
 
Abstract—Based on the machining conditions of the uses of flat 

end cutter (FC), ball-end cutter (BC) and disc cutter with a concave 
end (DCC) in the numerically controlled machining (NC) process,  
current studies aimed to establish related geometry model for 
efficiency evaluation and demonstrate qualitative and quantitative 
analysis by utilizing computer modeling. The compound surfaces are 
divided into three kinds of regions by the theory of differential 
geometry. The correlative mathematical models for defining the cutter 
parameters, the step-forward length, and the path intervals in the NC 
machining of the surfaces are described based on the feature of the 
regions. The analyzed parameters such as efficiency, accuracy and 
economical utility for different machined surfaces will be discussed to 
provide reliable selection principles of FC and DCC in order to 
improve NC machining. 
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I. INTRODUCTION 
ITH the sculptured surface being widely applied in the 
design of airplane, ship-hulls, car bodies and dies, the 

surfaces of the objects for NC machining are usually variable. 
Generally, these compound surfaces do not include the plane, 
cylinder surface, cone surface, sphere surface, and the spiral 
surface, since all these surfaces can be expressed by quadric 
analytical equations and can be machined by non-NC 
machining. Neither do the complex surfaces, which can be 
machined by copy machining technology. In current paper, NC 
machining would be applied on these compound surfaces to 
obtain optimal results. 

Bedi (1997) developed a method with flat end cutter to 
improve material removing rate while the direction of 
machining process was parallel to that of principle curvature. In 
addition to, scallop height (SH) was suggested to be smaller 
while using toroidal cutter compared to flat end cutter. Vickers 
(1989) discussed the differences of curved surface machining 
between ball-mills and end-mills. Li (2004, 2006) discussed the 
problems of cutter selection and stated that the cutter selection 
is closely related to the tool's orientation, tool path topology 
and tool path parameters. Most of the current methods avoid 
modeling of this problem and assume that the tool has been 
selected before tool path generation. Chang et. al. (1998) 
proposed that the revolving surface which forms the strips of 
envelope would degenerate into a circle- the trace circle of the 
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tool noses of a disc cutter. Therefore, the uses of DCC may 
enhance the degree of closeness between the strip envelopes 
formed by the cutting edges of a tool in every pass and the 
required surfaces. Since these studies were aim on the concave 
surfaces, current studies were aimed to further explore 
mathematically the utilization of two cutters on the other types 
of surface.  

For the purpose of improving the machining efficiency and 
accuracy, the selection of NC machine tool related to the 
surface feature should be considered. The region division of the 
surfaces to be machined is first described. The calculating 
process of principal curvature of the surfaces is then briefly 
discussed. Based on the surface feature, the parameters of the 
cutters are determined. The models used to calculate 
step-forward length and path interval are introduced according 
to the minimal radius of normal curvature and the maximal 
admissible machining error. The transmission of the maximal 
error caused by the step-forward linearization to the scallop 
height between the two adjacent toolpaths is also considered. 
The NC machining of compound surfaces with different types 
of regions are also investigated. 

The geometrical parameters of this surface are easily to be 
controlled by changing the tilting angle of the tool axes for both 
FC and DCC. Furthermore, the contact-order for such given 
contact point of two surfaces would be secondary. In the other 
words, the surfaces would be in the same curve curvature or 
their derivatives under the circumstances of concave to the 
same direction. The step-forward length and path interval are 
the direct indication for the machining efficiency and 
determined by contact point and SH. Therefore, the 
mathematical analysis of those parameters required for 
providing correct evaluation will be reported in this paper.  

II. ANALYSIS OF COMPOUND SURFACE 
According to the theory of differential geometry [2-4,7], it is 

known that the points on the surface may be classified by Gauss 
curvature into three types: positive, minus or zero. For the 
smooth continuous surface, if the Gauss curvature K > 0 exists 
for a certain point, then there must be a region around the point 
that K < 0 exists for a certain point, then there must be a region 
around the point that K < 0 exist for all the points in the region. 
Such region is called hyperbolic region. If the Gauss curvature 
K = 0 for all the points in a certain region, such region is called 
parabolic region. A smooth continuous surface consists of three 
types of regions at most. 
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A. The main curvature analysis of the surface 
The Gauss curvature may be obtained by the product of k1 

and k2, which is maximal main curvature and minimal main 
curvature respectively. Therefore, the coefficients of the first 
and secondary fundamental form of the surface should be 
calculated first, then the main curvatures may be obtained by 
solving the equation of main curvature. 

Let the equation of the surface be: 

 ( ) { }),(),,(),,(, vuzvuyvuxvur =  (1) 

The coefficients of the first and second fundamental form of 
the surface may be determined by the following equation 
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Substituting equation (2) into the equation of main curvature 

 0=
−−
−−

NGkMFk
MFkLEk

nn

nn  (3) 

The two main curvature k1 and k2 may be obtained easily form 
equation (3). 

