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Abstract—The paper presents the analysis of an important 

historical building: the Saint James Theater in the city of Corfù 
(Greece) actually used as the Municipality House.  

The building, located in the center of the city, is made of carves 
stones and is characterized by a stocky shape and by the presence of 
wooden floors. 

The study deals with the structural identification of such structure 
through the analysis of its ambient vibrations recorded by means of 
accelerometers with high accuracy. A full dynamic testing was 
developed using ambient vibrations to identify the main modal 
parameters and to make a non-destructive characterization of this 
building.  

The results of these dynamic tests are compared with the modal 
analysis of a complex finite element (FE) simulation of the structure. 
This analysis may present several problems and uncertainties for this 
stocky building. Due to the presence of wooden floors, the local 
modes can be highly excited and, as a consequence, the evaluation of 
the structural modal parameters presents some difficulties. 
 

I. INTRODUCTION 
HE construction of Saint James building was started in 
1663 but it stopped for a period, probably due to financial 

problems and continued in 1687. The building was completed 
in 1693. Initially, the structure was built as lodge for the 
nobles and was known with the name “Loggia”. Only in 1720 
it was renamed as Saint James, like the close catholic 
Cathedral, and was converted in a theatre. At the end of 1903 
it was transformed into a City Hall when the insertion at the 
front part of the building was dismantled and one more floor in 
the central part was built. 

This masonry historical building has a rectangular plant 
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absolutely symmetric, with dimensions 24.75 m (Fig. 1) and 
14 m (Fig. 2). The building has a maximum height of 19 m. 
Five domes arched windows in a row at the two main sides and 
two symmetric rectangle windows in each narrow side 
characterize the structure. In the main façade the central 
arched window is modified to build the main entrance to the 
building from Dimarchiou square. 

. 

 
Fig. 1 Main façade. South façade. Dimarchiou square (Saint James 

building Corfù Greece) 
 
This structure has a semi-basement for the South façade. 

Fig, 2 shows a South-West lateral façade where it is possible 
to identify this semi-basement for the South façade and the 
first basement in the North façade. 

 
 

 
Fig.2 Lateral façade. North-East (Left). South-West (Right) (Saint 

James building Corfù Greece) 
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Inside the building has three different levels of wooden 
floors; the third was built some year after the initial building. 
Some load-bearing walls ensure the stability of this building in 
its two main orthogonal axes (Fig. 3). The described 
configuration underlines that the building is extremely stocky, 
and consequently some difficulties are reasonably expected in 
the dynamic identification analysis  Moreover, the presence of 
wooden floors does not guarantee about the rigid behavior of 
the floors and so the dynamic response of the structure may be 
governed by “local” modes instead of the “global” ones. 
Therefore, to overcome this problem an ad hoc procedure is 
here proposed for the experimental set-up and for the dynamic 
identification analysis, that has the aim of verifying the 
influence of local modes on the dynamic response of the 
structure. 

 
Fig. 3. Longitudinal section. North view. Wooden floor location 

(Saint James building Corfù Greece) 

II. NUMERICAL MODEL 
The numerical analysis of different historical masonry 

constructions has been studied by many authors [1-4] that have 
explained the complexity to model the behavior of masonry 
construction under static and dynamic loads. To obtain a 
homogeneous numerical model, the technique of modal 
identification is a useful procedure for this structural typology 
[5-26] even if it fits better for slender reinforced concrete 
structures [27-29].  

Here a detailed 3D numerical model was developed to 
simulate the structural behavior of  Saint James building (Fig. 
4). SAP2000 commercial software [30] was used considering 
an initial linear behavior for the masonry and wooden 
materials. This software uses the Finite Element Method to 
simulate the structural behavior. The connection between the 
soil and the constructions has been considered rigid, and the 
connection between the semi-basement and the perimeter soil 
has been considered rigid too. 15259 shell elements have been 
utilized to simulate the different structural elements: resisting 
walls, cover and floors. 15139 nodes and 162 frames elements 
have been utilized to simulate the wooden beams supporting 
the top cover of the building (Fig.5). The hypothesis of thick-
shell elements has been considered for all the surface elements, 
defined using 4 nodes and 6 degrees of freedom for each node. 
Thickness between 0.3 m and 1.05 m has been considered to 
simulate the real structural elements. The wooden floor 

elements have been modeled using a thickness of 0.25 m that 
can be considered as a mean value chosen in order to simulate 
the wooden beams and the wooden deck platform.  

Interesting approaches for the mechanical characterization 
of the structural materials (density and elastic properties) have 
been studied in literature [31-32], whereas problems connected 
either to the possibility of employing innovative materials or to 
model and test suitable technical interventions for improving 
these properties may be found in [33-37]. Moreover, recent 
possible progresses contained in [38] suggest new approaches. 
Here, a non-destructive approach based on the comparison 
between the identified experimental modal parameters and the 
FE model is proposed. No specific tests have been initially 
carried on to obtain the main characteristics of the structural 
materials: masonry and wooden. Table 1 shows some initial 
values for these materials obtained from [1]. 

