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Abstract—Use of microwave technology in several industrial 

heating processes is a relatively new approach. Considering that 
scaling-up is hard to recover, theoretical simulations can be of help in 
order to study and optimize the process at hand while reducing the 
mass of experimental work. This paper aims to speed up prediction of 
bulk temperatures for an incompressible liquid as it flows 
continuously in a circular duct that is subjected to microwave 
heating. Usually, temperature increases are desired which require 
temperature dependent dielectric permittivity; thus, studying the 
problem at hand involves the simultaneous solution of the 
electromagnetic, fluid flow and heat transfer problems. In contrast, a 
hybrid model is introduced which links numerical results to analytical 
calculations, providing a tool for accurate prediction of the bulk 
temperature distribution while noticeably reducing the required 
computation time. The hybrid solution was obtained by first 
numerically solving Maxwell equations in correspondence of a fixed 
average dielectric permittivity; discrete values of the cross-section 
averaged heat generation arising from such solution were first 
corrected by a suitable weighting function and then interpolated by a 
function resulting from the discrete Fourier series. Then the 
momentum and the energy equations fed by the above calculated heat 
generation distribution turned out in a linear problem; the related 
analytical solution was sought as the sum of two partial solutions, 
each one affected by a single non-homogeneity. The former solution 
turned out to be the classical Graetz problem, while the latter, driven 
by the heat generation, was solved in closed form by the variation of 
parameters method. Fully developed velocity, thermally developing 
conditions and no phase transition during the heating process were 
assumed for both the hybrid and the numerical solution. Simulations 
are intended to validate the hybrid solution when compared to the 
corresponding numerical one. Results, presented and discussed for 
different inlet velocities, ensured the accuracy of the proposed model 
meanwhile showing that computational times are reduced at least by 
one- tenth. 
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I. INTRODUCTION 
ICROWAVE (MW) heating has become a valuable and 
cost effective source of energy. Sure enough, volumetric 

heating of the target due to MWs, leads to higher heat rates 
and therefore to shorter processing times than those needed in 
traditional heating methods. In addition, when compared to 
traditional heating, MW heating exhibits quick startups, space 
and energy saving, and, not least, makes no environmental 
pollution. Such distinctive features have become more and 
more appealing both for household and industrial applications. 
Just to mention some glaring examples, because of the reduced 
thermal transients, as well as of the not excessively hot food 
surface compared with the inner side, the demand for domestic 
MW oven has constantly increased in recent years. In food 
industry, MWs have successfully employed for pasteurization, 
sterilization, etc. [1,2]. Other emerging applications concern 
the application of substrates to carbon nanotubes [3], ceramic 
[4] or metallic processing [5]. 

Recently, MWs are being utilized to heat continuous flow of 
liquids [6] and specifically, of water [7]. Related benefits 
concern the increased productivity, easier clean up and process 
automation compared to standard batch systems [8] in which 
the outward of the heat exchanger heats first and then heat is 
transferred to the inner liquid. Moreover, under laminar flow 
conditions, greater temperature increases and heat transfer 
rates can be attained [6], [9-10], compared to turbulent or 
transition regimes. This is not surprising if one considers that 
heat transfer is no more driven by the walls. 