B. Region division of surface  
For the points in the elliptical region, it is known from K = 

k1 · k2 > 0 that both the two main curvatures are positive or 
minus, that is to say the surface bends to the same side of the 
tangent plane at the point. As for the points in the hyperbolic 
region, since the two main curvatures have different sign, 
according to the continuity, it is known that there must be two 
asymptotic directions for kn = 0. For the whole hyperbolic 
region, there must be two groups of asymptotic curves, and the 
surface is divided into two groups of angle regions. The 
sub-surfaces in the adjacent angle regions bend toward the 
different side of the tangent plane at the point, but the 
sub-surfaces in the opposite angle regions bend toward the 
same side. In the parabolic region, since Gauss curvature K = 0, 
there must be a main curvature equal to zero. Assume that k1 = 0, 
then the main curvature direction corresponding to k1 = 0 is an 
asymptotic direction. The surface will be developable from the 
feature K = 0. Besides, from the Euler eqation: 

φφ 2
2

2
1 sincos kkkn +=  (4) 

It is known that all the points in the parabolic region have the 
same sign, and the surface bends towards the same side of the 
tangent plane at the point. From the features of different regions, 
it is obvious that the features must be considered in the NC 
machining of compound surface so that a good result may be 
obtained.  

 

III. CUTTING CONTACT ANALYSIS 
At present, ball-end milling cutter is most often used tool in 

the surface numerical control processing. It is because that the 
normal vector of any point on the ball-nose surface passes 
through the center, i.e., tool center is on the isometric surface of 
machined surface so as to calculate the cutter position easily. 
Besides, gouge will be avoided while the radius of ball-nose is 
small than the minimal radius of normal curvature. Numerical 
control programming is being simple, interference inspection 
easy, and only needs the three-axis NC machine are the 
advantages of using ball-end cutter so as to be widely used in 
NC machining. However, ball-end cutter still had many 
shortcomings, such as,  

1. The contact condition of cutter and machined surface is 
point contact. In addition, the cutting velocity changes 
according to the different cutter contact position. It should 
be noted that the cutting velocity at tip of ball-nose is 
approaching zero. The bad cutting condition will induce 
accuracy. 

2. The tool wear is non-uniform, moreover after wearing, 
repairs with difficulty.  

3. The cutting path interval should be small to conform to the 
required scallop height. Therefore, the cutting efficiency 
will be reduced. 

As compared to ball-end cutter, flat-end cutter has the 
advantages of convenient adjustments, the long service life, 
high cutting efficiency and good processing quality. Especially 
for 4-axis and 5-axis NC machine, the effective cutting radius 
to close to the machined surface can be obtained by tilting or 
yawing an angle of cutting tool. In recent years what displaced 
was toroidal cutter which not only has the advantages of using 
flat-end cutter but also reducing the wear because of the torus 
end to make it be the more attractive selection.  

It should be noted that optimal selection of cutter should be 
made by considering not only the accuracy of machined surface 
but also the NC machine types and the region types of surfaces. 
The basic rules of tool selection are suitable size of cutter for 
gouge-avoidance, reducing frequency of changing tool and the 
evaluation of accuracy. 

A. Contact performances between cutter and surface  
The current tendency of research is to explore the methods of 

increasing the efficiency of machining the compound surface. 
The feasible direction has specifically, 

1. Increase feeding rate. 
2. Optimize tool-path planning. 
3. Let the envelope of cutting tool approaches more closely 

to the design surface. 
Contact order of the cutter and machined surface can be used 

to discuss the relationships between the envelope of cutting tool 
and the design surface by utilizing differential geometry. Based 
on the region division of surface, the evaluation of selection of 
cutter and corresponding parameters can be determined by 
quantitative analysis of scallop height caused by linear 
interpolation.  
In order to discuss the contact degree between two surfaces, the 
definition of contact order developed by Zhang[16] is 
introduced as follows, 
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Definition: For the contact point of two surfaces, there are 
series of common normal planes through this point. The normal 
intersecting curves obtained by common normal plane 
intersecting with any surfaces have corresponding contact 
orders. The contact order is defined as the lowest contact order. 

Based on this definition, the contact order of two intersecting 
curves, obtained by any inclined plane intersecting with a pair 
of contact surfaces through the contact point, will not lower 
than the contact order of surface at this point. Therefore, we can 
inference that the intersecting curve L1 obtained by a plane 
which normal to the feeding direction intersecting with cutter 
trace envelop and the intersecting curve L2 obtained by a plane 
which normal to the feeding direction intersecting with design 
surface have the same k order derivative.  

Ball-end cutter, the frequently used cutter, obviously has the 
first contact order with machined surface so that the envelope 
of cutting trace cannot more closely to the machined surface by 
inclined the cutter. However, for flat-end cutter and toroidal 
cutter used in 4-axis and 5-axis NC machine, the envelop of 
cutter trace will be more closed to machined surface by tilting 
the axis of cutter toward the feeding direction to reduce the 
scallop height as shown in Fig.1. As discussed by Zhang(1998), 
by using a disk cutter with a concave end, and by adjusting the 
cutter to move relatively to machine bed under some special 
rules, an entirely new concept of machining sculptured surfaces 
has be proposed. The intersecting lines on the plane normal to 
the feeding direction, which are formed by both the required 
surface and the strip envelope, are ensured to have the same 
curve curvatures and their derivatives. Thus, the envelope 
formed by the trace of the tool-nose in each pass and the 
required surface have the same derivatives up to the second 
order in the plane normal to the feeding direction.  

