrix,
C is the measurement influence matrix and D is the direct
transmission matrix. These matrix can be computed in this
way:

Ac =
[

O I
−M−1 K −M−1 R

]
(6)

Bc =
[

O
M−1 B2

]
(7)

C =
[

Cd−Ca M−1 K Cv−Ca M−1 R
]

(8)

D = Ca M−1 B2 (9)

where B2 is an influence matrix characterizing the locations
and the type of inputs according to this equation:

F(t) = B2 u(t) (10)

The equations (4) and (5) constitute a continuous-time
state-space model of a dynamical system.
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On the other hand, consider a discrete-time state-space
model of a dynamical system:

z(k + 1) = A z(k) + B u(k) (11)

y(k) = C z(k) + D u(k) (12)

Because experimental data are discrete in nature, the equations
(11) and (12) form the basis for the system identification of
linear, time-invariant, dynamical systems. The state matrix A
and the influence matrix B of the discrete-time model can
be computed from the analogous matrices Ac, Bc of the
continuous-time model sampling the system at equally spaced
intervals of time:

A = eAc ∆t (13)

B =
∫ ∆t

0

eAc τdτ Bc (14)

where ∆t is a constant interval.

B. System Markov Parameters
Solving the equations (11) and (12) with zero initial con-

ditions and in terms of previous inputs yields:

z(k) =
k∑
j=1

Aj−1 B u(k − j) (15)

y(k) = C
k∑
j=1

Aj−1 B u(k − j) + D u(k) (16)

To observe the response to a pulse in one of the input variables,
consider the following input vector:

u(k = 0) =


1
1
...
1

 , u(k > 0) =


0
0
...
0

 (17)

When the substitution is performed for each input, the
results can be assembled into a sequence of pulse-response
matrix Yk with dimesion m by r as follows:

Y0 = D , Y1 = C B , Y2 = C A B , . . .
. . . , Yk = C Ak−1 B (18)

The constant matrices in the sequence are known as system
Markov parameters. The Markov parameters are commonly
used as the basis for identifying mathematical models for
linear dynamical systems starting from experimental data.
Indeed, it is clear that the matrices A, B, C and D are
embedded in the Markov parameter sequence. Since Markov
parameter sequence is simply the pulse response of the system,
they must be unique for a given system.

Using the definition of Markov parameters, the equation
(16) can be rewritten as:

y(k) =
k∑
j=0

Yj u(k − j) (19)

From this equation it can be seen that the contribution to
the output at time step k by the input applied at time step

k and at the previous time steps are weighted by the pulse
response sequence. For this reason the pulse response sequence
is also known as the weighting sequence and this input-output
description is called the weighting sequence description. If the
system is asymptotically stable, the summation in equation
(19) can have a finite approximation because in this case the
weighting sequence may be truncated after a finite number of
time steps.

The weighting sequence uses the pulse response sequence
to describe the input-output relationship instead of using the
state description. It does not require a state equation as an
intermediate step to compute outputs from given inputs. The
advantage of the weighting sequence is that the dimension of
Yk is determined by the number of inputs and outputs only,
regardless of the number of independent coordinates in the
state equation for the state-space description.

The input-output description of a system describes only
the relationship between the input and the output under the
assumption that the initial condition is zero or that the system
is in the condition of a steady state. This description does not
reveal the behavior inside the system, such as the interaction
between the physical parameters. Consequently, the input-
output description may not characterize a system completely.
In practice, one may be interested in only the system modal pa-
rameters including frequencies, dampings and modes shapes.
In these cases, steady-state tests provide enough informations
for a test engineer to extract the modal parameters from the
input-output description. A steady-state test can be done by
first allowing the transient response to decay.

