An Explanation of Possible Damascus Steel Manufacturing Based on Duration of Transient Nucleate Boiling Process and Prediction of the Future of Controlled Continuous Casting

NIKOLAI KOBASKO

Intensive Technologies Ltd, Kyiv, Ukraine and IQ Technologies Inc, Akron, USA

Abstract - In the paper the new explanation in manufacturing of Damascus steel, based on discovered the specific characteristics of transient nucleate boiling processes, is provided. Also, the future of continuous casting in the paper is discussed. According to discovered characteristics, duration of transient nucleate boiling process is directly proportional to squared size of a steel part and inversely proportional to thermal diffusivity of material, depends on configuration and initial temperature of component, thermal properties of liquid. The surface temperature of steel part during transient nucleate boiling process maintains at the level of boiling point of liquid and cannot be below it. Based on these characteristics, the new hypothesis regarding manufacturing of Damascus steel is proposed according to which the melted high carbon steel (containing 1 – 2% carbon) was casted into copper forms cooled by cold water and then the steel was many times forged and quenched in special water salt solutions until finishing transient nucleate boiling process. Such simple technology provided extremely small spherical carbides distributed in steel which acted as a saw and made steel very strong. It is stated that high strength materials with fine microstructure can be achieved by applying intensive cooling to continuous casting.

Keywords - Transient nucleate boiling process, Damascus steel, Hammering, HTMT and LTMT processes, Highly strengthened plain carbon steels, Continuous casting.

I. INTRODUCTION

Damascus steel was a hot - forged steel which was used in Middle East's sword making from 1000 to 1700 A.D. [1-5]. The foundation for Damascus steel was "wootz" steel which originated in India, Sri Lanka and later spread to Persia [4 - 7]. Steel making sites were found in Sri Lanka that made high carbon steel as early as 300 B.C. According to Ref. [8], the small spherical grains of cementite microstructure were also found in the archeological items from Pol'tse, a settlement at Amur river, V-IV century B.C. Raw materials and Damascus steel crafting instruction are not longer available. Details of technology, which was used by the capable metallurgists from Pol'tse, is not known [8]. The ancient technique reached modern - day Turkmenistan and Uzbekistan around 900 A.D., and then the Middle East circa 1000 A.D. There are numerous publications where this matter is widely discussed [9 - 16]. It is underlined that India has been reputed for its iron and steel since ancient times, the time of Alexander the Great (356 B.C. - 323 B.C.) [5]. When Alexander the Great got to India he ordered to be delivered to him “100 talents of Indian steel” [5]. Studies on “wootz” indicate that is was an ultra - high carbon steel with 1 - 2% carbon. Metal smiths in India and Sri Lanka developed a technique that produced unusually high purity “wootz” steel. Glass was added to a mixture of iron and charcoal and then heated. The glass would act as a flux and bind to other impurities in the mixture, allowing them to rise to the surface and leave a pure steel when the mixture cooled. It is interesting to know that more than two millennium ago ancient metallurgists manufactured pure ultra - high carbon steel which was of high quality [4, 5]. Later the main features of the method of ancient metallurgists were rediscovered by Anosov in his systematic research at Zlatoust Arms Factory in Russia during 1828 - 1840 [1, 2]. The essence of the Anosov's method consists in many cycles of forging the ultra - high carbon steel at high temperature with intermediate annealing. Accurate microstructure studies of Damascus steel with correct explanation of its strengthening due to formation of fine spheroidized carbides were published by N.T.Belaiew in Journal of the Iron and Steel Institute [3]. Microstructure of a typical Damascus sword is characterized by formation of spherical cementite particles of 5 - 20 µm [3, 8]. Fundamental scientific research on the development of high-carbon steel with the uniform
submicron-size cementite structure was performed by Sherby in the 1970s and 1980s. The Sherby method for forming high-carbon steel closely resembles the method of Damascus craftsmen. Both methods include numerous cycles of high temperature deformation and annealing. While Damascus steel was formed by forging, the Sherby method utilized rolling as the deformation means. Several U.S. Patents of Sherby describe an ultra high-carbon steel having a carbon about 1.0% - 2.3 % and an iron grain matrix with uniformly dispersed cementite [14, 15, 16].

