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Abstract- In this paper a new hyperbolic shear deformation 

theory is developed for the static flexure of thick isotropic beam, 

considering hyperbolic functions in terms of thickness co-ordinate 

associated with transverse shear deformation effect. Rotation of 

normal is taken as combined effect of shear slope and bending 

slope at the neutral axis. The most important feature of the theory 

is that the transverse shear stress can be obtained directly from the 

constitutive relations satisfying the shear stress free surface 

conditions on the top and bottom of the beam. Hence the theory 

obviates the need of shear correction factor. Governing equations 

and boundary conditions of the theory are obtained using the 

principle of virtual work. Results obtained for static flexure of 

simply supported isotropic beam subjected to single sine load are 

compared with those of other refined theories and exact solution. 

 

Keywords: Shear deformation, thick beam, flexure, transverse 

shear stress. 

 
I. INTRODUCTION 

 
    Classical Euler-Bernoulli theory of beam (ETB) bending 

is based on hypothesis that the plane section which is 

perpendicular to the neutral axis before bending remains 

plane and perpendicular to the neutral axis after bending. 

The theory should not applied to deep beams since it 

disregards the effect of shear deformation.  

    Timoshenko [1] has developed first order shear 

deformation theory (FSDT) which is based on hypothesis 

that the plane section which is perpendicular to the neutral 

axis before bending remains plane but not necessarily 

perpendicular to the neutral axis after bending. In this theory 

the transverse shear strain distribution over the cross-section 

of the beam is assumed to be constant through the thickness 

and thus require shear correction factor. Cowper [2] has 

given refined expression for the shear correction factor for 

different cross-section of the beam. To remove the 

discrepancies in the ETB and FSDT higher order theories 

were developed for the static and vibration analyses of 

beams. Soler [3] developed the higher order theory for thick 

isotropic rectangular elastic beams using Legendre 

polynomials and Tsai and Soler [4] extended it to 

orthotropic beams. Levinson [5], Bickford [6], and Krishna 

Murty [7] presented parabolic shear deformation theories 

assuming a higher order variation of inplane displacement in 

terms of thickness coordinates. Irretier [8] and Heyliger and 

Reddy [9] presented higher order shear deformation theories 

for the static and free vibration analysis of shear deformable 

rectangular beams. Stein [10] has developed refined shear 

deformation theories for thick beams including sinusoidal 

functions in terms of thickness coordinate in the 

displacement field. However, in this theory shear stress free 

boundary conditions are not satisfied at top and bottom 

surfaces of the beam. Comprehensive reviews of these 

theories have been given by Ghugal and Shimpi [11]. 

    Ghugal and Sharma [12] have developed a variationally 

consistent refined hyperbolic shear deformation theory for 

flexure and free vibration of thick isotropic beam. Recently 

Ghugal and Nakhate [13] has developed trigonometric shear 

deformation theory for the static flexure of thick isotropic 

beam and obtained the general solution of thick isotropic 

beam with various support and loading conditions. 

    In this paper a variationally consistent new hyperbolic 

shear deformation theory for beam is developed. In this 

theory rotation of normal is taken as combined effect of 

shear slope and bending slope at the neutral axis. The theory 

is applied to simply supported isotropic beam of rectangular 

cross-section for static flexure analysis. A close form 

solution for simply supported beam subjected to single sine 

load is obtained. The results obtained are compared with 

those of elementary, refined and exact beam theories 

available in the literature.  

 

Beam under Consideration 

    The beam under consideration occupies the region: 

              
0

2 2 2 2

b b h h
x L ; y ; z≤ ≤ − ≤ ≤ − ≤ ≤

            (1)                                             

 

where x, y, z are Cartesian coordinates, L is the length of 

beam, b is the width and h is the total depth of beam.  The 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 5, 2011 113



beam is subjected to transverse load of intensity ( )q x  per 

unit length of the beam.  