C. State-Space Observer Model
A state-space model for a linear system describe the system

input and output via a the state vector z(k). However the state
vector is, in general, not accessible for direct measurement. A
state estimator G, also known as an observer, can be used to
provide an estimate of the system state from input and output
measurements. Introducing the state estimator the equations
of motions and the output equations of the system can be
rewritten as follows:

z(k + 1) = Ā z(k) + B̄ v(k) (20)

y(k) = C z(k) + D u(k) (21)

where:
v(k) =

[
u(k)
y(k)

]
(22)

The state matrix Ā and the influence matrix B̄ can be
computed using the observer matrix G in this way:

Ā = A + G C (23)

B̄ =
[

B + G D −G
]

(24)

The equations (20) and (21) constitute a discrete-time state-
space observer model of a dynamical system. These equations
are identical in form to the equations (10) and (11) but the
eigenvalues of Ā are moved by a consequence of the additional
term G C and the number of columns in B̄ is increased
relative to those of B by the number of outputs m. Because
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the matrix G can be arbitrarily chosen, Ā may be made as
asymptotically stable as desired.

It can be showed that the the matrix G can be interpreted in
terms of an observer. By using this observer matrix the system
discrete-time state-space model can be written in terms of the
observer state vector ẑ(k) and the estimated output ŷ(k) as
follows:

ẑ(k + 1) = Ā ẑ(k) + B̄ v(k) (25)

ŷ(k) = C ẑ(k) + D u(k) (26)

where Ā and v(k) are identical to those defined in the
equations (22) and (23). Defining the state estimation error in
this way:

e(k) = z(k)− ẑ(k) (27)

The equations governing the estimation error can be written
as:

e(k + 1) = Ā e(k) (28)

If Ā is asymptotically stable, the for large k the estimated
state ẑ(k) tends to the true state z(k). Theoretically, one
would choose the gain matrix G to make the state estimation
error diminish as quickly as possible. In the presence of
process and measurements noises, under ideal conditions, the
quickest observer is the Kalman filter. The observer equation
is necessary for a system which has uncertainties and which
contains output noises and/or has unknown initial conditions.

D. Observer Markov Parameters
Since the equations (20) and (21) are similar to the equa-

tions (10) and (11), a parameter sequence equivalent to that
in the equations (18) can be defined as follows:

Ȳ0 = D , Ȳ1 = C̄ B̄ , Ȳ2 = C̄ Ā B̄ , . . .
. . . , Ȳk = C̄ Āk−1 B̄ (29)

The constant matrices in this sequence are defined as
observer Markov parameters. The generic matrix Ȳk of the
observer Markov parameter sequence can be rewritten as
follows:

Ȳk =
[

Ȳ(1)
k −Ȳ(2)

k

]
(30)

where Ȳ(1)
k and Ȳ(2

k are defined as:

Ȳ(1)
k = C (A + G C)k−1 (B + G D) (31)

Ȳ(1)
k = C (A + G C)k−1 G (32)

The observer Markov parameters can be used as the basis
for computing system Markov parameters. Indeed, it is clear
from the equations (29) and (30) that the matrices A, B, C,
D and G are embedded in the observer Markov parameter
sequence.

The extra freedom inherent in the observer Markov pa-
rameter can be exploited to develop various identification
algorithms. Consider the case where G corresponds to a dead-
beat observer gain. The observer Markov parameters become
identically zero after a finite number of terms. The matrix
G thus chosen become optimal in the sense that the number
of computed Markov parameters is the minimum number
needed to describe the system input-output relationship. For

lightly damped structures, this means that the system can be
by a small number of observer Markov parameters instead
of an otherwise large number of the usual system Markov
parameters. For this reason, they are the natural parameters to
be identified to characterize the system of interest.