 
 

Fig. 4. General view of the 3D numerical model. 
 

 
 

Fig. 5 3D Numerical model. Longitudinal section. South view. 
 

Table 1. Characteristics of the materials 
 Elastic modulus 

(MPa) 
Density  
(kg/m3) 

Masonry 5883 1800 
Wooden 14709 800 
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To simulate the live load on each floor (levels 1 and 2) a 
constant load of 2 kN/m2  has been considered on the floor 
elements. 
 An initial static analysis of the main walls of this building 
indicates that the maximum compression stresses reached at 
one of the surface of the shell elements and due to the self-
weight and the live loads (Fig. 6) are lower than 1 MPa, 
completely admissible for a conventional masonry. This 
analysis allows to state that the maximum tension stresses 
reached at the other surface of the shell elements are lower 
than 1 MPa, a value completely admissible for a conventional 
masonry (Fig. 7). 
 
 

 Main façade 

  
      y=3.8 m                       y=6.75 m 

 
Fig. 6. Maximum normal compression stresses in the main walls. 

(N/mm2) due to the self-weight and the live loads 
 

 Main façade 

  
      y=3.8 m                       y=6.75 m 

 
Fig 7. Maximum normal tension stresses in the main walls. (N/mm2) 

due to self-weight and the live loads . 
 
For this preliminary analysis the stresses on the different 

floors under the self-weight and the live load of 2 kN/m2 have 
been considered. Figs. 8 and 9 present, respectively, the 
maximum and minimum normal stresses on each floor (level 1 
at h=3 m and level 2 at h=10.9 m). The results shown here are 
lower than the maximum admissible values for a conventional 

wooden structure well preserved. 
 

 h=3 m 

  h=10.9 m 
 

Fig. 8. Maximum normal tension stresses in wooden floors. (N/mm2) 
due to self-weight and the live loads. 

 
 

 h=3 m 

  h=10.9 m 
 

Fig. 9. Maximum normal compression stresses in wooden floors. 
(N/mm2) due to self-weight and the live loads 

 
A modal analysis has been developed to obtain the 

identification of the main frequencies of the building. Fig. 10 
presents a visual identification of these modes. Table 2 
indicates the total mobilized mass and the numerical values of 
the main frequencies. 

 

III. THE EXPERIMENTAL SETUP FOR THE DYNAMIC TESTS 
The experimental monitoring phase has been performed on 

10th and 11th of July 2013. The monitoring system consists of 
several elements properly connected: 18 seismic 
accelerometers ICP PCB 393B31, the data acquisition system 
or DAQs positioned at each level monitored; the laptop with 
acquisition software; the cables that connect all elements to 
each other.  

Nine points of the building have been monitored by 
installing in each point two accelerometers on appropriate 
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rectangular blocks (see Fig. 11) in order to ensure the 
orthogonality of the couple of sensors. The monitoring system 
has been positioned at different levels and in different rooms, 
according to the orthogonal directions x and y defined by the 
orthogonal main façades. 

 
Fig. 10. ·Modal analysis results.  

 
Table 2. Identified periods and frequencies of the FE model 

Mode Period 
(s) 

Frequency 
(Hz) 

Sum 
UX 

Sum 
UY 

Sum 
UZ 

Sum 
RX 

Sum 
RY 

Sum 
RZ 

1 0.164 6.09 0.71 0 0 0 0.3 0.12 
2 0.131 7.64 0.71 0.65 0 0.6 0.3 0.41 

3 0.108 9.24 0.71 0.66 0 0.61 0.3 0.64 

4 0.095 10.52 0.71 0.66 0 0.61 0.3 0.65 
5 0.094 10.66 0.71 0.66 0 0.61 0.3 0.65 

 
Fig. 11 shows the biaxial configuration of the 

accelerometers in two different positions on the walls prepared 
to register longitudinal and transversal vibrations of the 
building.  

The monitored points are sketched in Fig.12 referred to the 
semi-basement level (a), to the first level (b) and to the second 
level (c) of the structure. In Fig. 12 the arrows indicate the 
acquisition direction of each accelerometer. Each data 
acquisition record was carried out by 10 minutes recordings 
with a sampling frequency of 1024 Hz, which has been 
subsequently decimated by a factor equal to 4 to have a 
sampling frequency of 256 Hz for the subsequent analysis .  

 

    
   Fig. 11. Seismic accelerometers located in different positions on 

the building. 
(a) 

   
(b)  

  
(c)  

 
Fig. 12. The plan views of the Saint James building: a) semi-

basement level; b) first level; c) second level. 
 