 

Assumptions Made in Theoretical Formulation 

 

1. The in-plane displacement u in x direction consists of 

two parts:  

a) A displacement component analogous to 

displacement in elementary beam theory of    

bending;  

b) Displacement component due to shear deformation 

which is assumed to be hyperbolic in nature with 

respect to thickness coordinate. 

2. The transverse displacement w in z direction is assumed 

to be a function of x coordinate. 

3. One dimensional constitutive law is used. 

4. The beam is subjected to lateral load only.    

 

The Displacement Field 

   

  Based on the before mentioned assumptions, the 

displacement field of the present hyperbolic shear 

deformation theory is given as below: 

 

            

( )

( )

dw dw
u z f z

dx dx

w w x

φ = − + + 
 

=

                              (2) 

where 

   ( ) 1
cosh sinh

2

z z
f z h

h h

    = −    
    

                                                       

 

here u and w are the axial and transverse displacements of 

the beam centre line. The hyperbolic function is assigned 

according to the shearing stress distribution through the 

thickness of the beam. The φ
 
represents the rotation of the 

cross-section of the beam at neutral axis which is unknown 

function to be determined. The normal and transverse shear 

strains are obtained from linear theory of elasticity. 

 

              

,x zx

u u w

x z x
ε γ

∂ ∂ ∂
= = +
∂ ∂ ∂

                                   (3)   

                       

One dimensional law is used to obtained normal bending 

and transverse shear stresses. 

 

              

,x x zx zxE Gσ ε τ γ= =                                        (4)                       

 

Using the Eqns. (3) and (4) for strains, stresses and principle 

of virtual work, variationally consistent differential 

equations for the beam under consideration are obtained. 

The principle of virtual work when applied to the beam 

leads to: 

( ) ( )
2

0 02

0
h/ L L

x x zx zx
-h/

σ δ + τ δ dx dz q x wdx=ε γ δ−∫ ∫ ∫              (5)                

 

where the symbol δ  denotes the variational operator . 

Integrating Eqn. (5) by parts and collecting the coefficients 

of andwδ δφ  the governing equations obtained are as 

follows:       

 
4 2 3

1 2 34 2 3

d w d w d d
K K K q

dxdx dx dx

φ φ 
− + + = 

 
                          (6)                         

3 2

3 2 43 2
0

d w dw d
K K K

dxdx dx

φ
φ − + + − = 

 
                          (7) 

 

The associated boundary conditions obtained are of the 

following form at x = 0 and x = L: 

 
3 2

1 2 33 2
0

d w dw d
K K K

dxdx dx

φ
φ − + + = 

 
  or w is prescribed  (8)                                                      

2

1 32
0

d w d
K K

dxdx

φ
+ =                         or

dw

dx
 is prescribed   (9)                                                                   

2

3 42
0

d w d
K K

dxdx

φ
+ =                      or φ  is prescribed   (10)                    

                                                                       

Thus, the variationally consistent governing differential 

equations and boundary conditions are obtained. The 

constants appear in the governing equations and boundary 

conditions are the stiffness given in Appendix. 

 

II. ILLUSTRATIVE EXAMPLES 
 

A simply supported uniform beam of rectangular cross-

section occupying the region given by expression (1) is 

considered for detailed numerical study.  

 

Example 1: The beam is subjected to single sine load 

( ) ( )0 sin /q x q x Lπ=  acting in the z –direction, where 

0q is the intensity of load.  

 

Example 2: The beam is subjected to uniformly distributed 

load ( ) ( )
1

sin /
m

m

m

q x q m x Lπ
=∞

=

= ∑  acting in the z –direction, 

where ( )04 /mq q mπ=  is the coefficient of single Fourier 

expansion of loads. 

 
Example 3: The beam is subjected to linearly varying load 

( ) ( )
1

sin /
m

m

m

q x q m x Lπ
=∞

=

= ∑  acting in the z –direction, 
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where ( ) ( )02 / cosmq q m mπ π= −  is the coefficient of 

single Fourier expansion of loads. 

