Probabilistic Reliability Analysis of High-Performance Reinforced Concrete Beam using Matlab software

David Pustka

Abstract—Significant improvement of computer technology in recent decades brought possibility to exploit fully probabilistic methods for reliability evaluation of structural systems and their members. One of these methods is SBRA (Simulation-Based Reliability Method) using direct Monte Carlo simulation technique. Application of this method allows utilize more precise calculation models, consistent description of random variables using truncated histograms and as well direct quantification of reliability. The following paragraphs of this paper describes application of this method in design and reliability assessment of high-performance reinforced concrete beam.

Keywords—Computer simulation, concrete, reinforcement, reliability.

I. INTRODUCTION

■ ODAY'S codes for design of civil engineering L structures are predominantly based on partial factor design method. This method was developed more than a half of century ago in time of primitive (from today's viewpoint) calculation tools. Limited calculating possibilities of this method led to introduction of computational models, which we can intercept today as excessively simplified. Reliability of structures is influenced by a lot of quantities, which are less or more random. Partial factor design method describes these random quantities using characteristic values and corresponding partial factors. This simplification then leads to impossibility to quantify resulting reliability of evaluated structure.

Rapid development of computer technology (especially in recent decades) brought possibility to exploit computer simulation for fully probabilistic reliability analyses of structures - see e.g. [1]-[18]. One of probabilistic methods, which has been developed for more than two decades, is SBRA (Simulation-Based Reliability Assessment) method - see e.g. [4], [5], [7]. This method uses computer simulation Monte Carlo for modeling of various processes influenced by omnipresent randomness. Versatility of this method allows its use for solution of wide spectrum not only technical problems.

Usefully this method can be used as well for reliability analysis of civil engineering structures. Advantage of this method is possibility to directly calculate probability of failure (in comparison with partial factor design method, where this indicator cannot be calculated). The SBRA method allows description of random quantities using histograms, which can be acquired e.g. by repeating of various experiments.

Potential of the SBRA method within design and assessment of civil engineering structures is outlined in the following chapters. On example of simply supported beam made of highperformance reinforced concrete is described possible approach to fully probabilistic reliability analysis.

II. SOLVED EXAMPLE - INPUT DATA

The goal of considered example is design and reliability assessment of simply supported beam from the viewpoint of possible failure due to pure bending. The beam is considered to be of high-performance concrete (see e.g. [19]-[27]). Near the bottom surface is provided longitudinal tension bar reinforcement. In the first step it is calculated necessary number of reinforcing bars. Subsequently it is performed reliability assessment of this structural member.

Cross-section dimensions are considered to be the same along the whole length of the beam. The beam has only one bay between pin supports at the ends. The beam is loaded by a dead load, long-lasting and short-lasting live loads. All these loads are uniformly spread along the whole length of the beam. Effective length of the beam is considered as constant by $l_{\rm eff} = 6.55$ m. Modulus of elasticity of reinforcing steel is considered as well as constant by value $E_s = 200$ GPa [21]. The following quantities are considered as random variables. Their nominal values are: cross-section width $b_{nom} = 350$ mm, cross-section height $h_{nom} = 700$ mm, diameter of longitudinal tension reinforcing bars located near the bottom surface of the beam $\phi_{s1,nom} = 18$ mm, concrete cover of longitudinal reinforcing bars $c_{1,\text{nom}} = 31 \text{ mm}$, dead load $g_{1,\text{nom}} = 20 \text{ kNm}^{-1}$, long-lasting live load $q_{1,\text{nom}} = 41 \text{ kNm}^{-1}$, short-lasting live load $q_{2,\text{nom}} = 39 \text{ kNm}^{-1}$. Random nature of considered random quantities are represented by histograms shown in Fig. 1-10. Random quantities are calculated as multiplication of nominal value and random realization obtained from corresponding histogram using Monte Carlo method.

This work was supported by research project CZ.1.07/2.3.00/20.0013 – "Formation and internationalisation of prime scientific teams and increase of their excellence at the Faculty of Civil Engineering of VŠB-TUO", financed of sources of EU and state budget of the Czech Republic.

F 0Rwunne'ku'y ky "XUD"/"Vgej plecn'Wplxgtuk{ "qh'Qurtcxc."Hcewn{ "qh'Ekxki" Gpi kpggtkpi .'F gr ct vo gpv'qh'Urtwewtgu "NORqf gurg"3: 97 i39.'92: '55" Qurtcxc/Rqtwdc.'E| gej 'T gr wdne *go ckr<f ct wurne B xud(e| +0

Fig. 1 Histogram representing cross-section width b_{var} [-]

Fig. 2 Histogram representing cross-section height h_{var} [-]

Fig. 4 Histogram of strength of concrete in tension $f_{ct,var}$ [MPa]

Fig. 5 Histogram of steel yield of reinforcing bars $f_{y,var}$ [MPa]

Fig. 6 Histogram representing dead load $g_{1,var}$ [-]

Fig. 7 Histogram of long-lasting live load $q_{1,\text{var}}$ [-]

Fig. 8 Histogram of short-lasting live load $q_{2,var}$ [-]

Fig. 9 Histogram of diameter of tension reinforcing bars $\phi_{s1,var}$ [-]

Fig. 10 Histogram of concrete cover $c_{1,var}$ [-]

Calculated statistics for input random variable quantities are shown in Fig. 11-20.