Despite all the cited benefits, still some disadvantages 
remain: the application of an external electric field produces 
an uneven temperature patterns in the samples which, in turn, 
are related to spatial variability of the electric field patterns 
[11]. A further major obstacle is related to difficulties in 
predicting the electromagnetic (EM) field; several approaches 
have been attempted to this purpose, mostly numerical and 
experimental. Only simplified analytical solutions are available 
due to the complexity of the problem at hand: in fact, thermal 
response is to be correlated to relative load and system 
configurations and to thermal and dielectric properties of the 
material as a function of chemical composition, temperature, 
and frequency [12–17]. With reference to the experimental 
approach, difficulties are experienced in measuring and/or 
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controlling temperature because traditional probes fail and 
highly uneven temperature patterns are usually realized [18, 
19]. In addition, adequate experimentation may be impractical, 
as a large number of tests are usually required to obtain 
representative results [20, 21]. Nowadays, the numerical 
approach allows a quite satisfying description of the coupled 
thermal-EM problems as well as an accurate identification of 
the effects which the operating parameters have on the process 
at hand [14, 17, 22-28], provided that spatial discretization is 
performed with care as grid dispersion may arise [6]. Starting 
from the pioneering work of Yee [29] in which Maxwell’s 
equations were solved with a primitive 2D version of the Finite 
Difference Time Domain (FDTD) technique, remarkable 
contributions have been given so far. Zhang et al. [23] 
proposed a 3D FDTD model to describe electromagnetic field 
patterns, power temperature and velocity distributions in a 
confined liquid inside a microwave cavity. Chatterjee et al. 
[30] numerically analyzed the effects on the temperature 
distribution of a liquid in terms of the rotating container, 
natural convection, power sources and shape of the container. 
Zhu et al. [25], [31] developed a more sophisticated procedure 
to solve cases with temperature-dependent dielectric 
permittivity and non-Newtonian liquids carrying food 
subjected to MW heating. Actually, FDTDs [29] and Finite 
Element Methods (FEMs) [32] are no doubt among the most 
employed for simulating MW heating problems [33]. 
Numerical modeling may be subject to long execution times, 
depending on how complex is the system being simulated as 
well as on the spatial and temporal discretization. In the above 
connection, this paper proposes a hybrid numerical-analytical 
technique for simulating microwave (MW) heating of laminar 
flow in circular ducts, thus attempting to combine the benefits 
of analytical calculations and numerical field analysis 
methods, in order to deliver an approximate yet accurate 
prediction tool for the flow bulk temperature. The main 
novelty of the method relies on the combination of 3D FEM 
and analytical calculations, in an efficient thermal model, able 
to provide accurate results with moderate execution 
requirements. The proposed approach has successfully applied 
in similar contests [34, 35]. 

II. PROPOSED METHODOLOGY 

A. Hybrid Numerical-Analytical model definition 
The proposed methodology puts together 3D electro-

magnetic and thermal FEM results with analytical calculations, 
for the derivation of the temperature distribution for different 
flow rates. Numerical approach is used as an intermediate tool 
for calculating heat generation due to MW heating; the latter 
distribution, cross section averaged, allows to evaluate the 2D 
temperature distribution for the pipe flow by an analytical 
model in closed form. Such a procedure requires a sequential 
interaction of the analytical and numerical methods for thermal 
calculations, as illustrated in the flowchart of Fig. 1 and in the 
following described. 

 
 

Fig.1. Flowchart of the assumed procedure 
 
The developing temperature field for an incompressible 

laminar duct flow subjected to heat generation is considered. 
As first step, a 3D numerical FEM model was developed to 
predict the distribution of the EM field in water continuously 
flowing in a circular duct subjected to microwave heating. 
Water is described as an isotropic and homogeneous dielectric 
medium with electromagnetic properties independent of 
temperature. Maxwell’s equations were solved in the 
frequency domain to describe the electromagnetic field 
configuration in the MW cavity supporting the applicator-pipe. 

In view of the above hypotheses, the momentum and the 
energy equations turn out to be coupled through the heat 
generation term with Maxwell’s equations. Then, an 
approximate analytical solution is obtained considering the 
effective heat generation distribution arising from the solution 
of the electromagnetic problem at hand to be replaced by its 
cross averaged section values; a further improved approximate 
analytical solution is obtained by considering a suitably 
weighting function for the heat dissipation distribution. In both 
cases the proper average value over the water control volume 
was retained by taking the one arising from the complete 
numerical solution. The possibility of recovering the fluid 
thermal behaviour by considering the two hybrid solutions is 
then investigated in the present work. 

