
 

 

  

Abstract— The grinding technology is widely used in the 

manufacturing of various materials. This technology process is driven 

by many input parameters that influence resulting product. This work 

is focused on an application of artificial neural network with radial 

basis function in modeling of polymer materials grinding. In this 

paper the two key parameters were selected – feed rate and depth of 

cut. The task of the artificial neural network based predictor is to 

provide resulting arithmetical mean roughness and maximum height 

of the profile parameter. Furthermore, the article presents extensive 

experimental measurements aimed to grinding of polypropylene, 

polyamide 6 filled with 30% of glass fibers, polytetrafluoro-ethylene 

and polycarbonate. All measurements results are statistically 

evaluated and presented in the figures. 

 

Keywords— artificial neural networks, grinding, prediction, 

radial basis function. 

I. INTRODUCTION 

RINDING is the finishing machining operation to ensure 

the final surface quality. Compared with the operation 

methods of defined tool geometry, a tool for grinding 

consists of a number of statistically oriented grinding grains of 

random shapes. During the grinding process, small chips are 

removed along with high rates of material removal. Therefore 

grinding operations are used for machining difficult-to and 

hardened materials. Grinding polymers, and in the case of this 

article predominantly thermoplastics [7], it is difficult due to 

their nature [16]. Despite this fact, grinding is widely used in 

the plastics industry for the clean-up of intake gates and 

overflows. Grinding is recommended as a secondary 

processing for prototyping and low complex parts made from 

blanks and it is suitable to making thick or tight tolerance 

parts. Grinding thermoplastics is difficult because of their 

relatively low melting temperature and plasticity point, 
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resulting in the clogging of surface grinding wheel. It is 

recommended to use a grinding wheel with more open spaces 

between the grains, together with the excessive amount of 

coolant to prevent overheating and clogging of the grinding 

wheel
 
[19], [20]. 

The resulting surface quality depends on input factors such 

as principally cutting conditions are, followed by grinding 

material and accompanying phenomena [8], [9]. Generally, 

materials hard to machine are ground by finer grit wheels and 

a soft materials are ground by coarse grained wheels. Cutting 

speed strongly influences the selection of a suitable grinding 

wheel degree. It is known that the higher cutting speed is, the 

finer the grinding wheel should be. The choice of optimal 

cutting conditions for grinding is not as strongly influenced by 

the requirement of keeping the optimum tool life, as is the case 

with other machining methods. 

Since grinding is mostly used as finishing method, which 

determines the functional properties of the surface, the 

knowledge of the surface quality and its control are crucial. It 

is therefore an effort to achieve high levels of surface quality; 

conditionally improved by the grinding process, choosing the 

appropriate cutting conditions. The quality of grinded surface 

is generally defined as the sum of the properties under 

consideration upon demands. It is a complex of system factors. 

Surface quality includes physical, chemical and geometric 

properties [10]. The geometric surface properties include 

roughness parameters as a characteristic of micro geometry in 

the cut plane perpendicular to the surface [18]. 

Artificial neural networks (ANNs) are commonly used for 

modeling of technological processes [1]-[6]. Typically 

multilayered feed-forward neural networks [12]-[15] are 

utilized. However, these ANNs do not provide sufficient 

results in all applications [17]. Therefore, it should be 

considered other types of artificial neural networks such as 

recurrent neural networks or neural networks with radial basis 

function (RBF). This paper focuses on application of the radial 

basis function neural networks, because they offer very simple 

training and superior prediction accuracy. What is more, RBF 

networks can also lessen the influence of outlying values, what 

is in this particular case very useful because the measured data 

can contain noise and outlying values. 

II. RADIAL BASIS NEURAL NETWORKS 

Radial basis function (RBF) neural networks are often used 

in various applications such as function approximation, time 

Prediction of grinding parameters for plastics by 

artificial neural networks 

David Samek, Ondrej Bilek, and Jakub Cerny 

G

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 5, 2011 250



 

 

series prediction and control. Generally two basic types of 

RBF networks are used: feed-forward [21]-[23] and recurrent 

[24], [25]. However, typical structure of radial basis neural 

networks is feed-forward and contains two layers. As is 

depicted in the Fig. 1, the hidden layer has radial basis 

function (RBF), whilst the linear transfer function is used in 

the output layer [4].  