Variable: Minimum value: Maximum value: Bins of histogram: Mean: Variance: Standard deviation: Median: Variance coeff.: Skewness: Concentration coeff.: Kurtosis: Quantile(7e-05):	b [m] 0.33950003855584127 0.36049996288896596 1000 0.35000316605633969 1.6061712129381699e-05 0.0040077065922272427 908.5 0.011450486683832242 0.002919715213502416 2.6196134569180449 -0.38038654308195508 0.33950003855584127
Kurtosis:	-0.38038654308195508
Quantile(7e-05):	0.33950003855584127
Quantile(0.5):	0.35001051119503818
Quantile(0.99993):	0.36049996288895669
Probability(0):	0

Fig. 11 Statistics for cross-section width b_{var} [-]

Variable:	h [m]
Minimum value:	0.67900027594294476
Maximum value:	0.72099990951092274
Bins of histogram:	1000
Mean:	0.70000800576901745
Variance:	6.4281024622600593e-05
Standard deviation:	0.0080175448001617421
Median:	896
Variance coeff.:	0.011453504437215396
Skewness:	-0.0004548371881077488:
Concentration coeff :	2.6204764925700821
Skewness:	-0.0004548371881077488
Concentration coeff.:	2.6204764925700821
Kurtosis:	-0.37952350742991792
Quantile(7e-05): Quantile(0.5):	0.67900027594294476 0.7000211135645662
Quantile(0.99993):	0.72099990951094439
Probability(0):	0

Fig. 12 Statistics for cross-section height h_{var} [-]

Variable:	f [Pa]
Minimum value:	53766626.77704341
Maximum value:	84204895.132851854
Bins of histogram:	1000
Mean:	67996843.919184014
Variance:	26773505334173.34
Standard deviation:	5174312.0638567349
Median:	765
Variance coeff.:	0.076096356325104392
Skewness:	0.36418057285507932
Concentration coeff.:	2.9639004210320117
Kurtosis:	-0.036099578967988322
Quantile(7e-05):	53797095.514136314
Quantile(0.5):	67538495.943036243
Quantile(0.99993):	84174426.395758167
Probability(0):	0

Fig. 13 Statistics for strength of concrete $f_{c,var}$ [MPa]

Variable:	f _{ct} [Pa]
Minimum value:	2270203.0798734226
Maximum value:	6695706.5501103764
Bins of histogram:	1000
Mean:	4354220.0332858935
Variance:	614360067038.45544
Skewness:	0.1512487357303102
Concentration coeff.:	2.6793703846370236
Kurtosis:	-0.32062961536297641
Quantile(7e-05):	2274633.0132770631
Quantile(0.5):	4316832.3123553554
Quantile(0.99993):	6691276.6167069236
Probability(0):	0

Fig. 14 Statistics for strength of concrete in tension $f_{ct,var}$ [MPa]

Variable:	f _v [Pa]
Minimum value:	459288302.5801689
Maximum value:	638632877.22401273
Bins of histogram:	1000
Mean:	548960158.32616603
Variance:	869399298832219.37
Standard deviation:	29485577.81072332
Median:	772
Variance coeff.:	0.053711689935072464
Skewness:	-0.0031283463696372125
Concentration coeff.:	2.8333006588266336
Kurtosis:	-0.16669934117336638
Quantile(7e-05):	459467826.67891151
Quantile(0.5):	549050351.95147097
Quantile(0.99993):	638453353.12528789
Probability(0):	0

Fig. 15 Statistics for steel yield of reinforcing bars $f_{y,var}$ [Pa]

Variable:	g ₁ [Nm ⁻¹]
Minimum value:	16360 073244173251
Maximum value:	19999.988895635855
Bins of histogram:	1000
Mean:	18179.072380247857
Variance:	357914.62523841363
Standard deviation:	598.25966372338155
Median:	770.5
Variance coeff.:	0.032909251429869973
Skewness:	0.00012332905619552494
Concentration coeff.:	2.8270045827684802
Kurtosis:	-0.17299541723151979
Quantile(7e-05):	16363.716803383924
Quantile(0.5):	18178.209290298495
Quantile(0.99993):	19996.345336423728
Probability(0):	0

Fig. 16 Statistics for dead load $g_{1,var}$ [-]

Variable: Minimum value: Maximum value: Bins of histogram: Mean: Variance: Standard deviation: Median: Variance coeff.: Skewness: Concentration coeff.: Kurtosis: Outantile(7a=05):	q ₁ [Nm ⁻¹] 0.0006370806532599516 41080.137097732004 1000 19582.926319506503 112100638.14223386 10587.75881946353 444 0.54066275434023936 -0.64952001415258476 2.2689703873849738 -0.73102961261502619
Kurtosis: Quantile(7e-05):	2.2689703873849738 -0.73102961261502619 0.0006370806532599516
Quantile(0.5): Quantile(0.99993): Probability(0):	24919.482814412648 41080.13709773156 0