 
Fig.1 The features of NC machining using FC with tilting angle  

 

B. Error Transmission and Scallop Height 
Since a NC machining for compound surface consists of 

several linearly interpolated movements, care must be taken in 
setting step-forward distance. The error caused by the 
step-forward linearization movement needs to be controlled. 
There are two types of tolerance: inner and outer tolerance. The 
selection of tolerance type depends upon the surface 
demanding and error distribution. Since current studies focus 
on the outer tolerance, the chord (tangent) method would be 
used for approaching origin curve in concave (convex) region, 
respectively. Those errors would be transmitted into scallop 
heights introduced by two adjacent tool paths as shown in Fig.2. 
Therefore, the error transmission should be taken into account 

for step-forward distance and path interval determination. 

 
(a) 

 
(b)                                         (c) 

Fig.2 (a) Step-forward linearization and adjacent toolpath,  
 (b)Error caused by the step-forward linearization,  
 (c) Error 1δ  transmitted into scallop height 

 

IV. MACHINING PROPERTIES OF CUTTERS  
Since different cutters providing exclusively characteristics, 

NC machining scheme and models for each cutter would be 
different. Therefore, it is necessary to discuss each cutter 
individually. According to above analysis of the surface, the 
evaluation model of cutters involved in three different surface 
regions will be discussed as follows. 

A. Elliptical region  
For the points in the elliptical region, it is known from Gauss 

curvature K > 0 that the surface bends to the same side of the 
tangent plane at the point. Therefore, there are only two types of 
surface exist. One is concave surface and another one is convex. 
The features of NC machining discussed in Reference 1, 2 were 
involved in the points on the elliptical region on the concave 
surface. The mathematical analysis will be discussed later. 

 
Flat-end cutter 

In 5-axis milling, the flat-end cutter can be tipped at an angle 
so that the machined surface approaches closely to the design 
surface. The calculation procedures for such effective radius 
were described by Vickers[14] and Li[10]. When the flat-end 
cutter tilts an angle β  along the feeding direction of cutter, the 
projection of the cutter bottom face to the plane perpendicular 
to the feeding direction will be an ellipse (as shown in Fig.3). It 
is obvious that the main radius of the ellipse is the radius of 
flat-end cutter R, and the minor radius is βsinR . If an arc, 
which passes through the cutter contact point and the two end 
points of the main radius, is used to replace the lower half 
ellipse, the radius of the arc is called the effective radius *R , 
and satisfies  

RR
β

β
sin2
sin1 2

* +
=  (5) 

In this way, the machining effect of a flat-end cutter with a 
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tilting angle is similar to that of a ball-end cutter. Therefore, 
when calculating the path interval of flat-end cutter, the cutter 
may be treated as a ball-end cutter with an effective radius of 

*R . 

 
Fig.3 Tilting angle and effective tool radius 

 

(a) Concave elliptical region    (b) Convex elliptical region 

Fig.4 The step-forward of flat-end cutter 

For the points in the elliptical region, bending to the same side 
of the tangent plane is their common characteristic.  In order to 
construct the model, first let 

{ }
{ }





=

=

22

11

max/1

max/1

kR

kR  (6) 

where R1 and R2 is the minimal principal curvature radius for 
any point on the surface along two principal curvature direction 
respectively. This is to ensure that the models along the 
direction of step-forward and the directions of path intervals are 
reliable. 

Here are two cases, one is concave elliptical region as shown 
in Fig.4(a), and the other is convex elliptical region as shown in 
Fig.4(b). As for the case in Fig.4, while a flat-end cutter is used 
to machine the concave elliptical region, the outer radius of 
flat-end cutter should satisfy the following relation  

( ){ } ( )2,1min 2
1

2 =−−< iRRR ii δ  (7) 
The angle between the bottom face of the cutter and the 

tangent line of the normal section curve along the step-forward 
direction must satisfy 

( )2,1sinmax 1 =



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so that the interference may be avoided. In order to assure the 
machining quality, the cutter should tilt a certain angle 
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where 0γ  should be chosen about 3~2  degree according to 

the experience. 
As for the case in Fig.4(b), the radius of flat-end cutter need 

not be constrained by the above condition. But, for both cases, 
the determination of radius of cutter should consider the 
standard size of the cutter and the scallop height at the edges of 
machining region. That is to say, the actual radius of the cutter 
cannot be too large. 

If the maximal admissible machining error in Fig.2(c) is δ , 
notice that the error 1δ  caused by the linearization of 
step-forward will be transmitted to the scallop height between 
the two adjacent tool paths, so the error of linearization of the 
step-forward should be 

δδ <1  (10) 
From Fig.4(a), the step-forward length should be 

( )2
11

2
11 2 δ−−< RRL  (11)  

    In defining the path interval (see Fig.5(a)), let the normal 
curvature radius of the surface along the direction of path 
intervals be 2R , considering the transmission of error in the 
step-forward, the actual path interval 2L  should be less than the 

path interval 'L2  determined by the following equation. 
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As for the convex elliptical region in Fig. 4(b), the cutter 
radius need not be constrained by the curvature of the surface, 
and let 0=α , the step-forward must satisfy the following 
relation:  

( ) 2
1

2
111 2 RRL −+< δ  (13) 

  Referring to Fig.5(b), the actual path interval 2L  should be 
determined by the following condition, 
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  The determination of the tilting angle of flat-end cutter 
according to 1R  and 2R  particularly for a concave elliptical 
region surface is critical. Therefore, a 5-axis NC machining tool 
is required when a flat-end cutter is used to machine an 
elliptical surface. 