![Microstructure of Damascus sword](image)

Fig. 1 Microstructure of Damascus sword [8].

The iron grains in the steel were no greater than 10 microns with spherical carbides [9 - 13]. Unfortunately, contemporary methods of manufacturing Damascus steel are rather complicated and expensive; that is why they are not widely used in practice. To decrease cost of technology, author [8] proposed to cast high – carbon steel in preheated to 700°C casting forms which provide optimal cooling rate for getting spherical small carbides (0.1 - 5 \(\mu m \)) and enough strengthened ultra – high carbon steel (1200 – 2500 MPa with 10% of plasticity) without further thermomechanical treatment, quenching and annealing. However, casting into preheated form doesn’t allow achieving very small particles of carbides without thermomechanical treatment and quenching. A team of researches based on Technical University of Dresden used x - rays and electron microscopy to examine Damascus steel. They discovered the presence of cementite nanowires and carbon nanotubes in ancient Damascus steel [17, 18]. It is believed that these nanostructures are as a result of the intensive forging [17, 18].

Below are equations describing the two mechanisms of precipitation hardening. Dislocations cutting through the small carbides [19]:

\[
\sigma_f = \frac{r \gamma \pi}{b L}
\]

(1)

where \(\sigma_f \) is material strength, \(r \) is the second phase particle radius, \(\gamma \) is the surface energy, \(b \) is the magnitude of the Burgers vector, and \(L \) is the spacing between pinning points. This governing equation shows that the strength is proportional to \(r \). This means that it is easier for dislocations to cut through a material with the smaller second phase particles. As the size of the second phase particles increases, the particles impede dislocation movement and it is very difficult for dislocations to cut through the material. It means that the strength of a material increases with increasing \(r \).

Dislocations bowing around the particles is described by Eq. (2) [19]:

\[
\sigma_f = \frac{G b}{L - 2r}
\]

(2)

where \(G \) is the shear modulus. This governing equation shows that for dislocation bowing the strength is inversely proportional to the second phase particle radius \(r \) and distance between particles \(L \). Dislocation bowing is easily occurred when there are large particles presence in the material.

Considered governing equations show that the precipitation hardening mechanism depends on the size of the precipitate particles. At small \(r \) cutting dominates, while at large \(r \) bowing dominates.
Fig. 2 Strength of steel versus radius of second phase particle [19].

That is why a critical radius, at which max strengthening occurs, can be evaluated [19]. This critical radius is within 5-30 nm or 0.005 - 0.03 \(\mu m \) [19]. Provided calculations show that spherical carbides of 0.1 – 5 \(\mu m \) are almost 1000 times larger as compared with the critical radius of carbides; and they cannot cause extremely high strength of steel. Authors [20] achieved nanoparticles by cooling intensively melted metal with cold water using special technology.

III. INTENSIVE COOLING OF MELTED UHCS TO RECEIVE SUITABLE PARTICLES OF CARBIDES

To obtain very small particles, cooling rate of melted steel should be very high (see Eq. 3) [21].

\[
r_{cr} = \frac{2\sigma}{\Delta f_{v}}.
\]

(3)

Here \(\sigma \) is surface tension; \(\Delta f_{v} \) is difference of free energy for one unit of volume between initial phase and supercooled phase. The higher cooling rate, the smaller size of particles to be precipitated. However, during intensive quenching transformation austenite into martensite should be prevented to escape crack formation and big distortion of the castings. It can be easily done by using very simple technique shown in Fig. 3 which is governed by main laws of nucleate boiling processes (Eq. (4) and Eq. (5)).