Solving the equations (25) and (26) with zero initial con-
ditions in terms of the previous inputs and outputs yields:

x̂(k) =
k∑
j=1

Āj−1 B̄ v(k − j) (33)

ŷ(k) = C
k∑
j=1

Āj−1 B̄ v(k − j) + D u(k) (34)

Using the definition of the observer Markov parameter,
equation (34) can be rewritten as:

ŷ(k) =
p∑
j=1

Ȳj v(k − j) + D u(k) (35)

provided that Ȳk can be neglected for k > p. This is
equivalent to making Ā = A + G C sufficiently stable with
a proper choice of G such that Āp can be neglected. In
this case, the estimated output ŷ(k) closely approaches the
measured output y(k) for k > 0 because the estimation error
ε(k) approaches zero.

Equation (35) is commonly called the linear difference
model for multi-input/multi-output, linear, time-invariant sys-
tems. This is also often referred to as the ARX model, where
AR refers to the AutoRegressive part, related to output data,
and X refers to the eXogeneous part, related to input data.
This form is commonly used in developing recursive system
identification techniques.

The ARX model is also an input-output description of
a system similar to the weighting sequence description ex-
pressed with the equation (19). The ARX model describe only
the relationship between the input and the output under the
assumption that the initial condition is zero or that the system
is in the condition of a steady state. If this assumption is not
satisfied, the ARX model is not valid. In practice, if the test
for direct input and output measurements is sufficiently long
to allow the transient response to decay, then the error due to
a nonzero initial condition becomes negligible.

E. Computation of Markov Parameters
Now consider the equation (11) and (12). Assuming zero

initial conditions, the set of these equations for a sequence
different time k = 0 , 1 , . . . , l− 1 can be grouped in a matrix
form to yield:

y = Y U (36)

where:

Y =
[

Y0 Y1 Y2 . . . Yl−1

]
(37)

y =
[

y(0) y(1) y(2) . . . y(l − 1)
]

(38)

U =


u(0) u(1) . . . u(l − 1)

0 u(0) . . . u(l − 2)
...

...
. . .

...
0 0 . . . u(0)

 (39)
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Equation (36) is a matrix representation of the relationship
between the input and output time histories. The matrix y is
a [m, l] output data matrix, where m is the number of the
outputs and l is the number data samples. The matrix Y is
a [m, r l] matrix which contains all the Markov parameters
to be determined. The matrix U is an [r l, l] block upper
triangular input matrix. It is square in the case of a single
input system, and otherwise ha more rows than columns.
Inspection of equation (36) indicates that there are [m, r l]
unknowns in the Markov parameters matrix but only [m, l]
equations. For the case where r > 1 the solution for Y is
not unique. However, it is known that for a finite-dimensional
linear system, Y must be unique. The matrix Y can only be
uniquely determined from this set of equations for r = 1.
Even in this case, if the input has zero initial value, or the
input signals are not rich enough in frequency content, or l is
too large, the matrix U become ill-conditioned and its inverse
cannot be accurately computed.

Consider the case where A is asymptotically stable so that,
for sufficient large p, Ap ' O. Equation (36) can the be
approximated by:

y = Ŷ Û (40)

where:

Ŷ =
[

Y0 Y1 Y2 . . . Yp

]
(41)

Û =


u(0) u(1) . . . u(p) . . . u(l − 1)

0 u(0) . . . u(p− 1) . . . u(l − 2)
...

...
. . .

... . . .
...

0 0 . . . u(0) . . . u(l − p− 1)


(42)

Equation (40) indicate that there are more equations ml
than unknowns mr (p+ 1), provided that the data length l is
chosen greater than r (p+ 1). One can conclude that the first
p Markov parameters approximately satisfies the following
equation:

Ŷ = y Û† (43)

The approximation error decreases as p increases.
Unfortunately, for lightly damped systems and structures,

the integer p and thus the l required to make the approximation
in equation (40) valid becomes impractically large in the sense
that the size of the matrix Û is too large to solve for its pseudo-
inverse Û† numerically. There is a method to artificially in-
crease the damping of the system in order to allow the solution
of equation (40) for the Markov parameters. The method is to
introduce an observer matrix G to make the state-matrix Ā
as stable as desired. In this way one get the equations (20),
(21) and, assuming zero initial conditions, the set of these
equations for a sequence different time k = 0 , 1 , . . . , l − 1
can be grouped in a matrix form to yield:

y = Ȳ V (44)

where:

Ȳ =
[

Ȳ0 Ȳ1 Ȳ2 . . . Ȳl−1

]
(45)

V =


u(0) u(1) . . . u(l − 1)

0 v(0) . . . v(l − 2)
...