 
Fig.5 The path interval of flat-end cutter, (a) and (c) the cutter 
tilts an angle, (b) the axis of cutter aligned with surface normal 
Ball-end cutter 
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(a) Concave                   (b) Convex 

Fig.6 The step-forward of ball-end cutter 
 

As for the case in Fig. 6(a), when a ball-end cutter is used to 
machine concave elliptical region, the radius of ball-end cutter 
should satisfy the following condition:  

{ }21 ,min RRR <  (15) 
otherwise, cutting interference will happen and the machining 
result cannot be ideal. 1R  and 2R  is the minimal principal 
curvature radius for any point on the surface along two 
principal curvature directions respectively. 

Let the curvature radius of the surface along the direction of 
step-forward be 1R , then the step length should be: 

( ) ( )2
11

2
11 2 δ−−−−< RRRRL   (16) 

Referring to Fig.6(a), the actual path interval 2L  should be less 

than the path interval 'L2  determined by Eq.(12) with *R  being 
replaced by R . 

As for the case in Fig.6(b), when a ball-end cutter is used 
to machine convex elliptical region, the radius of ball-end 
cutter need not be constrained by the above condition. The step 
length should be satisfied the following relation: 

( ) 2
1

2
111 2 RRL −+< δ  (17) 

Referring to Fig.5(c), the actual path interval 2L  should be less 

than the path interval 'L2  determined by Eq.(18) with *R  being 
replaced by R . 
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Disc Cutter with Concave End 

 
Fig.7 Curvature catering of DCC  

 
(a)                                     (b) 

Fig.8 The features of NC machining on the convex and 
concave elliptical region using DCC 

 
Fig.9 Error caused by linear interpolation for DTC 

The features of machining a concave surface and a convex 
surface by using DCC are illustrated as Fig.7 and Fig.8. Thus, 
the scallop heights of using DTC or FC were still higher than 
that resulting from DCC machining even if the tilting angle was 
adjusted. If taking maximal admissible error into account, the 
step-forward length and path interval would be smaller while 
using DTC or FC. So forth, the machining efficiencies were 
lower than using DCC. Obviously, it is more appropriate to 
utilize DCC, compared to FC and TDC, for the elliptical 
surface machining.  

The features of NC machining on the convex elliptical region, 
application of FC results in smooth surface. However, there 
was higher SH remained on the surface while using disc-flat 
end cutter (DFC) and it is totally improper to use DCC. The 
SHs produced by DTC or DCC were still higher than that 
resulting from TC machining even if the tilting angle was 
adjusted. If taking maximal admissible error into account, the 
step-forward length and path interval would be smaller while 
using DTC or DCC. So forth, the machining efficiencies were 
lower than using FC. Obviously, it is more appropriate to utilize 
FC, compared to DCC and TDC, for the convex elliptical 
surface machining. 

As for the case in Fig. 8(a), when a DCC is used to machine 
concave elliptical region, the radius of DCC should satisfy the 
following condition for gouge-avoidance. 

Concave Elliptical Region 

nk
R 1

<   (19) 

where nk  is the normal curvature. 
The radius of DCC should be under such limitation to 

prevent gouge. For the purpose of having the 2-order curvature 
catering, cutter should inclined an angle α , 

)(sin 1 Rkn
−=α  (20) 
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Referring to Fig. 9, the error 1δ  caused by the linearization of 
step-forward will be transmitted to the scallop height between 
the two adjacent tool paths, so the error of linearization of the 
step-forward should be 

0
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While considering the milling width problem, i.e., path interval. 
Within the coordinate shown in Fig. 7., DCC tilts  an angle 
α around the e  axis and interpolates a distance λ  toward 
e direction. Thus, the surface groups will be 
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Considering of the enveloping condition ( ) 0,,

11
=λϕθ rrr , we 

can obtain that 
)tan(tancos 1

1
1 αθϕ −=  (23) 

For the path interval direction, we substitute Eq.(23) into 
Eq.(22) and let component in e direction be 0. Thus, 
intersecting curve C~  can be obtained. Based on the 
transmission of iδ  as shown in Fig.10, the equation of circle 
with radius δ−R  at center Q can be expressed as,  

{ }101 sin)()sin(,cos)(,0
1

ζδδαζδ −+−+−−= RrRRRr iQ
 

 (24) 
By solving Eq.(24)  simultaneous with Eq.(22) and Eq.(23) the 
coordinate of point P can be obtained as, 

{ }00 ,,0 zyP ±=r  (25) 
Thus, the path interval 1l  should be satisfied 

δ−
≤

R
Ryl 0

1
2  (26) 

 

 
Fig.10 Path interval analysis using envelope 

 

For the convex elliptical region, the analysis is relatively 
simple. It is needless to use DCC, flat-end cutter can be used 
instead. The analytical results of using DCC can be referred to 
that of flat-end cutter discussed above. 

Convex Elliptical Region 

 
 

 

 

 
Fig.11 NC machining in hyperbolic region (Saddle like) 

 

B. Hyperbolic region 
As for the points in the hyperbolic region (Fig.11), there are 

two asymptotic directions for kn = 0 and the surface is divided 
into two groups of angle regions. The sub-surfaces in the 
adjacent angle regions bend toward the different side of tangent 
plane at the point. The intersecting line of the points on 
hyperbolic region is either concave or convex which depends 
upon the directions. The tension angle of concave or convex 
field is not necessarily the same. 
 If the tension angle of convex and concave field on the 
hyperbolic region were equivalent while NC machining, there 
would be two different features: a. Directions of step- 
forwarding linearization is within convex field and path 
interval is within concave field. b. Direction of step-forwarding 
linearization is within concave field and path interval is within 
convex field. Under these two situations, mathematical analysis 
is required for cutter selection. While the tension angle is 
unequivalent between convex and concave field, there would 
be the other two situations existing. Direction of step- 
forwarding linearization and path interval is within convex 
field. However, that of the other angle region is within concave 
field. Therefore, it is necessary to tilt along path interval to 
avoid interference with concave field instead of using FC for 
machining. The reason is due to the overlapping of axis by FC 
on machined intersecting line. The selection of cutter would 
depend upon the mathematical analysis.  
 