 

 

The material properties of the beam are as follows: 

 

210 0.3E GPa µ= =
 

 

where E is the Young’s modulus and µ  is the Poisson’s 

ratio of the beam material.  

   

The Solution Scheme 

 

The following is the solution form assumed for ( )w x  and 

( )xφ which satisfies the boundary conditions exactly: 

 

         

( ) ( )sin ; cosm m

m x m x
w x w x

L L

π π
φ φ= =            (11) 

 

where andm mw φ  are the unknown coefficients. For single 

sine load m = 1. Substituting this form of solution and the 

load ( )q x into governing equations, yields the two algebraic 

simultaneous equations from which the unknowns  

andm mw φ  can be readily determined. 

 

III. NUMERICAL RESULTS 

 

The results obtained for displacements and stresses are 

presented in the following non-dimensional form 

 
3

4

0 00

0

10
; ; ;

; / .

x
x

zx
zx

bE bu E w h
u w

q h qq L

b
S L h

q

σ
σ

τ
τ

= = =

= =  

The percentage error in the results obtained by models of 

other researchers with respect to the corresponding results 

obtained by the theory of elasticity is calculated as follows: 

 

valuebya particularmodel

valuebyexact solution
%error = ×100

valuebyexact solution

−

 
 

 

 

 

 

 

 

 

 

Table 1 Comparison of axial displacement u at (x = 0, z = ± 

h / 2), for isotropic beam subjected to single sine load 

 

S Theory Model u  % Error 

4 Present NHySDT 12.704 3.31 

 Reddy [9] HSDT 12.715 3.40 

 Timoshenko [1]  FSDT 12.385 0.72 

 Bernoulli-Euler  ETB 12.385 0.72 

 Ghugal  [14] Exact 12.297 0.00 

10 Present NHySDT 194.31 0.70 

 Reddy [9] HSDT 194.34 0.72 

 Timoshenko [1]  FSDT 193.51 0.29 

 Bernoulli-Euler  ETB 193.51 0.29 

 Ghugal  [14] Exact 192.95 0.00 

 

-14.0 -7.0 0.0 7.0 14.0
u

-0.50

-0.25

0.00

0.25

0.50

z / h

Present theory [NHySDT]

Reddy [HSDT]

Timoshenko [FSDT]

Bernoulli-Euler [ETB]

 
 

Fig. 1. Variation of axial displacement through the thickness 

of isotropic beam subjected to single sine load at (x = 0, z) 

for aspect ratio 4 

 

Table 2 Comparison of transverse displacement w at (x = L 

/ 2, z = 0), for isotropic beam subjected to single sine load 

 

S Theory Model w  % Error 

4 Present NHySDT 1.427 1.13 

 Reddy [9] HSDT 1.429 1.28 

 Timoshenko 1]  FSDT 1.430 1.35 

 Bernoulli-Euler  ETB 1.232 -12.68 

 Ghugal  [14] Exact 1.411 0.00 

10 Present NHySDT 1.263 0.15 

 Reddy [9] HSDT 1.264 0.24 

 Timoshenko[1]  FSDT 1.264 0.24 

 Bernoulli-Euler  ETB 1.232 -2.30 

 Ghugal  [14] Exact 1.261 0.00 
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Table 3 Comparison of axial bending stress σ x at (x = L/2, z 

= ±h/2) for isotropic beam subjected to single sine load 

 

S Theory Model σ x  % Error 

4 Present NHySDT 9.977 0.19 

 Reddy [9] HSDT 9.986 0.28 

 Timoshenko[1]  FSDT 9.727 -0.31 

 Bernoulli-Euler  ETB 9.727 -0.31 

 Ghugal  [14] Exact 9.958 0.00 

10 Present NHySDT 61.04 0.21 

 Reddy [9] HSDT 61.05 0.22 

 Timoshenko[1]  FSDT 60.79 -0.20 

 Bernoulli-Euler  ETB 60.79 -0.20 

 Ghugal  [14] Exact 60.91 0.00 

 

-12.0 -6.0 0.0 6.0 12.0

σx

-0.50

-0.25

0.00

0.25

0.50

z / h

Present theory [NHySDT]

Reddy [HSDT]

Timoshenko [FSDT]

Bernoulli-Euler [ETB]

 
 

Fig. 2. Variation of axial stress through the thickness of 

isotropic beam subjected to single sine load at (x = L/2, z) 

for aspect ratio 4. 