The radial basis function in the hidden layer is a function 

that normalizes radial distance between input vector u and the 

vectors formed from the rows of weight matrix W1. The bias 

vector b decides the range of influence of the particular RBF 

unit around its center defined in the matrix W1. General 

mathematical description of RBF networks is as follows [5]: 

 

   )  +( = 1222 xWby S          (1) 

 

   )-( = 1111 bWux S ,          (2) 

 

where y is the output vector of the network, x1 stands for the 

output vector of the hidden layer and Si is transfer function of 

the i-th layer of the radial basis network. 

 

 
Fig. 1 Schema of radial basis function neural network 

 

Radial basis networks are popular for their fast training and 

adaptation. However, these positives bring some 

disadvantages. The main drawback of RBF network is high 

memory requirement, because in the classic approach the 

number of neurons in the hidden layer is equal to the number 

of vectors of training data. Then, in the radial basis neural 

networks the weights W1 and biases b1 of the hidden layer are 

determined directly from the data. No training is involved. The 

weights W2 and biases b2 of the output layer are determined by 

supervised learning [6]. This methodology was adopted in the 

paper. 

Though, there are more effective training methods such as 

parsimonious principle training [26], [27] that leads to less 

neurons in the hidden layer, but suffers overfitting; another 

approaches combine regularization with parsimonious 

principle to overcome the overfitting [28]-[30].  
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Fig. 2 The dependence of Ra on the depth of cut ae for 

material PP for constant feed rate vf 
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III.  METHODOLOGY  

For the experiment, polymer workpieces of block shape 50 

x 50 x 20 mm were prepared from polypropylene (PP), 

polyamide 6 filled with 30% of glass fibres (PA6GF30), 

polytetrafluoroethylene (PTFE) and polycarbonate (PC) 

(details are in Table I). The Table I uses following 

nomenclature: MoE stands for modulus of elasticity (MPa), 

US for ultimate stress (MPa), MT for melting temperature 

(°C), and H for hardness (Shore). 

Workpieces were attached to the surface grinding machine 

BRH 20.03F. Grinding wheel 99BA 46 J 9 V from sintered 

corundum with high porosity, that is recommended for 

polymer machining. Grinding was carried out with stroke back 

and forth, at specified cutting condition (Table II) without 

cooling. For the preparation of experimental specimens, the 

depth of cut and feed rate was changed while the grinding 

wheel revolution was constant. 

 

Table I Physical and mechanical properties of polymer 

workpieces 

 
MoE 

(MPa) 

US 

(MPa) 

MT 

(°C) 

H 

(Shore) 

PP- Polypropylene 1500 27 170 70 

PA6GF30- Polyamide 6 

filled with 30% of glass 

fibres 

7700 140 220 86 

PTFE-Polytetrafluoro-

ethylene 
500 30 320 55 

PC - Polycarbonate 2200 65 140 95 

 

Prepared polymer specimens were measured using the stylus 

surface roughness tester Mitutoyo SJ-301 in the transverse 

direction to the feed rate vector. Measuring diamond tip radius 

was r	 = 10 mm and measurements were made according to 

ISO 4287. For the purpose of this study, measurements were 

multiple repeated at the same conditions. 

 

Table II Conditions for the preparation of experimental 

specimens 

Grinding wheel type 99BA 46 J 9 V 

Grinding wheel size 250 x 20 x 76 (mm) 

Grinding wheel revolutions nw 2550 (min
-1

) 

Depth of cut ae 
0.01; 0.02; 0.03 and 

0.04 (mm) 

Feed rate vf 8, 12, 16, 24 (m/min) 

 

IV. SIMULATIONS AND RESULTS 

The measured data were split into two parts. The first part 

was used for artificial neural network training, while the 

second group were processed and used as testing data for ANN 

verification.  
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Fig. 3 The dependence of Rz on the depth of cut ae for material 

PP for constant feed rate vf 
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All mathematical computations were done in MATLAB 

R2007b and MATLAB Neural Network Toolbox ver. 5.1. The 

RBF network was trained using build-in function (newrbe).  