Flat-end cutter 
For the points in the hyperbolic region, two principal curvatures 
have different sign.  Assume that 01 >k , 02 <k  and let 
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Two situations will be discussed respectively in the followings. 
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When the direction of step-forward linearization is toward 
concave field, theoretically a tilting angle 

Concave-Convexity Case 

α  of flat-end cutter 
axis is used to avoid interference between tool and machined 
surface. Tool radius and angle α are restricted as Eq.(7) and 
Eq.(8). In practical machining, a tilting angle is chosen by Eq.(9) 
to ensure proper cutting. 

  If the step-forward moves along the direction of 1R , the length 
of step should satisfy Eq.(11). When the path interval is being 
determined, the transmission of error caused by the 
step-forward linearization to the scallop height should be taken 
into account. Referring to Fig.5(c), the actual path interval 2L  

should be less than the path interval '
2L  determined by the 

following equation. 
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When linear interpolation is applied on movement in convex 
region, it seems that a flat-end cutter, with its axis aligned with 
the normal to the surface, can be directly used for machining. In 
fact, since the direction of path interval is toward concave field, 
a tilting angle is important to decrease interference with 
machined surface in concave region. Tilting angle must satisfy 
Eq.(9) with 

Convex-Concavity Case 

1RRi =  
  If the step-forward moves along the direction of 2R , the 
length of step should satisfy 

2
2

2
121 )()(2 RRL −+< δ  (29) 

  Referring to Fig.5(a), the actual path interval 2L  should be 

less than the path interval '
2L  determined by the following 

equation. 
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Fig.12  (a) Step-forward direction is toward concave field and 
path interval direction is toward convex field 

(b) Step-forward direction is toward convex field and 
path interval direction is toward concave field 

Ball-end cutter 

The definition of 1R  and 2R are the same as Eq.(27). The 
radius of ball-end cutter should be smaller than the minimal 
radius of curvature, i.e. 

1RR <  (31) 
Concave-Convexity Case

If the step-forward moves along the direction of 

   

1R , the length 
of step should satisfy Eq.(16). Referring to Fig.5(c), the actual 
path interval 2L  should be less than the path interval 'L2  

determined by Eq.(28) with *R  being replaced by R . 

Convex-Concavity Case

If the step-forward moves along the direction of 

   

2R , the length 
of step should satisfy relation(29). Referring to Fig.5(a), the 
actual path interval 2L  should be less than the path interval 'L2  

determined by Eq.(30) with *R  being replaced by R . 

Disc Cutter with Concave End 

Relies on the preceding way, we discuss the relative 
problems about machining error and path interval caused by 
linear interpolation.  
 
Concave-Convexity Case

When linear interpolation is applied on movement in convex 
region, it seems that a DCC, with its axis aligned with the 
normal to the surface, can be directly used for machining. In 
fact, since the direction of path interval is toward concave field, 
a tilting angle 

   

α is important to decrease interference with 
machined surface in concave region. It should be noted that the 
tilting angle α  is not used for 2-order curvature catering but 
for gouge-avoidance. As shown in Fig.13, α  must be larger 
than the solution of following equation. 

0tan
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0
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0
* =
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
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


−

−−
∆

−
−

∗
∗

α
α rR

RRRl
rR

RR
 (32) 

Referring to Fig. 9, the error 1δ  caused by the linearization of 
step-forward will be transmitted to the scallop height between 
the two adjacent tool paths, so the error of linearization of the 
step-forward should be the same as Eq.21. 
Relies on the preceding way, the surface groups and 
corresponding enveloping condition should be the same as 
Eq.22 and Eq.23. Based on the transmission of iδ  as shown in 
Fig.13, the equations of circle with radius R and δ+R  at 
center Q can be expressed as following equations, respectively.  
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{ }202 sin)sin(,cos,0 ζδαζ RrRRRr iQ +−+−−=  (33) 
{ }303 sin)()sin(,cos)(,0

1
ζδδαζδ ++−+−−+= RrRRRr iQ  

 (34) 
By solving Eq.(34)  simultaneous with Eq.(22) and Eq.(23) the 
coordinate of point P can be obtained as, 

{ }0101 ,,0 zyP ±=r  (35) 
Thus, the path interval 1l  should be satisfied 

δ+
≤

R
Ryl 01

1
2  (36) 

 

 
Fig.13 Path interval analysis using envelope 

Convex-Concavity Case

While machining in such surface, the cutting width can be 
enlarged by the application of curvature catering. Therefore, 
DCC is thought to be the optimal selection. The error of 
linearization of the step-forward should be 

   

∗−
∆−

= R
lR

R
i

22*

2*

4

2δ  (37) 

The corresponding parameters of R , α ,  ae , cr  and 1l  can 
also be obtained according to the situation of  DCC working in 
concave elliptical region. 