   

Table 4 Comparison transverse shear stress 
zxτ at (x = 0, z = 

0) for isotropic beam subjected to single sine load via 

constitutive relation 

 

S Theory Model 
CR

zxτ  % Error 

4 Present NHySDT 1.894 -0.32 

 Reddy [9] HSDT 1.906 0.32 

 Timoshenko[1]  FSDT 1.270 -33.0 

 Bernoulli-Euler  ETB --- --- 

 Ghugal  [14] Exact 1.900 0.00 

10 Present NHySDT 4.745 -0.54 

 Reddy [9] HSDT 4.773 0.04 

 Timoshenko[1]  FSDT 3.183 -33.3 

 Bernoulli-Euler  ETB --- --- 

 Ghugal  [14] Exact 4.771 0.00 

 

 

 

0.00 0.50 1.00 1.50 2.00

τzx

-0.50

-0.25

0.00

0.25

0.50

z / h

Present theory [NHySDT]

Reddy [HSDT]

Timoshenko [FSDT]

 
 

Fig. 3. Variation of transverse shear stress through the 

thickness of isotropic beam subjected to single sine load at 

(x = 0, z) for aspect ratio 4 via constitutive relation. 

 

Table 5 Comparison transverse shear stress 
zxτ at (x = 0, z = 

0) for isotropic beam subjected to single sine load via 

equation of equilibrium 

S Theory Model 
EE

zxτ  % Error 

4 Present NHySDT 1.896 -0.21 

 Reddy [9] HSDT 1.895 -0.21 

 Timoshenko[1]  FSDT 1.910 0.52 

 Bernoulli-Euler  ETB 1.910 0.52 

 Ghugal  [14] Exact 1.900 0.00 

10 Present NHySDT 4.769 -0.04 

 Reddy [9] HSDT 4.769 -0.04 

 Timoshenko[1]  FSDT 4.769 -0.04 

 Bernoulli-Euler  ETB 4.769 -0.04 

 Ghugal  [14] Exact 4.771 0.00 

0.00 0.50 1.00 1.50 2.00

τzx

-0.50

-0.25

0.00

0.25

0.50

z / h

Present theory [NHySDT]

Reddy [HSDT]

Timoshenko [FSDT]

Bernoulli-Euler [ETB]

 

Fig. 4. Variation of transverse shear stress through the 

thickness of isotropic beam subjected to single sine load at 

(x = 0, z) for aspect ratio 4 via equation of equilibrium.     
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Table 6 Comparison of axial displacement u at (x = 0, z = ± 

h / 2), for isotropic beam subjected to uniformly distributed 

load 

S Theory Model u  %Error 

4 Present NHySDT 16.486 4.341 

 Reddy [9] HSDT 16.504 4.455 

 Timoshenko [1]  FSDT 16.000 1.265 

 Bernoulli-Euler  ETB 16.000 1.265 

 
Timoshenko and 

Goodier  [15] 
Exact 15.800 0.000 

10 Present NHySDT 251.23 0.693 

 Reddy [9] HSDT 251.27 0.709 

 Timoshenko [1]  FSDT 250.00 0.200 

 Bernoulli-Euler  ETB 250.00 0.200 

 
Timoshenko and 

Goodier  [15] 
Exact 249.50 0.000 

 

-20 -10 0 10 20

u

-0.50

-0.25

0.00

0.25

0.50

z / h

Present Theory [NHySDT]

Reddy [HSDT]

Timoshenko [FSDT]

Bernoulli-Euler [ETB]

 
 

Fig. 5. Variation of axial displacement through the thickness 

of isotropic beam subjected to uniformly distributed load at 

(x = 0, z) for aspect ratio 4 

 