Fig. 17 Statistics for long-lasting live load $q_{1,\text{var}}$ [-]

Variable:	q ₂ [Nm ⁻¹]
Minimum value:	9.5896057458907442e-05
Maximum value:	39076.193906802815
Bins of histogram:	1000
Mean:	2154.0398412522509
Variance:	40427914.889439248
Standard deviation:	6358.2949671621282
Median:	89
Variance coeff.:	2.9518000760216832
Skewness:	3.7666684459060726
Concentration coeff.	17.426617374993555
Kurtosis:	14.426617374993555
Quantile(/e-05):	9.5896057458907442e-05
Quantile(0.5):	39.115405016084239
Quantile(0.99993):	39037.078597683198
Probability(U):	0

Fig. 18 Statistics for short-lasting live load $q_{2,var}$ [-]

Variable:	φ [m]
	*s1 L
winimum value:	0.017820016807083557
Maximum value:	0.018179996591486031
Bins of histogram:	1000
Mean:	0.017999974288492353
Variance:	3.4980200037796842e-09
Standard deviation:	5.9144061441362687e-05
Median:	761
Variance coeff.:	0.0032857858846595325
Skewness:	-0.0013540664758810773
Concentration coeff.:	2.8288042501672725
Kurtosis:	-0.17119574983272745
Quantile(7e-05):	0.017820377147208084
Quantile(0.5):	0.018000186869347106
Quantile(0.99993):	0.018179636251361601
Probability(0):	0

Fig. 19 Statistics for diameter of tension reinforcing bars $\phi_{s1,var}$ [m]

Variable:	c ₁ [m]
Minimum value:	0.029450025002921602
Maximum value:	0.03254999329258431
Bins of histogram:	1000
Mean:	0.031000215647842153
Variance:	3.4960071464632431e-07
Standard deviation:	0.00059127042429528323
Median:	910.5
Variance coeff.:	0.019073106813579217
Skewness:	0.0010506467233191402
Concentration coeff.:	2.6239325454270177
Kurtosis:	-0.3760674545729823
Quantile(7e-05):	0.029450025002921602
Quantile(0.5):	0.030998457612071623
Quantile(0.99993):	0.032549993292584116
Probability(0):	0

Fig. 20 Statistics for concrete cover $c_{1,var}$ [m]

III. SOLVED EXAMPLE - CALCULATION

A. Design of Reinforcement

Calculation is performed for critical cross-section considered in the mid-span of the beam. Total uniformly distributed load acting on the beam is calculated as a sum of individual load components:

$$f_1 = g_1 + q_1 + q_2 \tag{1}$$

Bending effect in the mid-span cross-section of the beam is calculated using equation:

$$M_{E} = \frac{1}{8} f_{1} \cdot l_{eff}^{2}$$
 (2)

Vertical distance of the center of gravity of longitudinal tension reinforcement to the tensioned edge of the concrete cross-section:

$$d_1 = c_1 + 0.5 \cdot \phi_{s1} \tag{3}$$

Vertical distance of the center of gravity of longitudinal tension reinforcement to the compressed edge of the concrete cross-section:

$$d = h - d_1 \tag{4}$$

Total required cross-section area of tension reinforcement to resist bending moment due to load:

$$A_{s1,req} = \frac{b \cdot d \cdot \eta \cdot f_{cd}}{f_{yd}} \cdot \left(1 - \sqrt{1 - \frac{2 \cdot M_{Ed}}{b \cdot d^2 \cdot \eta \cdot f_{cd}}}\right)$$
(5)

Cross-section area of single reinforcing bar of tension reinforcement:

$$A_{s1,\sin gle} = \pi \cdot \frac{\cdot \phi_{s1}^2}{4} \tag{6}$$

Required number of reinforcing bars of tension reinforcement:

$$n_{s1,req} = \frac{A_{s1,req}}{A_{s1,sin\,ele}} \tag{7}$$

B. Reliability Assessment

Clear distance between longitudinal reinforcing bars:

$$a_{s1} = \frac{b - 2 \cdot c_1 - n_{s1} \cdot \phi_{s1}}{n_{s1} - 1} \tag{8}$$

Minimum clear distance between longitudinal reinforcing bars (requirement in [21]):

$$a_{s1,\min} = \max(1.2 \cdot \phi_{s1}; d_{g,\max} + 5 \cdot mm; 20 \cdot mm) \tag{9}$$

Reliability criterion - minimum clear distance between longitudinal reinforcing bars:

$$RF_{as1,\min} = a_{s1} - a_{s1,\min} \tag{10}$$

Axial distance of longitudinal reinforcing bars:

$$s_1 = a_{s1} + \phi_{s1} \tag{11}$$

Average width of tensioned part of the concrete crosssection:

$$b_t = b \tag{12}$$

Minimum total cross-section area of longitudinal tension reinforcement (requirement based on [21]):

$$A_{s1,\min} = \max(\frac{0.285459 \cdot f_{ct} \cdot b_{t} \cdot d}{f_{y}}; 0.0013 \cdot b_{t} \cdot d)$$
(13)