Using Eq. (4) and Eq. (5), one can produce very high cooling rate and eliminate transformation of austenite into martensite. For this purpose the casting form is cooled by water or any suitable liquid quenchant. During casting water starts to boil and duration of boiling can be evaluated from Eq. (4). At the end of transient nucleate boiling process water in tank will be almost 100°C. Since for UHCS martensite start temperature Ms is 100°C and below, no martensite transformation will occur (see Fig. 4). So, Eq. (4) helps to evaluate duration of transient nucleate boiling process [22], i.e.

\[
\tau_{nb} = \frac{\Omega k_{F} k_{W}}{D^{2}} \frac{D^{2}}{a},
\]

(4)

where value \(\Omega \) depends on initial temperature and condition of cooling (generalized Biot number during convective heat transfer). Coefficient \(k_{F} \) depends on configuration of castings. For plate- shaped forms \(k_{F} = 0.1013 \); for cylinder – shaped form \(k_{F} = 0.0432 \); for spherical – shaped forms \(k_{F} = 0.0253 \); \(k_{W} \) is dimensionless coefficient which depends on liquid flow velocity. For motionless liquid \(k_{W} = 1 \). For high flow velocity of liquid which prevents nucleate boiling \(k_{W} = 0 \). That is why for different condition we have \(0 \leq k_{W} \leq 1 \). \(D \) is thickness of the body: diameter of cylinder, sphere or thickness of the plate; \(a \) is thermal
The diffusivity of material. The character of surface temperature changing during transient nucleate boiling (self-regulated thermal process) is shown in Fig. 5 (see curve 2). Such trend can be written as [22]:

$$\bar{T}_o = T_s + \xi_o = \text{const},$$ (5)

where \(\bar{T}_o \) is average surface temperature of a body; \(T_s \) is saturation temperature; \(\xi_o = \bar{T}_o - T_s \) is average wall overheat. Very fast cooling can cause martensite transformation which will results in crack formation (see curve 1 in Fig. 5).

Equation (4) can be used at continuous casting secondary cooling to accelerate cooling rate of solidifying slabs. It can be also widely used when intensive quenching IQz2 process is applied to quenching of slabs after their solidification. Both processes increase significantly mechanical properties of materials due to formation of fine microstructure during intensive quenching.

Equation (4) can be used at continuous casting secondary cooling to accelerate cooling rate of solidifying slabs. It can be also widely used when intensive quenching IQz2 process is applied to quenching of slabs after their solidification. Both processes increase significantly mechanical properties of materials due to formation of fine microstructure during intensive quenching.

Fig. 4 Martensite start temperature \(M_S \) and martensite finish temperature \(M_F \) versus content of carbon in steel.

IV. HIGH TEMPERATURE AND LOW TEMPERATURE THERMO-MECHANICAL TREATMENT

For ultra – high carbon steel (UHCS) martensite start temperature is equal to 100°C and less (see Fig. 4); and it means that during transient nucleate boiling process transformation of austenite into martensite will be delayed for enough long time which can be calculated by Eq. (4). During this time low temperature thermomechanical treatment (LTMT) can be easily fulfilled for high carbon steel and UHCS. It cannot be done when quenching high carbon steel and UHCS in oil. Only alloy steels can be used for LTMT processing. Discovered characteristics (see (Eq.(4) and Eq. (5)) make LTMT possible and this process is effective for plain carbon steels including high carbon steel and UHCS. There is a great probability that ancient metallurgists might have used some empirical data connected with the boiling processes. It could be copper melting form immersed into cold water (see Fig. 3). After the melted material is powered into the form, water is heated to boiling point and remains at this temperature until end of solidification. Since martensite start temperature is equal to boiling point of water, no martensite transformation occur. Then UHCS was heated to high temperature and many times forged. Low temperature and high temperature thermomechanical treatment possibly was used to improve significantly mechanical properties of UHCS. During thermomechanical treatment, quenching process should be interrupted at the end of nucleate boiling process to prevent martensite transformation at LTMT.