Table 8 Comparison of axial bending stress σ
x
at (x = L/2, z 

= ±h/2) for isotropic beam subjected to uniformly 

distributed load 

 

S Theory Model σ
x  %Error 

4 Present NHySDT 12.254 0.442 

 Reddy [9] HSDT 12.263 0.516 

 Timoshenko [1]  FSDT 12.000 -1.639 

 Bernoulli-Euler  ETB 12.000 -1.639 

 Timoshenko and 

Goodier  [15] 
Exact 12.200 0.00 

10 Present NHySDT 75.259 0.078 

 Reddy [9] HSDT 75.268 0.090 

 Timoshenko [1]  FSDT 75.000 -0.265 

 Bernoulli-Euler  ETB 75.000 -0.265 

 Timoshenko and 

Goodier  [15] 
Exact 75.200 0.000 

 

Table 7 Comparison of transverse displacement w at 

(x=L/2, z=0), for isotropic beam subjected to uniformly 

distributed load 

S Theory Model w  %Error 

4 Present NHySDT 1.804 1.064 

 Reddy [9] HSDT 1.806 1.176 

 Timoshenko [1]  FSDT 1.806 1.176 

 Bernoulli-Euler  ETB 1.563 -12.4 

 
Timoshenko and 

Goodier  [15] 
Exact 1.785 0.000 

10 Present NHySDT 1.601 0.187 

 Reddy [9] HSDT 1.602 0.250 

 Timoshenko [1]  FSDT 1.602 0.250 

 Bernoulli-Euler  ETB 1.563 -2.19 

 
Timoshenko and 

Goodier  [15] 
Exact 1.598 0.000 

 

-14 -7 0 7 14

σx

-0.50

-0.25

0.00
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Timoshenko [FSDT]

Bernoulli-Euler [ETB]

 
 

Fig. 6. Variation of axial stress through the thickness of 

isotropic beam subjected to uniformly distributed load at (x 

= L/2, z) for aspect ratio 4 

 

Table 9 Comparison transverse shear stress 
zxτ at (x = 0, z = 

0) for isotropic beam subjected to uniformly distributed load 

via constitutive relation 

 

S Theory Model 
CR

zxτ  %Error 

4 Present NHySDT 2.882 -3.933 

 Reddy [9] HSDT 2.908 -3.066 

 Timoshenko [1]  FSDT 1.969 -34.36 

 Bernoulli-Euler  ETB --- --- 

 
Timoshenko and 

Goodier  [15] 
Exact 3.000 0.00 

10 Present NHySDT 7.312 -2.506 

 Reddy [9] HSDT 7.361 -1.853 

 Timoshenko [1]  FSDT 4.922 -34.37 

 Bernoulli-Euler  ETB --- --- 

 
Timoshenko and 

Goodier  [15] 
Exact 7.500 0.00 
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Fig. 7. Variation of transverse shear stress through the 

thickness of isotropic beam subjected to uniformly 

distributed load at (x = 0, z) for aspect ratio 4 via 

constitutive relation. 

 

Table 10 Comparison transverse shear stress 
zxτ at (x = 0, z 

= 0) for isotropic beam subjected to uniformly distributed 

load via equation of equilibrium 

S Theory Model 
EE

zxτ  %Error 

4 Present NHySDT 2.791 -6.966 

 Reddy [9] HSDT 2.795 -6.833 

 Timoshenko [1]  FSDT 2.953 -1.566 

 Bernoulli-Euler  ETB 2.953 -1.566 

 
Timoshenko and 

Goodier  [15] 
Exact 3.000 0.00 

10 Present NHySDT 7.299 -2.680 

 Reddy [9] HSDT 7.304 -2.613 

 Timoshenko [1]  FSDT 7.383 -1.560 

 Bernoulli-Euler  ETB 7.383 -1.560 

 
Timoshenko and 

Goodier  [15] 
Exact 7.500 0.00 

0.0 1.0 2.0 3.0

τzx

-0.50

-0.25

0.00

0.25

0.50

z / h
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Reddy [HSDT]

Timoshenko [FSDT]

Bernoulli-Euler [ETB]

 
 

Fig. 8. Variation of transverse shear stress through the 

thickness of isotropic beam subjected to uniformly 

distributed load at (x = 0, z) for aspect ratio 4 via equation of 

equilibrium. 