...
. . .

...
0 0 . . . v(0)

 (46)

Since the matrix G can be arbitrarily chosen, the eigen-
values of the state-matrix Ā may be arbitrarily assigned.
Therefore for sufficiently large p, we have Āp ' O. Equation
(44) can be approximated by:

y = ˆ̄Y V̂ (47)

where:
ˆ̄Y =

[
Ȳ0 Ȳ1 Ȳ2 . . . Ȳp

]
(48)

V̂ =


u(0) u(1) . . . u(p) . . . u(l − 1)

0 v(0) . . . v(p− 1) . . . v(l − 2)
...

...
. . .

... . . .
...

0 0 . . . v(0) . . . v(l − p− 1)


(49)

From the equation (47) one can conclude that the first
p Markov parameters approximately satisfies the following
equation:

ˆ̄Y = y V̂† (50)

Even in this case, the approximation error decreases as p
increases.

Note that the observer Markov parameters thus identified
may not necessarily appear to be asymptotically decaynig
during the first p− 1 steps. To solve for ˆ̄Y uniquely, all rows
of V̂ must be linearly independent. Furthermore, to minimize
any numerical error due to the computation of the pseudo-
inverse, the rows of V̂ should be chosen as independently as
possible. As a result, the maximum number of p is the number
that maximizes the number (r +m) p+ r of the independent
rows of V̂. The maximum p means the upper bound of the
order of the deadbeat observer. It is possible to proof that the
lower bound for the order of the observer is the minimum p
such that mp ≥ n, where m is the number of the outputs and
n is the order of the system.

The Markov Parameters include the system Markov param-
eters Yk and the observer gain Markov parameters Y0

k. The
system Markov parameters are used to compute the system
matrices A, B, C and D whereas the observer gain Markov
parameters are used to determine the observer gain matrix G.

It can be showed that to recover the system Markov pa-
rameters Yk from the observer Markov parameters Ȳk the
following relations hold:

D = Y0 = Ȳ0

Yk = Ȳ(1)
k −

k∑
i=1

Ȳ(2)
i Yk−i , k = 1 , 2 , . . . , p

Yk = −
p∑
i=1

Ȳ(2)
i Yk−i , k = p , p+ 1 , . . .

(51)
These equations show that for k > p the system Markov

parameters are a linear combination of their p past system
Markov parameters or, in other words, it is possible to identify
only p independent system Markov parameters starting from
the observer Markov parameters.
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F. Observer Gain Markov Parameters
The observer gain Markov parameters Y0

k are defined as:

Y0
1 = C G , Y0

2 = C A G , . . . , Y0
k = C Ak−1 G (52)

It can be showed that to recover the observer gain Markov
parameters Y0

k from the observer Markov parameters Ȳk the
following relations hold:

Y0
1 = C G = Ȳ(2)

1

Y0
k = Ȳ(2)

k −
k−1∑
i=1

Ȳ(2)
i Y0

k−i , k = 2 , . . . , p

Y0
k = −

p∑
i=1

Ȳ(2)
i Y0

k−i , k = p+ 1 , . . .

(53)

Conventional time-domain system identification methods
use only the system Markov parameters Yk to determine A,
B, C and D. Consider the combined system and observer gain
Markov parameters:

Γk =
[

Yk Y0
k

]
(54)

In this paper the the combined system and observer gain
Markov parameters Γk are used to identify the matrices A,[

B G
]
, C and D. There are several advantages for this

approach. First, the observer gain G is obtained directly and it
is possible to proof that it is related to the steady-state Kalman
filter gain K in this way:

K = −G (55)

Second, the number of independent Markov parameters
has been compressed by using the observer. This allows to
drastically reduce the computational effort in the identification
algorithm. Third, one can identify the number of independent
system Markov parameters from a single set of data for lightly
damped systems with multiple inputs and multiple outputs.