B. 3D Complete FEM Model Description 
A general-purpose pilot plant producing microwaves by a 

magnetron rated at 2 kW and emitting at a frequency of 
2.45GHz is available to the heat transfer laboratory, at the 
University of Salerno, Fig. 2; it will be used as reference for 
future developments of the present work, aiming to validate 
the results herein presented. Thus, the following models are 
referred to such an experimental setup. 

The pipe carrying water to be heated was 8mm internal 
diameter and 0.90m long. Symmetrical geometry and load 
conditions about the XY symmetry plane are provided. Such a 
choice was performed having in mind to suitably reduce both 
computational burdens and mesh size while preserving the 
main aim of the paper that is to compare the two hybrid 
approximate analytical solution with the numerical one acting 
as reference. In particular, a cubic cavity chamber (side length, 

 = 0.90m) and a standard WR340 waveguide were assumed. 
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Fig.2. Sketch of the available setup 
 
The insulated metallic cubic chamber houses one PTFE 

applicator pipe allowing water continuous flow; the pipe is 
embedded in a box made by a closed-cell polymer foam, 
assumed to be transparent to microwaves at 2.45GHz.  

A 3D numerical FEM model of the above was developed by 
employing the commercial code COMSOL v4.3 [36]. It allows 
coupling electromagnetism, fluid, and energy flow to predict 
temperature patterns in the fluid continuously heated in a 
multimode microwave illuminated chamber. The need of 
considering coupled physics and thus a complete numerical 
solution (CN), arises by noting that, due to the geometry at 
hand, no simplified heating distributions can be sought (i.e. the 
ones based on Lambert Law’s) [17]. Ruling equations are 
solved by means of the finite element method (FEM) using 
unstructured tetrahedral grid cells.  

The electric field distribution E in the microwave cavity, 
both for air and for the applicator pipe carrying the fluid under 
process, is determined by imposing 

 

0
ωε
iσε

μ
1

0
r

2
0

r

=







−−








×∇×∇ EkE  (1) 

 
in which r is the relative permittivity,  is the angular wave 
frequency, r is the relative permeability of the material, 0 is 
the wavenumber in vacuum, and  is the electric conductivity. 

Air and the PTFE applicator tube were both supposed to be 
completely transparent to microwaves. Assuming negligible 
resistive material losses, boundary conditions for the radio 

frequency module included perfect electric conductors walls, 
that is,  ×  = 0, for the waveguide and the cavity, being 

Continuity boundary condition was set by default for all the 
interfaces between the confining domains, that is, the pipe, the 
cavity, and the waveguide. Such condition may be stated as 

 
the local normal vector. At the port, an amount of 2kW EM 
power, 2450MHz frequency, was supplied through a 
rectangular TE10 mode waveguide (WR 340). 

 
n × (Ei - Ej) = 0 (2) 

 
being  and  the neighbouring discrete portions sharing the 
interface at hand. Scattering boundary conditions were applied 
at the inlet and the outlet of the pipe to make the pipe’s ends 
transparent to incoming waves, avoiding that undesired 
reflected waves travel inward [20]. 

Due to the symmetry of the problem, and load conditions 
around the XY plane crossing vertically the oven, the 
waveguide, and the pipe (see Fig. 1, right side) the model is 
reduced to one-half of the device, yielding a more accuracy in 
the calculation. The condition of perfect magnetic conductor 
was applied for the surfaces yielding on the symmetry plane: 
 
n × H = 0 (3) 
 
H being the magnetic field, which has to be therefore parallel 
to the local normal vector n on the XY plane. 