Table 11 Comparison of axial displacement u at (x=0, 

z=±h/2), for isotropic beam subjected to linearly varying 

load 

S Theory Model u  %Error 

4 Present NHySDT 8.243 4.341 

 Reddy [9] HSDT 8.252 4.455 

 Timoshenko [1]  FSDT 8.000 1.265 

 Bernoulli-Euler  ETB 8.000 1.265 

 
Timoshenko and 

Goodier  [15] 
Exact 7.900 0.000 

10 Present NHySDT 125.61 0.693 

 Reddy [9] HSDT 125.63 0.709 

 Timoshenko [1]  FSDT 125.00 0.200 

 Bernoulli-Euler  ETB 125.00 0.200 

 
Timoshenko and 

Goodier  [15] 
Exact 124.75 0.000 

-9.0 -6.0 -3.0 0.0 3.0 6.0 9.0

u

-0.50

-0.25

0.00

0.25

0.50

z / h

Present Theory [NHySDT]

Reddy [HSDT]

Timoshenko [FSDT]

Bernoulli-Euler [ETB]

 

Fig. 9. Variation of axial displacement through the thickness 

of isotropic beam subjected to linearly varying load at (x=0, 

z) for aspect ratio 4 

 

Table 12 Comparison of transverse displacement w at 

(x=L/2, z=0), for isotropic beam subjected to linearly 

varying load 

S Theory Model w  %Error 

4 Present NHySDT 0.902 1.007 

 Reddy [9] HSDT 0.903 1.119 

 Timoshenko [1]  FSDT 0.903 1.119 

 Bernoulli-Euler  ETB 0.782 -12.4 

 
Timoshenko and 

Goodier  [15] 
Exact 0.893 0.000 

10 Present NHySDT 0.800 0.125 

 Reddy [9] HSDT 0.801 0.250 

 Timoshenko [1]  FSDT 0.801 0.250 

 Bernoulli-Euler  ETB 0.782 -2.19 

 
Timoshenko and 

Goodier  [15] 
Exact 0.799 0.000 
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Table 13 Comparison of axial bending stress σ
x
at (x = L/2, 

z = ±h/2) for isotropic beam subjected to linearly varying 

load 

S Theory Model σ
x  %Error 

4 Present NHySDT 6.127 0.442 

 Reddy [9] HSDT 6.131 0.516 

 Timoshenko [1]  FSDT 6.000 -1.639 

 Bernoulli-Euler  ETB 6.000 -1.639 

 Timoshenko and 

Goodier  [15] 
Exact 6.100 0.00 

10 Present NHySDT 37.630 0.078 

 Reddy [9] HSDT 37.634 0.090 

 Timoshenko [1]  FSDT 37.500 -0.265 

 Bernoulli-Euler  ETB 37.500 -0.265 

 Timoshenko and 

Goodier  [15] 
Exact 37.600 0.000 

-7.0 -3.5 0.0 3.5 7.0

σx

-0.50

-0.25

0.00

0.25
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z / h
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Timoshenko [FSDT]

Bernoulli-Euler [ETB]

 
 

Fig. 10. Variation of axial stress through the thickness of 

isotropic beam subjected to linearly varying load at (x = L/2, 

z) for aspect ratio 4 

 