Fig. 5 Surface temperature versus time during transient nucleate boiling (self - regulated thermal process): 1 is conventional process; 2 is intensive cooling process which delays transformation austenite into martensite.
The scheme of high temperature and low temperature thermomechanical treatment is shown in Fig. 6; and incorrect low temperature thermomechanical treatment (LTMT) (a) and correct LTMT (b) are shown in Fig. 7. So, discovered characteristics of transient nucleate boiling processes can introduce very simple way of achieving nanoparticles of carbides to strengthen plain carbon steels including UHCS.

V. THE FUTURE OF CONTROLLED CONTINUOUS CASTING

At present time, the continuous casting is widely used to manufacture high quality steels with the fine microstructure. The further improvement of continuous casting could be based on using of non-linear wave mechanics [26, 27] to modify melted material and even distribute nano-carbides in it. Also, the continuous casting is very suitable to produce UHCS with extremely small carbides (nano-carbides) by means of controlled secondary cooling as shown in Fig. 8. Since martensite start temperature of UHCS is below 100°C, the plain water can be used to keep surface temperature at the level of boiling point. It can be done by taking into account characteristics of transient nucleate boiling processes (see Eq 4 and Eq 5). Delaying martensite transformation prevents crack formation and makes possible to increase cooling rate of solid metal within \(A_{C3} - M_S \) to provide fine microstructure. The continuous controlled casting with the use of non-linear wave technology was for the first time mentioned in the certificate of the authors in 1985 [25]. In many cases continuous casting, rolling (including HTMT and LTMT processes), intensive quenching and tempering should be non-interrupted controlled continuous technological line allowing manufacture high quality steels and other metallic materials. To make such approach possible to apply into the practice, more investigations are needed. In particular, the nonlinear wave mechanics is not used enough in metallurgical processes to distribute nano-carbides in melted materials and provide condition for getting fine and nano-microstructures. Also, characteristics of air-water sprays are not enough investigated depending on many parameters: pressure, distance, temperature, amount of water and air and so on. All of these should be investigated very carefully prior to apply to the continuous casting.
material based on phenomena of non-linear mechanics [26, 27]; 5 is vibrating hole tube to deliver nano-particles; 6 are movable air-water sprayers; 7 is support roll; 8 is boundary between melted and solid material.

Fig. 9 Existing types of continuous casting methods [28]: 1 is vertical continuous casting; 2 is curved continuous casting; 3 is horizontal casting; 4 is strip casting of steels. Spray air-water cooling is governed by computer [1].

The existing types of continuous castings are shown in Fig. 9 which include spray cooling [28]. By turning on and off the air-spray cooling, one can keep the surface temperature above the level of martensite start temperature as shown in Fig. 10.

Fig. 10 Governing the process of cooling by turning on and off air-spray cooling by micro-computer [29]: 1 is surface temperature during quenching in vaporizable liquid; 2 is air-water cooling curve obtained by turning on and off spray system governed by micro-computer, 3 is core temperature of steel part during quenching; \(M_S \) is martensite start temperature; \(A_{C3} \) is critical point of austenite transformation.

Turning on and off air-spray method was used by authors [29] in 1991 to simulate oil cooling. There is no doubt that turning on and off air-spray method can be used to simulate transient boiling process which occur during quenching in cold water and water salt solutions of optimal concentration. Therefore, the air-spray controlled cooling can be used to optimize quenching processes shown in Fig. 9. This process is called the secondary cooling because metal is cooled second time after its solidifying.

It was reported by author [30] that intensive secondary cooling of melted Al-Si alloy resulted in silicon nano-particles creation. The nano-microstructure of Al-Si is shown in Fig. 11. More detailed information on performed investigation involving secondary intensive cooling of melted materials was discussed at the International Congress on Heat Treatment of Metals and Alloys in 2007 by Stestsenko [30].

Fig. 11 Nano-microstructure of Al-Si alloys [30, 31].