 

Table III Predicted values of Ra for PP 

Ra (µm) vf (m/min) 

ae (mm) 8 12 16 24 

0.01 0.8990 0.8820 0.7450 0.9150 

0.02 0.8130 0.9249 0.8360 0.9071 

0.03 0.8060 1.0540 0.7981 1.0289 

0.04 0.8480 1.0640 0.9090 1.1020 

Rz (µm) vf (m/min) 

ae (mm) 8 12 16 24 

0.01 5.1112 4.9331 4.1012 5.1300 

0.02 4.6160 4.9768 4.6177 4.9015 

0.03 4.2691 5.7503 4.2865 5.4567 

0.04 4.6751 5.9270 4.8060 5.9053 

 

There had to be created one ANN for each ground material. 

The predictor has two inputs (feed rate vf and depth of cut ae) 

and two outputs describing surface roughness (arithmetical 

mean roughness Ra and maximum height of the profile Rz). 

Predicted values for all materials are shown in tables III – VI. 

After that, the predictors were subjected to verification 

using the second part of data. The verification data were 

statistically evaluated. Then, the mean values were computed 

for each combination of input parameters. These mean values 

(Fig. 2-17) were compared to the predicted data. 

As can been seen from figures, the predictors provide 

excellent predictions of desired output parameters for all tested 

polymers. 

 

Table IV Predicted results for PA6GF30 

Ra (µm) vf (m/min) 

ae (mm) 8 12 16 24 

0.01 0.5889 0.6250 0.4490 0.5360 

0.02 0.5320 0.5800 0.4850 0.5740 

0.03 0.5640 0.5150 0.7290 0.5550 

0.04 0.5320 0.4990 0.6250 0.5340 

Rz (µm) vf (m/min) 

ae (mm) 8 12 16 24 

0.01 3.8125 4.0379 2.9893 3.3909 

0.02 3.3337 3.6366 3.0759 3.6727 

0.03 3.3390 3.3112 4.8340 3.4910 

0.04 3.2867 3.0759 3.8360 3.3026 
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Fig. 4 The dependence of Ra on the feed rate vf for material PP 

for constant depth of cut ae 
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Table V Predicted results for PTFE 

Ra (µm) vf (m/min) 

ae (mm) 8 12 16 24 

0.01 0.3920 0.6040 0.5090 0.7180 

0.02 0.5450 0.6290 0.5201 0.5280 

0.03 0.5350 0.7810 0.6121 0.6500 

0.04 0.6120 0.5640 0.6621 0.6500 

Rz (µm) vf (m/min) 

ae (mm) 8 12 16 24 

0.01 2.2219 3.4180 2.7301 3.8990 

0.02 3.0070 3.3401 2.8902 2.8369 

0.03 2.9970 4.0399 3.3591 3.4941 

0.04 3.4260 3.0200 3.5012 3.4659 

 

Table VI Predicted results for PC 

Ra (µm) vf (m/min) 

ae (mm) 8 12 16 24 

0.01 0.6751 0.8590 0.5690 0.6660 

0.02 0.6361 0.7680 0.7000 0.6860 

0.03 0.7270 0.6520 0.7160 0.7470 

0.04 0.9811 0.7990 0.8850 0.6820 

Rz (µm) vf (m/min) 

ae (mm) 8 12 16 24 

0.01 3.5323 4.3191 3.1059 3.6260 

0.02 3.1602 4.0151 3.6220 3.6770 

0.03 3.6331 3.5331 3.7849 3.8320 

0.04 4.7112 3.8961 4.7359 3.5511 

 

V. MEASUREMENT EVALUATION 

To evaluate the grinding process, box plots were chosen to 

graphically characterize the shape of the distribution, the mean 

and variability. In the box plots (Fig. 2 to 17) can be seen the 

values of roughness parameters Ra and Rz. Where the middle 

line in the box with the x symbol represents the median, and 

the + symbol represents the mean. Boundaries of boxes 

represent the first and third quartile, which is 50% of all 

measured values. The area between first and third quartile 

indicate the interquartile range (IQR). Extreme values (1.5 × 

IQR) are the limit line, which is 25% of the values of the 

lowest and highest values. Points that are located at a distance 

greater than 1.5 × IQR from the median are shown as asterisk. 