Table 14 Comparison transverse shear stress zxτ at (x = 0, z 

= 0) for isotropic beam subjected to linearly varying load 

via constitutive relation 

S Theory Model 
CR

zxτ  %Error 

4 Present NHySDT 1.441 -3.933 

 Reddy [9] HSDT 1.454 -3.066 

 Timoshenko [1]  FSDT 0.985 -34.36 

 Bernoulli-Euler  ETB --- --- 

 
Timoshenko and 

Goodier  [15] 
Exact 1.500 0.00 

10 Present NHySDT 3.656 -2.506 

 Reddy [9] HSDT 3.680 -1.853 

 Timoshenko [1]  FSDT 2.461 -34.37 

 Bernoulli-Euler  ETB --- --- 

 
Timoshenko and 

Goodier  [15] 
Exact 3.750 0.00 

0.0 0.5 1.0 1.5

τzx
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Timoshenko [FSDT]

 
 

Fig. 11. Variation of transverse shear stress through the 

thickness of isotropic beam subjected to linearly varying 

load at (x = 0, z) for aspect ratio 4 via constitutive relation. 

 

Table 15 Comparison transverse shear stress zxτ at (x = 0, z 

= 0) for isotropic beam subjected to linearly varying load 

via equation of equilibrium 

 

S Theory Model 
EE

zxτ  %Error 

4 Present NHySDT 1.395 -6.966 

 Reddy [9] HSDT 1.397 -6.833 

 Timoshenko [1]  FSDT 1.476 -1.566 

 Bernoulli-Euler  ETB 1.476 -1.566 

 
Timoshenko and 

Goodier  [15] 
Exact 1.500 0.00 

10 Present NHySDT 3.649 -2.680 

 Reddy [9] HSDT 3.652 -2.613 

 Timoshenko [1]  FSDT 3.691 -1.560 

 Bernoulli-Euler  ETB 3.691 -1.560 

 
Timoshenko and 

Goodier  [15] 
Exact 3.750 0.00 

 

 

Discussion of Results 

 

    The comparison of maximum non-dimensional axial 

displacement for various aspect ratios is presented in Table 

1. The present theory overestimates the maximum value of 

axial displacement by 3.31 % and 0.70 % for aspect ratios 4 

and 10 respectively as compared to that of exact solution. 

The theory of Reddy (HSDT) overestimates the value of 

axial displacement by 3.4 % and 0.72 % for aspect ratios 4 

and 10 respectively. The theory of Timoshenko (FSDT) and 

ETB yields identical value for the axial displacement for all 

aspect ratios. The through thickness variation of axial 

displacement of isotropic beam subjected to single sine load 

is shown in Fig. 1.  
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Fig. 12. Variation of transverse shear stress through the 

thickness of isotropic beam subjected to linearly varying 

load at (x = 0, z) for aspect ratio 4 via equation of 

equilibrium. 

 

    The comparison of maximum transverse displacement for 

the aspect ratios 4 and 10 is presented in Table 2. The 

maximum central deflection predicted by present theory is 

in excellent agreement with the exact solution for all aspect 

ratios. The HSDT and FSDT overestimate the value of 

maximum transverse deflection by 1.13 % and 1.28 % for 

aspect ratio 4 respectively. The ETB underestimates the 

value of maximum transverse displacement by 12.68 % and 

2.30 % for aspect ratios 4 and 10 respectively due to neglect 

of transverse shear deformation.  

Table 3 shows comparison of non-dimensional normal 

bending stress for aspect ratios 4 and 10. The examination 

of Table 3 reveals that, the value of maximum normal 

bending stress obtained by present theory is in tune with the 

exact solution for all aspect ratios. Theory of Reddy 

overestimates the normal bending stress by 0.28 % and 0.22 

% for aspect ratios 4 and 10 respectively compared to those 

of exact values. The values of normal bending stress 

predicted by FSDT and ETB are identical for all aspect 

ratios. FSDT and ETB underestimate the value of normal 

bending stress by 0.31 % and 0.20 % for aspect ratios 4 and 

10 respectively as compared to exact value. Variation of 

axial stress through the thickness of beam subjected to 

single sine load for aspect ratio 4 is shown in Fig. 2. 