Temperature distribution is determined for fully developed 
Newtonian fluid in laminar motion, considering constant flow 
properties; in such hypotheses, the energy balance reduces to 
 

genp UTk
X
TUc +∇=

∂
∂ 2ρ  (4) 

 
where  is the temperature, ρ is the fluid density, cp is the 
specific heat,  is the thermal conductivity,  is the axial 
coordinate, U(R)=2Uav(1-4⋅R2/Di

2) is the axial Poiseille 
velocity profile, Di is the internal pipe diameter and R the 
radial coordinate; gen is the specific heat generation, i.e. the 
“electromagnetic power loss density” (W/m3) resulting from 
the EM problem. The power-generation term realizes the 

             
                                               
Fig. 3. Dielectric constant, ε’                                                                       Fig. 4. Relatieve dielecric loss, ε’’ 
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coupling of the EM field with the energy balance equation 
where it represents the “heat source” term: 
 

( ) ( ) 2
0gen ,,''

2
1,, ZYXEZYXU εωε=  (5) 

 
being 0 is the free-space permittivity and ” is the relative 
dielectric loss of the material. 

The two-way coupling arises by considering temperature 
dependent dielectric permittivity [37], which real and 
imaginary parts, sketched in Fig 3 and 4 respectively, are given 
by the following polynomial approximations: 
 
ε’(T) = -425.963 + 5.16708·T - 0.0167823·T2 + 0.0000171415·T3 (6) 

 
ε”(T) = 1435.84 - 12.2473·T + 0.0350158·T2-0.0000334891·T3. (7) 
 

C. The hybrid solution 

C.1. The heat generation definition 
In this case, the Maxwell’s equations are solved first by 

considering a fixed, temperature independent, dielectric 
permittivity value. Both the real and imaginary part of the 
permittivity are selected by evaluating (6) and (7) in 
correspondence of the arithmetic average temperature Tavg 
arising from the complete numerical solution described in 
section B. Such a move allows to uncouple the thermal and the 
EM sub-problems: the power-generation term realizes the one-
way coupling of the EM field with the energy balance 
equation. Considering that the internal pipe diameter is much 
lower than the pipe length, a simplified cross averaged 
distribution is sought: its cross averaged value is selected 
instead, Ugen(X). 

A first basic hybrid solution, BH, is obtained by rescaling 
the Ugen(X) distribution so to retain the overall energy,U0 V, as 
resulting from integration of (5) over the entire water volume, 
V: 

( ) ( )
avggen

0
genBH,gen ˆ

ˆˆ
U

UXUXU ⋅= . (8) 

 
A further enhanced hybrid solution, EH, is obtained by first 

weighting and then rescaling Ugen(X). In the light of (5), the 
weighting function is selected as: 
 

( ) ( )[ ]
[ ]avg,bTε"

XTε"XW b=  (9) 

 
being Tb(X) the bulk temperature corresponding the limiting 
case of uniform heat generation, U0. Finally, the heat 
dissipation rate for the EH solution is obtained: 
 

( ) ( ) ( ) '
0genEH,gen Uˆˆ ⋅⋅= XWXUXU  (10) 

 

 

 
Fig 5. Heat generation along the X axis for Uav = 0.08 m/s 

 
where U0

‘ forces the overall energy to be U0 V. Consider that, 
in practice, the parameter U0 can be measured by calorimetric 
methods, therefore enabling the application of the analytical 
model with ease. In Fig. 5 the two different heat generation 
distributions for the BH and EH problems are reported and 
compared with the cross section averaged values  
corresponding to the CN solution. Plots are referred to an 
arbitrarily selected Uav which determines the bulk temperature 
level of the pipe applicator, Tb,avg. The CN-curve is practically 
overlapped to the EH-curve, thus showing a major 
improvement with respect to the BH-curve. 
 