These points represent the possible devious measurement.  
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Fig. 5 The dependence of Rz on the feed rate vf for material PP 

for constant depth of cut ae 
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Fig. 6 The dependence of Ra on the depth of cut ae for 

material PA6GF30 for constant feed rate vf 
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Fig. 7 The dependence of Rz on the depth of cut ae for material 

PA6GF30 for constant feed rate vf 
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Fig. 8 The dependence of Ra on the feed rate vf for material 

PA6GF30 for constant depth of cut ae 
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Fig. 9 The dependence of Rz on the feed rate vf for material 

PA6GF30 for constant depth of cut ae 
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Fig. 10 The dependence of Ra on the depth of cut ae for 

material PTFE for constant feed rate vf 
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Fig. 11 The dependence of Rz on the depth of cut ae for 

material PTFE for constant feed rate vf 
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Fig. 12 The dependence of Ra on the feed rate vf for material 

PTFE for constant depth of cut ae 
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Fig. 13 The dependence of Ra on the feed rate vf for material 

PTFE for constant depth of cut ae 
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Fig. 14 The dependence of Ra on the depth of cut ae for 

material PC for constant feed rate vf 

Depth of cut ae (mm)

M
a
x
im

u
m
 h
e
ig
h
t 
o
f 
th
e
 p
ro
fi
le
 R
z
 (
u
m
)

0.040.030.020.01

7

6

5

4

3

2

PC, vf = 8 (m/min)

 

Depth of cut ae (mm)

M
a
x
im

u
m
 h
e
ig
h
t 
o
f 
th
e
 p
ro
fi
le
 R
z
 (
u
m
)

0.040.030.020.01

7

6

5

4

3

2

PC, vf = 12 (m/min)

 

Depth of cut ae (mm)

M
a
x
im

u
m
 h
e
ig
h
t 
o
f 
th
e
 p
ro
fi
le
 R
z
 (
u
m
)

0.040.030.020.01

6

5

4

3

2

PC, vf = 16 (m/min)

 

Depth of cut ae (mm)

M
a
x
im

u
m
 h
e
ig
h
t 
o
f 
th
e
 p
ro
fi
le
 R
z
 (
u
m
)

0.040.030.020.01

5.0

4.5

4.0

3.5

3.0

2.5

2.0

PC, vf = 24 (m/min)

 
Fig. 15 The dependence of Rz on the depth of cut ae for 

material PC for constant feed rate vf 
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Fig. 16 The dependence of Ra on the feed rate vf for material 

PC for constant depth of cut ae 
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Fig. 17 The dependence of Rz on the feed rate vf for material 

PC for constant depth of cut ae 
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Based on graphical evaluation was found that the material 

PP (Fig. 2-5) has the mean roughness parameter Ra values in 

the range from 0.9 to 1.1 µm. The actual measurement was 

influenced by grinding grains, remained bonded on the surface, 

leading to difficult quantification of roughness parameters. 

Moreover while grinding; melted chips are adhered on the 

grinding wheel as well as on the surface material, which has a 

negative effect on surface roughness. Generally, the material 

PP is difficult to grind. The material PA6GF30 falls into the 

group medium-grindable material. The values of roughness Ra 

are ranging from 0.4 to 0.7 µm (Fig. 6 – 9). It is possible to 

observe that the narrow range of measured values of mean 

roughness Ra affects glass reinforcement of the material. 

PTFE material (Fig. 10- 13) also exhibits low roughness 

values for all variables (feed rate, depth of cut). The mean 

values of roughness parameter Ra are ranging from 0.4 to 0.8 

µm. It is possible to say that to the increasing depth of cut 

roughness parameter increases approximately in direct 

proportion. An interesting feature of this material is greater 

heat generation during the grinding, compared to the other 

materials, resulting in deterioration of ground surface. 

The PC material belongs to a group of material very well to 

grind. The mean values of roughness parameter Ra (Fig. 14 - 

17) are ranging from 0.6 to 1.0 µm. Similarly to PTFE 

material, increasing depth of cut has adverse effect on the 

surface quality. 

From box plots (Fig. 2 -17) is not entirely clear, but the 

assembled statistical model [11] determined that feed rate vf 

does not affect roughness parameter Ra. An important variable 

in the grinding process not only for metal materials but also for 

plastics, as shown in this study, is the depth of cut ae, to the 

extent that increasing depth of cut deteriorates the final surface 

quality. 

VI. CONCLUSION 

This paper presented application of artificial neural 

networks to modeling of industrial process. The obtained 

predictions were even surprisingly good. It is probably caused 

by the nature of the real measured data. Because the data were 

very noised and obtained lot of outlying values, it was 

necessary to use radial basis neural network that in this case 

produces approximately mean of the training data. 
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