G. ERA/OKID Identification Method
ERA stands for Eigensystem Realization Algorithm and

it is a time-domain state-space realization method originally
developed by Ho and Kalman. OKID means Observer/Kalman
Filter Identification and it is a numerical procedure based on
ERA developed by Juang and Pahn.

The ERA/OKID identification method is a time-domain
identification method which compute a minimum realization
of system and the observer gain matrix starting from the
combined system and observer gain Markov parameters Γk. A
realization is a triplet of matrices {A ,B ,C} that satisfies the
discrete-time state-space equations (11) and (12). Obviously,
the same system has an infinite set of realizations which
will predict the identical response for any particular input.
Minimum realization means a model the smallest state space
dimensions among all the realizable systems that have the
same input-output relations. All minimum realizations have
the same set of eigenvalues and eigenvectors, which are
the modal parameters of the system itself. Assume that the
state matrix A has a complete set of linearly independent
eigenvectors {φ1 , φ2 , . . . , φn} with corresponding eigenval-
ues {λ1 , λ2 , . . . , λn}:

A Φ = Φ Λ (56)

where Λ is the diagonal matrix of the eigenvalues and Φ
is the matrix of the eigenvectors. The realization {A ,B ,C}
can be transformed in the realization

{
Λ ,Φ−1 B ,C Φ

}
by

using the eigenvalues and eigenvectors matrices. The diagonal
matrix Λ contains the informations of modal damping rates
and damped natural frequencies. The matrix Φ−1 B defines the
initial modal amplitudes and the matrix C Φ the mode shapes
at the sensor points. All the modal parameters of a dynamic
system can thus be identified by the triplet

{
Λ ,Φ−1 B ,C Φ

}
.

Once having identified the combined system and observer
gain Markov parameters, the next step consist in forming the
generalized Hankel matrix H̄(k − 1):

H̄(k − 1) =


Γk Γk+1 . . . Γk+β−1

Γk+1 Γk+2 . . . Γk+β

...
...

. . .
...

Γk+α−1 Γk+α . . . Γk+α+β−2

 (57)

for the case k = 1 one get:

H̄(0) =


Γ1 Γ2 . . . Γβ
Γ2 Γ3 . . . Γβ+1

...
...

. . .
...

Γα Γα+1 . . . Γα+β−1

 (58)

Decomposing the matrix H̄(0) using singular value decom-
position leads to:

H̄(0) = R̄n Σ̄n S̄Tn (59)

Now examining the singular value Σ̄n of the Hankel matrix
H̄(0) it is possible to determine the order of the system. In
order to compute a minimum order realization of the system{

Â , B̂ , Ĉ
}

, it is necessary to construct a shifted Hankel
matrix H̄(1):

H̄(1) =


Γ2 Γ3 . . . Γβ+1

Γ3 Γ4 . . . Γβ+2

...
...

. . .
...

Γα+1 Γα+2 . . . Γα+β

 (60)

Finally, the basic formulation of the minim order realization
for the ERA/OKID is:

Ĉ = ET
m R̄n Σ̄−1/2

n

Â = Σ̄−1/2
n R̄T

n H̄(1) S̄n Σ̄−1/2
n[

B̂ Ĝ
]

= Σ̄−1/2
n S̄Tn Er+m

(61)

where the matrix Er+m is defined as follows:

Er+m =


Ir+m
Or+m

...
Or+m

 (62)

Now one can easily find the eigensolution of the realized
state matrix Â :

Â Ψ̂ = Ψ̂ Λ̂ (63)