    The comparison of maximum non-dimensional transverse 

shear stress for aspect ratios 4 and 10 obtained by 

constitutive relation is presented in Table 4. The transverse 

shear stress satisfies the stress free boundary conditions on 

the top and bottom surfaces of the beam when obtained by 

constitutive relation. It may be noted that andzx zxτ τ  

obtained by constitutive relations are indicated 

by and
CR CR

zx zxτ τ . The maximum transverse shear obtained 

by present theory using constitutive relation is in excellent 

agreement with that of exact solution for the aspect ratios 4 

and 10. The maximum transverse shear stress obtained using 

constitutive relation by theory of Reddy is in close 

agreement with that of exact value for all aspect ratios. The 

FSDT yields lower value of transverse shear stress when 

obtained using constitutive relation. Variation of transverse 

shear stress through the thickness of beam subjected to 

single sine load for aspect ratio 4 obtained using constitutive 

relation is shown in Fig. 3. 

 

    The comparison of maximum non-dimensional transverse 

shear stress for aspect ratios 4 and 10 obtained by equation 

of equilibrium is presented in Table 5. Further it may be 

noted that andzx zxτ τ  obtained by equation of equilibrium 

is indicated by andEE EE

zx zxτ τ . 

    The maximum transverse shear obtained by present 

theory using equations of equilibrium is in excellent 

agreement with that of exact solution for the aspect ratios 4 

and 10. The present theory, HSDT, FSDT and ETB gives 

identical values of this stress for aspect ratio 10 when 

obtained using equation of equilibrium. Variation of 

transverse shear stress through the thickness of beam 

subjected to single sine load for aspect ratio 4 obtained 

using equation of equilibrium is shown in Fig. 4. 

 

    Comparison of displacements and stresses for the 

isotropic beams subjected to uniformly distributed load are 

shown in Table 6 through 10 and found in excellent 

agreement with those of exact solution. Through thickness 

variation of displacement and stresses for the isotropic beam 

subjected to uniformly distributed load for aspect ratio 4 are 

shown in Figs. 5 through 8. 

 

    The comparison of axial displacement for isotropic beam 

subjected to linearly varying load is shown in Table 11. The 

examination of Table 11 reveals that the axial displacement 

predicted by present theory is in excellent agreement with 

that of exact solution for aspect ratio 10 whereas HSDT of 

Reddy overestimates the same by 0.709 %. The axial 

displacement predicted by FSDT and ETB are identical for 

both the aspect ratios. Through thickness variation of axial 

displacement for isotropic beam subjected to linearly 

varying load is shown in Fig. 9. Table 12 shows the 

comparison of transverse displacement for isotropic beam 

subjected to linearly varying load and found in good 

agreement when predicted by present theory. FSDT and 

ETB show the identical values for transverse displacement 

for both the aspect ratios. The comparison of axial bending 

stress for isotropic beam subjected to linearly varying load 

is shown in Table 13.                                                          

    The axial bending stress predicted by present theory is in 

excellent agreement with that of exact solution whereas 

FSDT and ETB underestimate the same for both the aspect 

ratios. The through thickness variation of axial bending 

stress for the isotropic beam subjected to linearly varying 

load for aspect ratio 4 is shown in Fig. 10. The comparison 

of transverse shear stress for isotropic beam subjected to 
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linearly varying load via constitutive relation and equation 

of equilibrium is represented in Tables 14 and 15 

respectively. The examination of Tables 14 and 15 reveals 

that transverse shear stress predicted by present theory is in 

excellent agreement when obtained using constitutive 

relations. The through thickness variation of transverse 

shear stress for isotropic beam subjected to linearly varying 

load is shown in Figs 11 and 12. 

 

IV. CONCLUSIONS 
 

Following conclusions are drawn from this study. 

1. The results of maximum transverse deflection obtained 

by present theory are in excellent agreement with the 

exact solution. 

2. The transverse shear stress obtained from constitutive 

relation using present theory gives near to exact values 

and it is in excellent agreement when obtained using 

equation of equilibrium. 

3. The present theory obviates need of shear correction 

factor. 

4. The governing differential equation and boundary 

conditions are variationally consistent. 
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