Total cross-section area of longitudinal tension reinforcement:

$$A_{s1} = n_{s1} \cdot \frac{\pi \cdot \phi_{s1}^2}{4}$$
(14)

Reliability criterion - minimum cross-section area of longitudinal tension reinforcement:

$$RF_{As1,\min} = A_{s1} - A_{s1,\min} \tag{15}$$

Maximum cross-section area of longitudinal reinforcement (requirement in [21]):

$$A_{\rm smax} = 0.04 \cdot b \cdot h \tag{16}$$

Reliability criterion - maximum cross-section area of longitudinal reinforcement:

$$RF_{As1,\max} = A_{s1,\max} - A_{s1} \tag{17}$$

Factor for concrete strength in compression (based on [21]): - if $f_c \le 50$ MPa, then:

$$\eta = 1 \tag{18a}$$

- otherwise:

$$\eta = 1 - (f_c - \frac{58}{200} \cdot MPa)$$
(18b)

Factor for effective height of compressed part of the concrete cross-section (based on [21]):

- if $f_c \leq 50$ MPa, then:

$$\lambda = 0.8 \tag{19a}$$

- otherwise

$$\lambda = 0.8 - (f_c - \frac{58}{400} \cdot MPa) \tag{19b}$$

Distance of neutral axis to the compressed edge of the concrete cross-section:

$$x = \frac{A_{s1} \cdot f_y}{b \cdot \lambda \cdot \eta \cdot f_c}$$
(20)

Relative strain of steel reinforcement corresponding to steel yield:

$$\varepsilon_{y} = \frac{f_{y}}{E_{s}} \tag{21}$$

Limit relative strain of compressed concrete (based on [21]):

$$\varepsilon_{cu3} = \frac{1}{1000} \cdot neg(sign(\frac{f_c}{MPa} - 58)) \cdot 3.5 +$$

$$+ zero(sign(\frac{f_c}{MPa} - 58)) \cdot 3.5 +$$

$$+ pos(sign(\frac{f_c}{MPa} - 58)) \cdot$$

$$\cdot \left(2.6 + 35 \cdot \left(\frac{(90 - \frac{f_c}{MPa}) + 8}{100}\right)^4\right)$$
(22)

Limit ratio $x_{\text{bal},1}/d$:

$$\xi_{bal,1} = \frac{\varepsilon_{cu,3}}{\varepsilon_{cu,3} + \varepsilon_{y}}$$
(23)

Maximum distance of neutral axis to the compressed edge of the concrete cross-section:

$$x_{bal,1} = \xi_{bal,1} \cdot d \tag{24}$$

Reliability criterion - location of neutral axis:

$$RF_x = x_{bal,1} - x \tag{25}$$

ISSN: 1998-4448

Lever arm of internal forces (vertical distance of the center of gravity of longitudinal tension reinforcement to the center of gravity of compressed part of the concrete cross-section):

$$z_1 = d - 0.5 \cdot x \tag{26}$$

Force in longitudinal tension reinforcement corresponding to the steel yield:

$$F_{s,1} = A_{s1} \cdot f_y \tag{27}$$

Bending resistance of the cross-section:

$$M_R = F_{s1} \cdot z_1 \tag{28}$$

Reliability criterion - assessment of safety in bending:

$$RF_{M} = M_{R} - M_{E} \tag{29}$$

Equations (9), (13), (16), (18) and (19) were considered according to requirements defined in EN 1992-1-1 (see [21]). Equations (13), (18) and (19) were against EN 1992-1-1 [21] modified with regard to possible application within probabilistic calculation. In equation (22) there were used functions, which were considered this way:

sign (x) = -1 for x < 0, = 1 for x > 0, = 0 for x = 0; pos (x) = 1 for x > 0, = 0 for $x \le 0$; neg (x) = 1 for x < 0, = 0 for $x \ge 0$; zero (x) = 1 pro x = 0, = 0 pro $x \ne 0$;

IV. SOLVED EXAMPLE - OUTPUTS

Resulting histograms of calculated random quantities obtained from computer simulation Monte Carlo are shown in Fig. 21-35. Computer simulation was performed for simulation steps equal to 10^6 . Calculation was performed using probabilistic modules [28] running under commercial software Matlab (see e.g. [29]-[32]).

Fig. 21 Histogram of bending moment $M_{\rm E}$ [Nm]

Fig. 22 Histogram of effective height d [m]

Fig. 23 Histogram of total required cross-section area $A_{s1,req}$ [m²]

Fig. 24 Histogram of cross-section area of one bar $A_{s1,single}$ [m²]

Fig. 25 Histogram of required reinforcing bars $n_{s1,req}$ [-]

Fig. 27 Histogram of reliability function $RF_{As1,min}$ [m²]

Fig. 28 Histogram of reliability function $RF_{As1,max}$ [m²]

Fig. 29 Histogram of depth of neutral axis x [m]

Fig. 30 Histogram of limiting depth of neutral axis $x_{bal,1}$ [m]

Fig. 31 Histogram of reliability function RF_x [m]

Fig. 33 Histogram of force in tension reinforcment F_{s1} [N]

Fig. 34 Histogram of bending resistance $M_{\rm R}$ [Nm]

Fig. 35 Histogram of reliability function $RF_{\rm M}$ [Nm]

Statistical parameters obtained from computer simulation are shown in Fig. 36-50.