An inspection of the system eigensolution shows that while
the identified eigenvalues Λ̂ are equal to the true ones Λ, the
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identified eigenvectors Ψ̂ are different from the true one Φ be-
cause they are not expressed terms of a displacement-velocity
basis. It is easy to transform the identified eigenvectors Ψ̂ into
another equivalent eigenvectors matrix expressed in terms of
a displacement-velocity basis using the following formula:

Φ̂ =
[

Ĉ Ψ̂ Λ̂−c

Ĉ Ψ̂ Λ̂−c+1

]
(64)

where c = 0 for displacement sensing, c = 1 for velocity
sensing and c = 2 for acceleration sensing.

III. CASE-STUDY
Consider the following mechanical system:
Assume the following data:

m1 = 2.00 [kg] ,m2 = 3.00 [kg] (65)

r1 = 2.00 [N s/m] , r2 = 4.00 [N s/m] ,
r3 = 3.00 [N s/m] (66)

k1 = 20.00 [N/m] , k2 = 40.00 [N/m] ,
k3 = 30.00 [N/m] (67)

This system has n2 = 2 degrees of freedom. Suppose that
one is able to measure the m = 2 accelerations of the two
masses and the r = 1 force acting on the first mass. Consider
the following generalized displacement vector:

x(t) =
[
x1(t)
x2(t)

]
(68)

The system equations of motion are:

M ẍ(t) + R ẋ(t) + K x(t) = B2 u(t) (69)

where M, R and K are the mass, damping and stiffness
matrices, respectively. For this system, these matrices are:

M =
[
m1 0
0 m2

]
=
[

2.00 0
0 3.00

]
(70)

R =
[
r1 + r2 −r2

−r2 r2 + r3

]
=
[

6.00 −4.00
−4.00 7.00

]
(71)

K =
[
k1 + k2 −k2

−k2 k2 + k3

]
=
[

60.00 −40.00
−40.00 70.00

]
(72)

and the matrix B2 is defined as follows:

B2 =
[

1
0

]
(73)

The system output equations are:

y(t) = Ca ẍ(t) (74)

where the output influence matrix for acceleration Ca is an
identity matrix:

Ca =
[

1 0
0 1

]
(75)

If z(t) is the state vector of the system:

z(t) =
[

x(t)
ẋ(t)

]
=


x1(t)
x2(t)
ẋ1(t)
ẋ2(t)

 (76)

The continuous-time state-space model of the system is:

ż(t) = Ac z(t)+Bc u(t) (77)

y(t) = C z(t)+Du(t) (78)

where the matrices Ac, Bc, C and C can be obtained using
equations (6), (7), (8) and (9):

Ac =


0 0 1.00 0
0 0 0 1.00

−30.00 20.00 −3.00 2.00
13.33 −23.33 1.33 −2.33

 (79)

Bc =


0
0

0.50
0

 (80)

C =
[
−30.00 20.00 −3.00 2.00
13.33 −23.33 1.33 −2.33

]
(81)

D =
[

0.50
0

]
(82)

The discrete-time state-space model of the system is:

z(k + 1) = A z(k)+Bu(k) (83)

y(k) = C z(k)+Du(k) (84)

where the matrices A and B can be obtained using the
equations (13) and (14) with ∆t = 10−2:

A =


1.00 0.00 0.01 0.00
0.00 1.00 0.00 0.01
−0.29 0.19 0.97 0.02
0.13 −0.23 0.01 0.98

 (85)

B = 10−2


0.00
0.00
0.49
0.00

 (86)

The eigenvalues and eigenvectors of the discrete-time state
matrix A are:

λ =


0.98 + i 0.061
0.98− i 0.061
0.99 + i 0.031
0.99− i 0.031

 (87)

Λ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 (88)