IV. THE DATA PROCESSING 
The recorded data have been processed to identify the 

natural frequencies and the modal shapes of the Saint James 
building by using the specialized Artemis software [39]. At 
this proposal, a spatial model of the building and of the 
position of the accelerometers has been created as shown in 
Fig.13. 
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Fig. 13. Artemis model of the Saint James building; the arrows 
indicate the acquisition direction of  the 18 accelerometers applied to 

the structure. 
 
The acquired signals in environmental conditions have a 

very low amplitude, due to the very squat profile of the 

structure (as shown in [15,21]). For this reason, as 
demonstrated in [40], only the Stochastic Subspace 
Identification (SSI) method [41-42] essentially based on fitting 
to dynamic response discrete-time data and more robust for 
low significant data, has been used for performing the 
Operational Modal Analysis (OMA) in this case. 

Moreover, in order to verify the contribution of local modes 
on the dynamic response of the examined building, the 
following strategy has been proposed: the data have been 
analyzed taking into account only the accelerometers 
positioned on the same wall. So, two groups of accelerometers 
have been considered; the first composed by the 
accelerometers (named by the numbers as indicated in Fig.12) 
5,6,7,8,9,10,11,12,15,16 related to the perimeter wall parallel 
to the y axis (Fig.13) on the left part of the building. The 
second composed by the accelerometers 3,4,13,14,17,18 
related to an internal wall parallel to the same y axis on the 
right part of the building. In Fig. 14 the two groups considered 
are indicated directly on the Artemis model not considering the 
presence of the other sensors. 

                     

a)                                                                                   b) 
Figure 14: the two groups of accelerometers separately considered: a) first group; b) second group. 

 
The aim of the procedure is to perform the identification 

analysis considering each wall alone (i.e. taking into account 
the data related to the accelerometers installed on the 
examined wall) and evaluating the natural frequencies.  The 
main idea is that if the dynamic response of the building is 
governed by local modes, the natural frequencies estimated for 
each wall are expected to be different otherwise may be related 
to “global” modes. The SSI method has been applied to ten 
different acquisitions in such a way to have a statistical 
identification considering the possible modal parameters 
uncertainness [43]; a sample of the SSI application (first group 

of accelerometers, test 1) with maximum order 100 is shown in 
Fig.15. The SSI diagram in Fig. 15 demonstrates that the peaks 
corresponding to the frequencies are not well highlighted, 
probably due to the very squat and fixed shape of the structure. 
For this reason, the damping evaluation [44] has not been 
considered in the following comparison A certain number of 
frequencies may be identified; considering the repeatability of 
the frequencies all over the ten considered acquisitions, the 
frequencies repeated over the 50% of the tests have been 
considered for the following analysis.  
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Fig. 15. Results of SSI methods for the first test of the first group of accelerometers. 

 
Table 3 shows the average value on the ten tests and the 

standard deviation of the first five identified frequencies by 
SSI method for the two considered groups of accelerometers. 

Table 3. Statistical characteristic of the first five identified 
frequencies with SSI method for the two groups on ten tests. 

n. 
identified 
frequency 

Average 
value for 
the first 
group 
[Hz] 

Standard 
deviation 

for the first 
group 

Average 
value for 

the second 
group 
[Hz] 

Standard 
deviation for 
the second 

group 

1 4.69 0.044 4.68 0.017 
2 5.74 0.065 5.73 0.028 
3 6.51 0.053 6.50 0.036 
4 7.60 0.049 7.66 0.040 
5 8.88 0.036 8.87 0.064 

 
The results in Table 3 clearly demonstrate that the identified 

frequencies are very repeatable and stable for both groups 
showing a very low standard deviation on the 10 experimental 
tests. Moreover, the frequency values are practically 
coincident for the examined groups; consequently, such 
frequencies can be reasonably considered as related to 
“global” modes. This information is very important for a 
subsequent phase of model validation and updating.  

A subsequent step of the research will be the comparison 
between the estimated frequencies and the ones evaluated 
performing the operation modal analysis considering all the 
accelerometers and the rigid floors hypothesis.  

The actual differences between the identified frequencies 
and the numerical ones may be due to some hypothesis 
regarding the total mass of the building and the mechanical 
characteristics of the masonry, but the entities of such 
differences make confident of the updating procedure of the 
finite element model. 

These initial values permit to affirm that the numerical 
model is less rigid than the real model. To obtain more 
realistic results for the numerical model, it is necessary to 
define the main parameters to homogenize the total masonry 
building only using two materials: masonry and wood.  

I. CONCLUSIONS 
In this work, an optimized FE model of a masonry building 

structure with wooden floors has been presented and discussed 
with the aim of comparing the numerical frequencies with the 
identified ones. The dynamical identification using 
accelerometers has been carried out estimating the first five 
frequencies of the structure and analyzing, with a local wall- to 
wall analysis, their global character; the identification accuracy 
has been guaranteed by considering several experimental data 
referred to consecutive acquisitions. In this sense, a statistical 
approach has been performed. This analysis will allow, in 
future researches, to obtain important information about the 
character of the mode shapes and also the correct values of the 
material properties.  
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