 

C. Hyperbolic region 
Since the parabolic region is an expendable surface and it has 

a group of straight generating line, the surface bends to the 
same side of the tangent plane except in the direction of straight 
generating line. Thus the parabolic region may be classified 
into concave parabolic region and convex parabolic region. If a 
2D region of S is parabolic, that area is said to be expendable. A 
flat-end tool may have access to an expendable region 
depending upon the sign of the second principal curvature[7]. 
Let us investigate the shape of a surface in the neighborhood of 
a parabolic point P0. If 021 =⋅= kkK , it is obvious that one of 
the principal curvatures vanishes at least. If 021 == kk , P0 is a 
planar umbilical point, and every normal section has a contact 
of order 2≥  with its tangent at P0. If 01 ≠k , 02 =k , let 

{ }11 max/1 kR = , the direction with respect to 02 =k  is 

asymptotic direction and (sign nk ) = (sign 1k ) for all direction 
except that of asymptotic direction. One should not claim that 
the normal section along the asymptotic direction must be a 

straight line. In fact, the normal section might be a curve or 
straight line. It can be realized easily according to the following 
statement. We consider a point ∗Q ： ),( vvuu ∆+∆+r  of S. 
According to Taylor’s formula we have 
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 (38) 

The distance of ∗Q  from the tangent plane ( )0PE  to S is 
therefore 

( ) [ ]

( )
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setting dvvduu =∆=∆ ,  in consequence of Eq.(39), we 
obtain 

( ) ( )

( ) 



 ++

⋅++=∗

222

22 2
2
1

dvduo

dvdudvduQ vvuvuu nrrrδ
 (40) 

That second fundamental form vanishes does not imply that 
( ) 0=∗Qδ . It is clear that the normal section might be a curve 

with large curvature radius or straight line.  
 

 
Fig.14 NC machining in parabolic region 

 
Flat-end cutter and DCC 

For a parabolic region, if any normal section bands the same 
direction with the one along the asymptotic direction and 
obvious a convex type. Thus, flat-end cutter is better than the 
DCC because of the DCC should incline an angle and result in 
scallop height. If the machined surface is concave for all 
direction except that of asymptotic direction, flat-end cutter and 
DCC are suitable. 

If the step-forward posses the direction, which 
Convex Parabolic Region 

1k  lays, for a 
convex parabolic region, referring to Fig.4(b), the step length 
should be constrained by relation(13).Since the normal section 
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curve might be a curve or straight line. The author suggests that 
the path intervals should be determined by the method 
presented as following. The direction of path interval should 
move toward the asymptotic direction but turn an angle (about 

00 2~1 ) to ensure the radius of normal section curve, which the 
path interval being deduced (see Fig.12). The unit vector with 
respect to the new direction 11 dvdu can be determined by 

2
111

2
111 2)( GdvdvFduEdudvdu vu +++= rrg1  (41) 

The plane containing 1g  and normal vector )( 0PN  is 

0)()( 01 =−× ⋅ rρNg  (42) 
where 0r  is the vector of machining point 0P  and the vector of 
any point on the plan isρ .  
The radius of normal section curve c  with respect to the path 
interval direction can be obtained by Eq.(43) 


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
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′
=

rr
r 3

maxR̂  (43) 

If the direction of path interval is toward the convex region 
along curve c , the actual path interval 2L  should be less than 

the path interval '
2L  determined by the following equation. 

( ) ( )2
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If the direction of path interval is toward the concave region 
along curve c , in order to avoid interference and assure the 
machining quality, the cutter should tilt a certain angle as 
described in Eq.(9) with iR  being replaced by R̂ . 

The actual path interval 2L  should be less than the path 

interval '
2L  determined by the following equation. 
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If the step-forward posses the direction, which 

Concave Parabolic Region 

1k  lays, for a 
concave parabolic, referring to Fig.4, the outer radius of 
flat-end cutter should satisfy the following relation 

( )2
11

2
1 δ−−< RRR  (46) 

The tilting angle for cutter axis should satisfy Eq.(9) with 
1RRi = . Therefore, the step-forward length should satisfy 

relation (11).The path interval in concave parabolic region can 
also be determined with the same approach used in convex 
parabolic region. The actual path interval 2L  should be less 

than the path interval '
2L  determined by the following Eq.(47), 

(48). 
As the direction of path interval is toward the convex region 
along curve c , Eq.: 
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As the direction of path interval is toward the concave region 
along curve c , Eq.: 
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If the step-forward posses the direction, which 2k  lays, and the 
cross section along the direction is a straight line, the length of 
step need not be constrained. The path interval may be 
determined by Eq.(12) and (14). If the cross section along the 
direction is a curve, the discussion procedures are similar. It is 
noticed that the cross section with respect to 2k  may be a curve 
with large curvature radius or a straight line, i.e., the actual 
step-forward length can be increased and the machining 
efficiency can be improved. 

Ball-end cutter 

The discussion for ball-end cutter is similar to that for flat-end 
cutter. If  01 ≠k , 02 =k , let { }11 max/1 kR =  

Convex Parabolic Region

If the step-forward takes the direction, which 

   

1k  lays, for a 
convex parabolic region, referring to Fig.6(b), the step length 
should be constrained by relation(17). Imitating the procedure 
of determining the path interval for flat-end cutter, the path 
interval in convex parabolic region can be determined. The 
actual path interval 2L  should be less than the path interval '

2L  

determined by Eq.(47) and (48) with *R  being replaced by R . 