Variable:	M _⊨ [Nm]
Minimum value:	87870.961841447759
Maximum value:	526734.16104393301
Bins of histogram:	1000
Mean:	214062.50719650765
Variance:	4397935394.4844837
Standard deviation:	66316.931431456353
Median:	605.5
Variance coeff.:	0.30980171306027893
Skewness:	0.10484462304174134
Concentration coeff.:	3.6199607336262889
Kurtosis:	0.6199607336262889
Quantile(7e-05):	89188.869346560343
Quantile(0.5):	231522.87989871937
Quantile(0.99993):	508722.75847406616
Probability(0):	0

Fig. 36 Statistics for load effect $M_{\rm E}$ [Nm]

Variable: Minimum value: Maximum value: Bins of histogram: Mean: Variance: Standard deviation: Median: Variance coeff.: Skewness: Concentration coeff.: Kurtosis: Quantile(7e-05):	d [m] 0.63747958190927079 0.68244407997936807 1000 0.66000784474904417 6.464324182937785e-05 0.0080401021031687066 867 0.012181828090582479 -0.00046795634287367005 2.6246515024018078 -0.37534849759819222 0.63824474353809146
Quantile(7e-05):	0.63824474353809146
Quantile(0.5):	0.65998433569811421
Quantile(0.99993):	0.68176893736571464
Probability(0):	0

Fig. 37 Statistics for effective height d [m]

Variable:
Minimum value:
Maximum value:
Bins of histogram:
Mean:
Variance:
Standard deviation:
Median:
Variance coeff.:
Skewness:
Concentration coeff.:
Kurtosis:
Quantile(7e-005):
Quantile(0.5):
Quantile(0.99993):
Probability(0):

 $\begin{array}{l} \mathsf{A}_{s1,req} \ [m^2] \\ 0.0002161932783232462 \\ 0.0016573389229828425 \\ 1000 \\ 0.0006002874039972158 \\ 3.6486516161369391e-008 \\ 0.00019101443966718692 \\ 0.00063598645409495983 \\ 0.31820497714137086 \\ 0.18177175568148549 \\ 3.6937931694959301 \\ 0.6937931694959301 \\ 0.69379316949593006 \\ 0.00022629139595349356 \\ 0.00063598645409495983 \\ 0.0015116375114606791 \\ 0 \end{array}$

Fig. 38 Statistics for $A_{s1,req}$ [m²]

Variable:	A_{1} [m ²]
Minimum value:	0.00024940573627884601
Maximum value:	0.00025958351403747624
Bins of histogram:	1000
Mean:	0.00025447116312888988
Variance:	2.8008944523242963e-012
Standard deviation:	1.6735873004789133e-006
Median:	0.0002544691552438531
Variance coeff.:	0.0065767267296657885
Skewness:	0.01039758300853229
Concentration coeff.:	2.828959546559926
Kurtosis:	-0.17104045344007401
Quantile(7e-005):	0.00024941592424457037
Quantile(0.5):	0.0002544691552438531
Quantile(0.99993):	0.00025956313810603326
Probability(0):	0

Fig. 39 Statistics for $A_{s1,single}$ [m²]

Variable:	n _{s1 reg} [-]
Minimum value:	0.85132979162183231
Maximum value:	6.5650410287278911
Bins of histogram:	1000
Mean:	2.3590693520479635
Variance:	0.56380442791148377
Standard deviation:	0.75086911503369469
Median:	2.4985258239407173
Variance coeff.:	0.31829039463458231
Skewness:	0.18255911254105825
Concentration coeff.:	3.6941216465358235
Kurtosis:	0.69412164653582353
Quantile(7e-005):	0.89136580629624895
Quantile(0.5):	2.4985258239407173
Quantile(0.99993):	5.9473425166082379
Probability(0)	0

Fig. 40 Statistics for n_{s1,req} [-]

Variable:	RF _{as1 min} [m]
Minimum value:	0.0081784600725566814
Maximum value:	0.013767675778218164
Bins of histogram:	1000
Mean:	0.011000576674362206
Variance:	7.0395165459104415e-07
Standard deviation:	0.00083901826832974511
Median:	720
Variance coeff.:	0.076270389559226437
Skewness:	0.0021730668720820849
Concentration coeff.:	2.6805326317273739
Kurtosis:	-0.31946736827262612
Quantile(7e-05):	0.0084414161668170413
Quantile(0.5):	0.010998244572710328
Quantile(0.99993):	0.013549478168087437
Probability(0):	0