VI. DISCUSSION

It has been fulfilled numerous investigations worldwide and written numerous books and articles since 1841 concerning the process of Damascus steel manufacturing. Due to these investigations, it has been established that Damascus steel is ultra-high carbon steel containing spherical small carbides (5 -20 \(\mu \text{m} \)). These small carbides create chains (see Fig. 1) which are visible clearly as a macrostructure (Fig. 12).
Calculations show that optimal size of carbides should be at least 100 times less to provide high strength of material. Fig. 1 shows that along with small carbides could be invisible carbides. Authors [17, 18] observed even nanotubes which must have been as a result of intense hammering. It should be underlined that it is impossible to manufacture Damascus steel just cooling melted UHCS in preheated to 700°C casting form or copper form. This process will provide raw material which should be many times hammered and quenched to receive high strengthened material like Damascus steel. The new characteristics of transient nucleate boiling process have been discovered by author [22] which can be used to manufacture high strength materials on the basis of plain carbon steels including UHCS. Also, the nonlinear wave mechanics should be involved to these investigations. The main author of the theory of nonlinear wave mechanics of multiphase systems, Prof. R. F. Ganiev, says that it is the scientific basis for new wave technologies development and has no analogues in world practice. He has emphasized that new wave technologies were designed for many industries: engineering, environmental sciences, the chemical industry, materials science (especially when developing nano-composites), the food processing industry, and many others. They can be also used in metallurgy for getting very fine microstructures and even nanostructures. More detailed information on nonlinear wave mechanics and use of their phenomena in practice is provided in the monograph [27] where new wave technologies in different industries, as already mentioned, are widely discussed.

VII. CONCLUSION

1. The possible technology of Damascus steel manufacturing is explained on the basis of discovered specific characteristics of transient nucleate boiling processes [22].

2. A method for achieving high cooling rate of melted high carbon steel and UHCS is proposed, which can eliminate martensite transformation and provide formation of nanoparticles of carbides in steel.

3. It is impossible to achieve nanoparticles by casting high carbon steel or UHCS into copper or preheated to 700°C forms [23, 24] without their intensive cooling.

4. Continuous casting can be used for ultra-carbon steels with air – water spray cooling of solid cast to cool its surface up to martensite start temperature and support this temperature at the same level by means of turning on and off the sprays governed by microprocessor.

5. Delay of martensite transformation prevents crack formation during cooling and allows engineers and metallurgists to receive fine microstructure consisting of pearlite, bainite, and nano – carbides.

6. In the future nonlinear wave mechanics will be widely used to distribute nano – particles in the melted materials during continuous casting and controlled intensive cooling will be applied for receiving fine microstructures.

REFERENCES

[28] Wikipedia, the free encyclopedia, en.wikipedia.org/wiki/Continuous_casting

Nikolai I. Kobasko, PhD, FASM
Dr. Kobasko received his Ph.D. from the National Academy of Sciences of Ukraine. He is a leading expert on quenching and heat transfer during the hardening of steels. He was the Head of the laboratory of the Thermal Science Institute of the National Academy of Sciences of Ukraine. He is Director of Technology and Research and Development for IQ Technologies, Inc., Akron, Ohio and supervisor of Intensive Technologies, Ltd, Kyiv, Ukraine. The aim of both companies is material savings, ecological problem-solving, and increasing service life of steel parts. He is an ASM International Fellow (FASM). Dr. Kobasko is the author and co-author of more than 250 scientific and technical papers, several books and more than 30 patents and certificates. He received the Da Vinci Diamond Award and Certificate in recognition of an outstanding contribution to thermal science. Dr. Nikolai Kobasko was Editor-in-Chief and Co-Editor of the WSEAS Transactions on Heat and Mass Transfer; and is currently a member of the Editorial Board for the International Journal of Mechanics (NAUN) and the Journal of ASTM International (JAI). The new characteristics of transient nucleate boiling processes were discovered by him which are basis for new technologies development including hypothesis for explanation of Damascus steel manufacturing presented in this paper.