C.2. The 2D analytical model 
The thermal model provides laminar thermally developing 

flow of a Newtonian fluid with constant properties and 
negligible axial conduction. In such hypotheses, the 
dimensionless energy balance equation and the boundary 
conditions in the thermal entrance region turn out to be: 
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t  (13) 

1)0( =,rt  (14) 
 
where t = (T-Ts)/(Ti-Ts) is the dimensionless temperature, being 
Ts and Ti the temperature of the ambient surrounding the tube 
and the inlet flow temperature, respectively; X and R are the 
axial and radial coordinate; thus, x = (4· X)/(Pe·Di) is the 
dimensionless axial coordinate, with the Peclet number defined 
as: Pe = (Uav · Di)/ α, being α the thermal diffusivity, r = 
(2·R)/Di is the dimensionless radial coordinate; ugen,H = 
(Ugen,H·Di

2)/(4·k·(Ti-Ts)) is the dimensionless hybrid heat 
generation level, being Ugen,H the corrected heat generation 
distribution alternatively given by (8) or (10), k the thermal 
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Figure 6. Interpolating function (green line) of the EH heat 
generation distribution (discrete points) for Uav = 0.08 m/s 

 
The two BH and EH heat generation distributions obtained 

in the previous section were turned into continuous 
interpolating function by using the Discrete Fourier 
Transform: 

 
( ) [ ]∑

=

++=
N/2

1n
nn

1

Hgen, )(Cos)(Sin1 xnxn
k

xu
ωγωβ  (15) 

 
where: k1 = (U0·Di

2)/(4·k·(Ti-Ts)), βn = Bn/U0 and γn = Gn/U0, Bn 
and Gn being the magnitudes of the Sine a Cosine functions; ω 
is related to the fundamental frequency and N is the number of 
the discrete heat generation values. The interpolating function 
of the EH heat generation distribution for Uav = 0.08 m/s has 
been reported in Fig. 6. The expression (15) for the heat 
generation was used to solve the set of (11)-(14). 

The resulting problem being linear, the thermal solution has 
been written as the sum of two partial solutions: 

 
( ) ( )r,xtkr,xt)r,x(t V1G ⋅+=  (16) 

 
The function tG(x,r) represents the solution of the extended 

Graetz problem featured by a nonhomogeneous equation at the 
inlet and adiabatic boundary condition at wall. On the other 
hand, the function tV(x,r) takes into account the microwave 
heat dissipation and exhibits a non-homogeneity in the 
differential equation. Thus, the two partial solutions have to 
satisfy the two distinct problems respectively reported in the 
set (17)-(20) and (21)-(24). 
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The Graetz problem was solved in closed form through the 

separation variables method, so the structure of the solution 
was the following: 
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where 
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are the eigen-functions, La being the orthonormal Laguerre 
polynomials, and λm are the related eigenvalues arising from 
the characteristic equation: Fm’(1) = 0. 
 The “tV” problem was solved in closed form by the 
variation of parameters method which allows to find the 
solution of a linear but non homogeneous problem even if the 
x-stationary solution does not exist. The solution was sought 
as: 

( ) ( ) ( )∑
=

⋅=
J

rFxArxt
1j

jjV ,  (27) 

 
where Fj(r) are the eigen-functions of the equivalent 
homogeneous problem (obtained from the “tV” problem by 
deleting the generation term) and are equal to the Graetz 
problem ones. 

 The orthogonality of the eigen-functions respect to the 
weight r·(1-r2) allowed to obtain the following fist order 
differential equation, which satisfies both the “tV” differential 
equation and its two “r” boundary conditions: 
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Equation (28) was solved imposing the “x” boundary 

condition of the “tV” problem, which in terms of Aj(x) turns out 
to be: 

 
Aj(0) = 0. (32) 
 

In particular, the linearity of the problem suggested to find 
the functions Aj(x) as the sum of N/2 - partial solutions, each 
one resulting from a simple differential partial equation 
correlated with the boundary condition: 
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where  i =2...N/2. Finally, 

 
aji(0) = 0. (35) 
 

Then, for a fixed value of j, the function Aj(x) turns out to 
be: 
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To end with, it was verified that such an analytical solution 

recovers the corresponding numerical results. 
 