Variable: Minimum value: Maximum value: Bins of histogram: Mean: Variance: Standard deviation: Median: Variance coeff.: Skewness: Concentration coeff.: Kurtosis: Quantile(7e-05): Quantile(0.99993):	$\begin{array}{l} RF_{A\text{s1,min}} [\text{m}^2] \\ 0.0005579250341352656 \\ 0.0012592595771260451 \\ 1000 \\ 0.0010021420720991337 \\ 9.9089686583849681e-09 \\ 9.9543802712097386e-05 \\ 631.5 \\ 0.099331028487396278 \\ -0.23737083114813756 \\ 2.7944766225735655 \\ -0.20552337742643445 \\ 0.00063023480183100786 \\ 0.0010072284450602662 \\ 0.0012072284450602662 \\ 0.00120728345181711649 \\ \end{array}$
Quantile(0.99993): Probability(0):	0.0012508351381711649

Fig. 42 Statistics for reliability function $RF_{As1,min}$ [m²]

Variable:	RF _{As1.max} [m ²]
Minimum value:	0.0077065392511281566
Maximum value:	0.0088731494043825382
Bins of histogram:	1000
Mean:	0.0082733774269202042
Variance:	2.5347778155917906e-08
Standard deviation:	0.00015920985571225767
Median:	561
Variance coeff.:	0.01924363503521731
Skewness:	0.025713703168048253
Concentration coeff.:	2.8125060979183742
Kurtosis:	-0.18749390208162575
Quantile(7e-05):	0.0077462437007884619
Quantile(0.5):	0.0082729115477534424
Quantile(0.99993):	0.0088170960636862663
Probability(0):	0

Fig. 43 Statistics for reliability function $RF_{As1,max}$ [m²]

Variable:	x [m]
Minimum value:	0.03682596157264479
Maximum value:	0.062661919622752166
Bins of histogram:	1000
Mean:	0.048025873231965145
Variance:	9.3913778834412778e-06
Standard deviation:	0.0030645355085952711
Median:	366
Variance coeff.:	0.063810094483728666
Skewness:	0.11830057062444833
Concentration coeff.:	2.9449868845073164
Kurtosis:	-0.055013115492683617
Quantile(7e-05):	0.038015605286663846
Quantile(0.5):	0.047972405936605948
Quantile(0.99993):	0.059920566716536471
Probability(0):	0

Fig. 44 Statistics for depth of neutral axis x [m]

Variable:	x _{bal.1} [m]
Minimum value:	0.29111892585862648
Maximum value:	0.40686253695893454
Bins of histogram:	1000
Mean:	0.3406869097113287
Variance:	0.0002151973825611246
Standard deviation:	0.014669607444002196
Median:	448.5
Variance coeff.:	0.043058911351868692
Skewness:	0.29695345773849119
Concentration coeff.:	2.947622217796682
Kurtosis:	-0.052377782203318013
Quantile(7e-05):	0.29691189938716928
Quantile(0.5):	0.33977990349838599
Quantile(0.99993):	0.39759377931324313
Probability(0):	0

Fig. 45 Statistics for limiting depth of netural axis *x*_{bal,1} [m]

Variable:
Minimum value:
Maximum value:
Bins of histogram:
Mean:
Variance:
Standard deviation:
Median:
Variance coeff.:
Skewness:
Concentration coeff.:
Kurtosis:
Quantile(7e-05):
Quantile(0.5):
Quantile(0.99993):
Probability(0):

RF_x [m] 0.23927750995886846 0.36315721233911924 1000 0.29266113308186409 0.00023723940309692488 0.015402577806877812 432.5 0.052629393061802143 0.22243230786358989 2.9553302599639668 -0.04466974003603319 0.24485767673275374 0.2919790850455628 0.35311291214612828 0

Fig. 46 Statistics for reliability function RF_x [m]

Variable:	z ₁ [m]
Minimum value:	0.61420460258718812
Maximum value:	0.66714499175791098
Bins of histogram:	1000
Mean:	0.64138789838540178
Variance:	6.6541986227663377e-05
Standard deviation:	0.0081573271497263969
Median:	763
Concentration coeff.:	2.6464808286588188
Kurtosis:	-0.35351917134118116
Quantile(7e-05):	0.61780815260081035
Quantile(0.5):	0.64139020783701461
Quantile(0.99993):	0.66470729616045254
Probability(0):	0

Fig. 47 Statistics for lever arm z_1 [m]

Variable:	F_1 [N]
Minimum value:	689086 12253470381
Maximum value:	993972.56548714917
Bins of histogram:	1000
Mean:	838166.68062713416
Variance:	2057407337.1563694
Standard deviation:	45358.652285494216
Median:	669
Variance coeff.:	0.054116506100619396
Skewness:	0.0015109671266675718
Concentration coeff.:	2.8384829694497107
Kurtosis:	-0.16151703055028932
Quantile(7e-05):	697326.29666855314
Quantile(0.5):	838324.83184775279
Quantile(0.99993):	981764.90010364854
Probability(0):	0

Fig. 48 Statistics for strength in tension reinforcement F_{s1} [N]

M _R [Nm] 430480.26439370879 646104.60898965818 1000 537544.23683562595 843915052.69300485 29050.216052432464 547 0.054042465832101635 0.0096214762384027736 2.8546892174534646 -0.1453107825465354 444294.03621967428 537536.99604494497 624880.01029107481
537536.99604494497 634880.91938107181 0