If the step-forward takes the direction, which 
Concave Parabolic Region   

1k  lays, for a 
concave parabolic region, the radius of ball-end cutter should 
be constrained by 1RR <  and the step length should be 
constrained by relation(16). The path interval may be 
determined by Eq.(47) and (48) with *R  being replaced by R . 
 

V. ACCURACY EVALUATION AND GEOMETRY MODEL  
In order to clarify the comparison between FC and DCC, a 

small tilting angle is applied to an initial tool orientation in the 
tool-center plane to provide equal curvature radius for the 
normal intersecting line for tool curvature surface and cutter 
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contact point. As Fig.15 shown below, the cutter tools are given 
the coordinates [c;g,n] and the projection of the FC surface on 
the plane (g-n) vertically to the tool feeding direction is 
elliptical circle (EC). Therefore, let the large radius of the EC as 
R, the flat-end surface radius, and the small radius of that as 
Rsinα, the equation of this EC is 

 { }θαθ sinsin,cos1 RR=r  (41) 

where the origin c of the coordinates is the center of the flat-end 
circle, n is normal vector of the machined surface at the 
cutter-contact point, g is the unit vector of the step-forward 
distance at the machined point M. 

 
Fig.15 coordinates [c;g,n] 

For the DCC in the process of rotation, the analysis is 
explained while the center of the normal intersecting line at 
cutter-contact point M is expressed as c. Different from the 
characteristics of FC, that intersecting line for working DCC is 
the cross line of step-forwarding linerization-formed strip 
envelope and g-n plane. Therefore, within the coordinates 

[ ]n,gg,c;=σ , the equation of the generating circle in 
parametric form is then given by: 
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Assuming the circumstances of strip envelope ( ) 0,, 222 11
=λϕθ rrr , 

we obtained 
 )tan(tansin 1

1
1 αθϕ −−=  (43) 

While equation (43) is substituted with equation (42), the 
equation of the intersecting line at coordinates [ ]ng,c;=σ  is 
given as 
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  (44) 
where r0 is the radius of cutter, R is the distance between the 
circle center and the axis of propeller,  and θ1 are the 
parameters of the surface. 

Therefore, we may utilize above results to access the 
comparison of two cutters. At the convenience of analysis, we 
assume that the radius of outer shape of FC and DCC are equal. 
That is 

0rRR += , equation (44) is expressed as 
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Cutter-contact points for the FC and DCC are overlapped. That 
is equation (41) is modified as 

 { })sin1(sinsin,cos 01 αθαθ −−=∗ rRRr  (46) 

Additionally, the differences in SH are expressed by the ones 
on the n plane while at the same coordinate g. θ  in the equation 
(45) may be determined by the followings: 

 1010 cos)cos(cos ϕθθ rrRR −+=  (47) 
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Finally, the differences in SH may also provide information 
for the machined accuracy evaluation and are expressed as 

 
αθαϕθ
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cossinsinsin)cos(
)sin1(sinsin

101010

0

rrrR
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+−+

−−−=∆  (49) 

If the value 0>∆ , the smaller the SH is while using the DCC, 
the machined accuracy is higher; if the value 0<∆ , FC would 
be the better choice. 

Based on the machined efficiency, the value of step lengths 
and path intervals may be used as determinants while the 
maximal admissible error and the transmission of error caused 
by step length to SH are taken into account. As figure shown 
below, within the same step length, the path interval of FC is 
expressed as 

θcos22 RL =   (50) 
while  

10 )sin1(sinsin δδαθα −<−− allrR  (51) 
where 1δ  is the maximal error at the step length, allδ  is the 
admissible error. The path interval of DCC is expressed as 

10102 cos)cos(2 ϕθ rrRL −+=   (52) 
while  

1101010 cossinsinsin)cos( δδαθαϕθ −<−−+ allrrrR  
 (53) 

VI. EXAMPLE  
Propeller blade is taken as an example to verify the above 

models of machining parameters. For the propeller blade 
(Fig.16) with a constant pitch, the driving face consists of three 
areas, area 1 is freeform surface near leading edge, area 2 is 
spiral surface with a constant pitch, and area 3 is freeform 
surface near trailing edge. The analytical equation of area 2 
will be deduced by the method of analytical geometry. The 
equation of area 1 and 3 can be obtained by surface fitting 
method in the theory of computational geometry. So the blade 
surface may be determined by the following equation: 

( ) { }ϕθθθθ tan,sin,cos, rbrrr −=S  (53) 

where r  is the distance between any point on the driving face 
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of blade and axis of propeller, 
θ  is the angle parameter, 
β  is the rake angle of propeller blade, 
b  is spiral parameter, if the pitch is T , then π2Tb =  

 
Fig.16 Different region of driving face 

  As for the freeform surface area, its analytic equation cannot 
be provided directly. Since the surface is expressed by the 
discrete points, so the numeric equation may be obtained by 
the method of surface fitting using the theory of computational 
geometry. The absolute coordinate of each point in the 
workpiece coordinate system should be calculated by the 
following equations: 
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The surface defined by the above discrete points can be 
expressed by surface fitting method such as 3 order Bezier 
method[8]. So the equation of freeform surface may be as 
following: 

( ) TTr VUMBMSS ==∗ θ,*  (55) 

Since equation (55) is the function of discrete points 
),,( ],[],[],[ jijijiij zyxP , and the above discrete points are the 

function of a certain position ),( θr  on the blade surface, so 
equation (55) is also the function of ),( θr . 