φ1 =


0.041 + i 0.12
−0.027− i 0.079

−0.82
0.55

 , φ2 =


0.041− i 0.12
−0.027 + i 0.079

−0.82
0.55

 ,

φ3 =


−0.037− i 0.21
−0.037− i 0.21

0.67
0.67

 , φ4 =


−0.037 + i 0.21
−0.037 + i 0.21

0.67
0.67


(89)
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Φ =
[
φ1 φ2 φ3 φ4

]
(90)

Consider a time span T = 10 [s]. Using the definition (18) it
is possible to compute exactly the system Markov parameters.
This sequence is showed in figure (1). Assume that the input
force is a white noise as showed in figure (2). By a numerical
simulation it is possible to compute the displacements, veloc-
ities and accelerations of the two masses. Assume that the
measured outputs are the accelerations as showed in figure
(3). The application of equations (50) and (51) to the two
output measurements and to the input measurement allow us
to identify the sequence of Markov parameters as showed in
figure (4). Now it is possible to compute the observer gain
Markov parameters using equation (53) and to construct the
generalized Hankel matrices H̄(0) and H̄(1) by using the
equation (58) and (60). The singular values of the Hankel
matrix H̄(0) are showed in figure (4).

Fig. 1. Exact Markov Parameters

Fig. 2. Force

Fig. 3. Acceleration of Masses 1 and 2

Fig. 4. Identified Markov Parameters

Fig. 5. Singular Values

Now it is possible to compute a minimum realization of the
system

{
Â , B̂ , Ĉ

}
by using the ERA/OKID equations (61):

Â =


1.00 0.01 0.24 0.01
0.00 1.00 −0.02 −0.34
0.00 0.00 0.99 0.01
0.00 0.01 0.00 0.96

 (91)

B̂ = 10−2


0.05
−0.26
0.02
0.04

 (92)

Ĉ =
[
−8.97 4.34 1.14 0.73
−9.02 −4.27 1.09 −0.77

]
(93)

Consider the identified discrete-time state matrix Â. The
identified eigenvalues and eigenvector are:

λ̂ =


0.98 + i 0.061
0.98− i 0.061
0.99 + i 0.031
0.99− i 0.031

 (94)

Λ̂ =


λ̂1 0 0 0
0 λ̂2 0 0
0 0 λ̂3 0
0 0 0 λ̂4

 (95)
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ψ̂1 =


−0.99
0.06

0.02− i 0.12
i 0.01

 , ψ̂2 =


−0.99
0.06

0.02 + i 0.12
−i 0.01

 ,

ψ̂3 =


−0.09
0.98

−0.02− i 0.03
0.67− i 0.17

 , ψ̂4 =


−0.09
0.98

−0.02 + i 0.03
0.67 + i 0.17


(96)

Ψ̂ =
[
ψ̂1 ψ̂2 ψ̂3 ψ̂4

]
(97)

Finally one can recover the eigenvectors of the system in
terms of a displacement-velocity basis by using equations (64)
with c = 2:

φ̂1 =


0.041 + i 0.12
−0.027− i 0.079

−0.82
0.55

 , φ̂2 =


0.041− i 0.12
−0.027 + i 0.079

−0.82
0.55

 ,

φ̂3 =


−0.037− i 0.21
−0.037− i 0.21

0.67
0.67

 , φ̂4 =


−0.037 + i 0.21
−0.037 + i 0.21

0.67
0.67


(98)

Φ̂ =
[
φ̂1 φ̂2 φ̂3 φ̂4

]
(99)

Note that even if the identified matrix Â, B̂ and Ĉ are
different from the real ones A, B and C, they have the same
eigenvalues, eigenvectors and sequence of Markov parameters
as showed in figure (5).

Fig. 6. Singular Values

IV. CONCLUSION

A method for identifying parameters of mechanical linear
systems has been proposed. This procedure has been tested on
a light-damped mechanical linear apparatus. Numerical results
show a good agreement with real system parameters. Authors
think that this method can be used to describe mechanical
systems in order to obtain a model for performing parameters
identification of nonlinear force fields acting on the system
itself.
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