Fig. 49 Statistics for bending reistatnce $M_{\rm R}$ [Nm]

Variable [.]	RF., [Nm]
Minimum value	-30014 404020507157
Maximum value:	-39014.494029307137 E4644E 0343080E486
Ripe of histogram:	546415.93430605466
bins of histogram.	1000
Mean:	323481.62101358664
Variance:	5244637455.3968201
Standard deviation:	72419.869203118695
Median:	330.5
Variance coeff.:	0.22387630238837269
Skewness:	-0.079465258112383919
Concentration coeff.:	3.432394481857056
Kurtosis:	0.43239448185705598
Quantile(7e-05):	3178.6899948216083
Quantile(0.5):	314939.43861902755
Quantile(0.99993):	525319.3422958802
Probability(0):	5.500000000000002e-05

Fig. 50 Statistics for reliability function $RF_{\rm M}$ [Nm]

V. SOLVED EXAMPLE - COMMENTS OF RESULTS

Design of necessary reinforcing bars was based on statistics shown in Fig. 40. From this Fig. it is evident that for probability 0.99993 the $n_{s1,req}$ equals approx. 5.947. Thus for further reliability assessment n_{s1} was considered equal to six reinforcing bars.

From Fig. 26-28 it is clear that minimum numbers of these functions are positive numbers. Due to this we can say, that these criterions are 100% fulfilled. From the last row of Fig. 46 it is evident, that for argument equal zero (zero quantile) probability (of failure) equals as well to zero. Reliability assessment of the critical cross-section of the beam in pure bending can be based on Fig. 50. From the last row it is clear that probability of failure (for quantile = 0) is equal $5.5 \cdot 10^{-5}$. If this probability of failure is less than design probability, we can consider critical cross-section as reliable (from the viewpoint of assumed limit state). Design probability should be available in corresponding design code or given by relevant authority.

VI. CONCLUSION

Almost all what surround us exhibit non-negligible marks of randomness. It is as well the case of civil engineering structures. Significant advancement in computer technology bring us possibility of utilization of new progressive computing methods for design and assessment of these structures. One of these progressive methods is SBRA method, which potential was briefly outlined in previous chapters. Advantage of this method is possibility of description of random quantities using general histograms, which can be acquired e.g. from various experiments. Perpetual grow of power of computer technology opens new possibilities for Monte Carlo simulations in still more and more demanding problems. Application of Monte Carlo simulation in reliability analysis allows direct calculation of probability of failure. Knowledge of this significant indicator can be used further e.g. in management of risk. Reinforced and prestressed concrete structures represent composite structures, which real behaviour is quite complicated. Fully probabilistic methods open way for more precise design and assessment of these structures. More

information about development of the SBRA method is available on the web page [33] devoted to this method.