For region 2,  

  The fundamental coefficients can be calculated as following 
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The main curvature equation can be expressed as following: 
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From the Gauss curvature 
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it is known that all the points in region 2 are hyperbolic points. 
It is the same case for region 3. But for region 1, it is known 
that Gauss curvature 0>K , all the points in the region 1 are 
elliptical points. We should determine the maximal radius of 
cutter and minimum tilting angle of the flat-end cutter, so that 
the interference could be avoid. 

The given parameters of a propeller blade with a constant pitch 
are 
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Thus, 00115.01 −=k  and 006757.02 =k  at mmr 400= . 

Considering the accuracy problem, the radii of FC and DCC are 
mmR 60=  and mmR 50= ， mmr 100 = , respectively. The 

feeding step-forward direction is toward the convex field and 
the path interval is toward the concave field. The tilting angle of 
the cutter is 5 to avoid gouging. The comparison of surface 
intersecting curve (scallop height) between FC and DCC are 
computed in Fig.17. In the neighboring region of machining 
point M, two surface intersecting curves are much closed, i.e., 
scallop heights are approximate. The computational values of 
Scallop heights are listed in Table 1 to provide accurate 
comparison. It is obvious that the scallop height of FC are 
smaller than DCC. 

 
Fig.17 Scallop Height Comparison between DCC and FC 

 
TABLE I 

COORDINATE OF INTESECTING CURVES AND SCALLOP HEIGHT 

1θ  1φ  
n direction 
coordinate 

g direction 
coordinate θ  Scallop Height 

0 0 60 0 0 9.1284425 

8.5 -0.01307 59.88503 -1.54071 -0.06191 7.9112824 

17 -0.02675 59.54173 -3.05144 -0.12367 6.7220752 

25.5 -0.04174 58.97443 -4.50340 -0.18515 5.5877654 

34 -0.05904 58.18879 -5.87045 -0.24633 4.5331628 

42.5 -0.08025 57.18810 -7.13106 -0.30736 3.5794877 

51 -0.10825 55.96369 -8.27195 -0.36889 2.7420811 

59.5 -0.14907 54.46451 -9.29645 -0.43292 2.0258545 
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68 -0.21827 52.47084 -10.2508 -0.50636 1.4137751 

76.5 -0.37300 48.73573 -11.3488 -0.62277 0.8297883 

85 -1.5708 -0.00018 -14.3577 -1.57079 1.24367E-0 

 
TABLE II 

COORDINATE OF INTESECTING CURVES AND SCALLOP HEIGHT 
BETWEEN  1θ =76.5~85 (INTERVAL THAT DIFFERENCE OF SCALLOP 

HEIGHT ARE REMARKABLE) 

1θ  1φ  
n direction 
coordinate 

g direction 
coordinate θ  

Scallop 
Height 

76.5 -0.37300 48.73573 -11.3488 -0.62277 0.8297883 
77 -0.38866 48.35248 -11.4323 -0.63364 0.7923391 

77.5 -0.40567 47.93060 -11.5199 -0.64542 0.7541049 
78 -0.42421 47.46302 -11.6125 -0.65827 0.7149868 

78.5 -0.44451 46.98752 -11.7106 -0.67236 0.6748784 
79 -0.46686 46.35304 -11.8151 -0.68794 0.6336648 

79.5 -0.49161 45.68522 -11.9271 -0.70529 0.5912231 
80 -0.51918 44.91884 -12.0479 -0.72477 0.5474214 

80.5 -0.55014 44.02935 -12.1788 -0.74686 0.5021190 
81 -0.58521 42.98358 -12.3217 -0.77217 0.4551663 

81.5 -0.62537 41.73557 -12.4789 -0.80155 0.4064052 
82 -0.67195 40.21960 -12.6532 -0.83614 0.3556699 

82.5 -0.72688 38.33788 -12.8482 -0.87764 0.3027882 
83 -0.79310 35.93675 -13.0684 -0.92861 0.2475827 

83.5 -0.87552 32.75497 -13.3199 -0.99331 0.1898745 
84 -0.98342 28.28810 -13.6106 -1.07984 0.1294863 

84.5 -1.13993 21.28318 -13.9514 -1.20818 0.0662472 
85 -1.5708 -0.00018 -14.3577 -1.57079 1.24367E-0 

 

VII. CONCLUSION 
In this study, geometry model for efficiency evaluation and 

demonstrate qualitative and quantitative analysis are 
established by utilizing differential geometry. By utilizing 
computer modeling, the analyzed parameters such as efficiency, 
scallop height for different machined surfaces have been 
deduced to provide reliable selection principles of FC and DCC 
in order to improve NC machining. Propeller blade is taken as 
an example to verify the proposed models of machining 
parameters. The comparison of surface intersecting curve 
(scallop height) between FC and DCC are computed and shown 
in Fig.17 and table. The characteristics of NC machining that 
influence efficiency and accuracy are compounded. The 
characteristics, such as path-interval, step length and tool wear 
will be discussed and established models to provide the reliable 
criteria of tool selection. Therefore, the models discussed in this 
paper do provide a reliable approach on improving NC 
machining efficiency and machining accuracy. The tool 
selection criteria are also proposed.  
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