III. RESULTS 

A. Bulk temperature analysis 
Bulk temperature distributions are plotted in Figs. 7-10 for 

four different inlet velocities, namely 0.008, 0.02, 0.04 and 
0.08 m/s. Curves are related to the CN, EH, BH problems and, 
for reference, a further one evaluated analytically assuming 
uniform U0 heat generation (UN). It clearly appears that the 
EH problem  fits quite well the CN problem, whereas the 
remaining curves underestimate it. In particular, EH and CN 
curves are almost overlapped for the highest velocity. 

 

  
Fig. 4. Bulk temperature evolution for Uav = 0.008 m/s 
 
 

 
Bulk temperature evolution for Uav = 0.02 m/s 
 

Fig. 5. Bulk temperature evolution for Uav = 0.08 m/s 
 
 

 
 

 

  
Fig. 7. Bulk temperature evolution for Uav = 0.008 m/s 
 
 

      

   Fig. 8. Bulk temperature evolution for Uav = 0.02 m/s 
 
 

 
Fig. 9. Bulk temperature evolution for Uav = 0.04 m/s                                    Fig. 10. Bulk temperature evolution for Uav = 0.08 m/s 
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Fig. 11. Spatial evolution of the error on the bulk temperature 
prediction. 

At the aim of evaluating the spatial evolution of the error on 
the bulk temperature prediction, the percentage error on the 
bulk temperature prediction has been introduced: 
 

iCN,b

EH,bCN,b

TT
TT

rre
−

−
= . (37) 

 
As can be seen from Fig. 11, for a fixed value of the axial 

coordinate the error locally decreases with increasing velocity. 
For a fixed value of velocity, the error attains a maximum 
which results to be related to the maximum cumulative error 
on the prediction of the heat generation distribution. The 
maximum collocation appears to be independent from velocity, 
because the BH heat generation is featured by a low sensitivity 
to the temperature level. In order to quantitatively compare 
results, the root mean square error RMSE [°C] with respect to 
the CN solution is evaluated by considering a sampling rate of 
10 points per wavelength, see Fig. 12. For a fixed Uav, the 
RMSE related to the UN and BH curves are practically the 
same since the BH curve fluctuates around the dashed one, 
whereas the corresponding the EH values turn out to be 
noticeably reduced. 
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Fig. 12. Root mean square error with respect to the CN solution. 

 

 Computational time 

Uav[m/s] CN BH 

0.008 12 h, 48 min, 20 s 21 min, 11 s 

0.02 9 h, 21 min, 40 s 22 min, 16 s 

0.04 5 h, 49 min, 41 s 22 min, 9 s 

0.08 4 h, 18 min, 16 s 22 min, 9 s 

 

Tab. 1. Computational time for CN and BH solutions 

 
Interestingly enough, the more is the inlet velocity, the 

lower is the RMSE, providing a better agreement due to the 
smoothing effect realized by higher frequencies fluctuations in 
heat generation felt by the flowing fluid.  

All the calculations were performed on a PC Intel Core i7, 
24Gb RAM. As shown in Tab. 1, the related computational 
time decrease with increasing speed according to table 1, since 
coupling among the involved physics is weaker. Of course, no 
meaningful variations are revealed for the BH problem where 
the time needed was roughly 22 min for each speed. Thus a 
substantial reduction was achieved this being at least one tenth. 

IV. CONCLUSION 
The process of continuous flow microwave heating was 

simulated both using a multi-physics software package and two 
approximated numerical-analytical hybrid models, 
encompassing a longitudinal variable heat dissipation inside 
the entrance region of the heated pipe. The discrete values of 
the heat generation arising from the numerical solution were 
interpolated by a function resulting from the Discrete Fourier 
Series in order to fed the analytically solved thermal problem. 

The use of a properly stretched heat generation distribution 
allowed to describe the bulk temperature distribution much 
better than the corresponding problem featured by constant 
EM properties. Furthermore, such an aim is recovered with no 
additional computational efforts, thus leading to an easy way 
to predict temperature patterns through the pipe. Further 
developments of the present work are intended to validate the 
present results by means of experimental investigations. 
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