REFERENCES

- [1] Gnedenko, B. V., *The Theory of Probability*, Mir Publishers, Moscow, 1976.
- [2] Rao, S. S., Reliability Based Design, McGraw-Hill, Inc., USA, 1992, ISBN 0-07-051192-6.
- [3] Barlow, R. E., Proschan, F., Mathematical Theory of Reliability, SIAM, Philadelphia, USA, 1996, ISBN 0-89871-369-2.
- [4] Marek, P., Guštar, M., Anagnos, T. Simulation Based Reliability Assessment, CRC Press, Boca Raton, USA, 1996, ISBN 0-8493-8286-6.
- [5] Marek, P., Guštar, M., Bathon, L. Tragwerksbemessung. Von deterministischen zu probabilistischen Verfahren, ACADEMIA, Prague, Czech Republic, 1998, ISBN 80-200-0706-7.
- [6] Haldar, A., Mahadevan, S. Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, 2000, ISBN 0-471-33119-8.
- [7] Marek, P. et al. Probabilistic Assessment of Structures using Monte Carlo simulation. 2nd ed. GLOS, s.r.o, Semily, Czech Republic, 2003, ISBN 80-86246-19-1.
- [8] DeCoursey, W. J. Statistics and Probability for Engineering Applications With Microsoft[®] Excel, Elsevier Inc., 2003, ISBN 978-0-7506-7618-2.
- [9] Haimes, Y. Y. Risk Modeling, Assessment, and Management, John Wiley & Sons, Inc., 2004, ISBN 9780471480488.
- [10] Todinov, M. T. Reliability and Risk Models. Setting Reliability Requirements. John Wiley & Sons, Inc., 2005, ISBN 0-470-09488-5.
- [11] Smith, D. J. Reliability, Maintainability and Risk. Practical Methods for Engineers (Seventh Edition), Elsevier Ltd., 2005, ISBN 978-0-7506-6694-7.
- [12] Singpurwalla, N. D. Reliability and Risk. A Bayesian Perspective, John Wiley & Sons, Ltd., 2006, ISBN 0-470-85502-9.
- [13] Deep, R., Probability and Statistics with Integrated Sofware Routines, Elsevier, Inc., 2006, ISBN 978-0-12-369463-8.
- [14] Todinov, M. T. Risk-Based Reliability Analysis and Generic Principles for Risk Reduction, Elsevier, Ltd., 2007. ISBN 978-0-08-044728-5.
- [15] Raizer, V., Reliability of Structures. Analysis and Applications. Backbone Publishing Company, Fair Lawn, USA, 2009, ISBN 978-09742019-7-9.
- [16] Rosenthal, J. S., Struck by lightning. The Curious World of Probabilities. Granta Publications, London, 2008, ISBN 978-1-86207-996-0.
- [17] Pustka, D., Čajka, R., Marek, P., Kaločová, L. Multi-components load effect analysis on a slender reinforced concrete column using Probabilistic SBRA method, In *Eleventh East Asia Pacific Conference* on Structural Engineering & Construction (EASEC-11) "Building a Sustainable Environment", 2008, ISBN 978-986-80222-4-9.
- [18] Pustka, D., Čajka, R., Marek, P. Probabilistic reliability analysis of a continuous reinforced concrete frame using the SBRA method, In: *Safety, Reliability and Risk of Structures and Engineering Systems*, Taylor & Francis Group, London, ISBN 978-0-415-47557-0.
- [19] Shah, S. P., Ahmad, S. H. (ed.), *High Performance Concretes and Applications*, Taylor & Francis, 1994, ISBN 0-340-58922-1.
- [20] Aïtcin, P. C., High-Performance Concrete, Spon Press, 1998, ISBN 9780419192701.
- [21] EN 1992-1-1 Eurocode 2: Design of concrete structures Part 1-1: General rules and rules for buildings, CEN, 2004.
- [22] *How to Design Concrete Structures using Eurocode 2*, The Concrete Centre, Surrey, 2006, ISBN 1-904818-4-1.
- [23] Martin, L., Purkiss, J., Concrete Design to EN 1992. 2nd. ed. Butterworth-Heinemann, London, 2006, ISBN 978-0-75-065059.
- [24] Nawy, E. G. et. al. Concrete Construction Engineering Handbook., CRC Press, Boca Raton, 2008, ISBN 978-0-8493-7492-0.
- [25] Procházka, J., Štemberk, P., Concrete Structures 1, ČVUT, Prague, 2009, ISBN 978-80-01-03607-5.
- [26] Procházka, J., Štemberk, P., Design Procedures for Reinforced Concrete Structures, ČVUT,, Prague, 2009, ISBN 978-80-01-04240-3.
- [27] OBrien, E., Dixon, A., Sheils, E., *Reinforced and Prestressed Concrete Design to EC2*, Spon Press, 2012, ISBN 978-0-415-57194-4.

- [28] Pustka, D., SBRA modules for Matlab Software. Version 1.0 [computer programs], 2013.
- [29] MathWorks, Matlab R2012a (7.14.0.739). [computer program], 2012.
- [30] Lyshevski, S. E., Engineering and Scientific Computations Using MATLAB, John Wiley & Sons, Inc., 2003, ISBN 0-47 1-46200-4.
- [31] Hahn, B. H., Valentine, D. T., Essential Matlab for Engineers and Scientists (Fourth Edition), Elsevier Ltd., 2010, ISBN 978-0-12-374883-6.
- [32] Attaway, S., Matlab. A Practical Introduction to Programming and Problem Solving (Second Edition), Elsevier Inc., 2012, ISBN 978-0-12-385081-2.
- [33] Web page: www.sbra-anthill.com.
- [34] V. Munteanu, G. Oprisan, N. Taranu, C. Cozmanciuc, R. Oltean, P. Mihai. Structural Behavior of Eccentrically Loaded FRP Confined Square RC Columns. In: 4th International Conference on Urban Sustainability, Cultural Sustainability, Green Development, Green Structures and Clean Cars (USCUDAR '13) and the 1st WSEAS International Conference on High-Performance Concrete Structures and Materials (COSTMA '13), Budapest, Hungary, December 10-12, 2013.
- [35] Radim Cajka, Jana Labudkova. Influence of Parameters of a 3D Numerical Model on Deformation Arising in Interaction of a Foundation Structure and Subsoil. In: 4th International Conference on Urban Sustainability, Cultural Sustainability, Green Development, Green Structures and Clean Cars (USCUDAR '13) and the 1st WSEAS International Conference on High-Performance Concrete Structures and Materials (COSTMA '13), Budapest, Hungary, December 10-12, 2013.
- [36] Martin Krejsa, Petr Janas, Vlastimil Krejsa, Application of the Direct Optimised Probabilistic Calculation Method. In: 18th WSEAS International Conference on Applied Mathematics (AMATH '13) and 1st WSEAS International Conference on Discrete Mathematics, Combinatorics and Graph Theory (DIMACOG '13). Budapest, Hungary, December 10-12, 2013.
- [37] Petr Lehner, Petr Konecny, Pratanu Ghosh. Finite Element Analysis of 2-D Chloride Diffusion Problem Considering Time-dependent Diffusion Coefficient Model. In: 18th WSEAS International Conference on Applied Mathematics (AMATH '13) and 1st WSEAS International Conference on Discrete Mathematics, Combinatorics and Graph Theory (DIMACOG '13). Budapest, Hungary, December 10-12, 2013.