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Abstract – The given paper, the simplest viscoelastic
models involving fractional derivatives, namely: fractional
derivative Kelvin-Voigt model, Maxwell model, standard
linear solid model and Koeller model, which is the gener-
alization of the fractional derivative standard linear solid
model, are considered, and their connectedness with the
Rabotnov dimensional fractional operators is revealed. It
is shown that when the order of the fractional derivative
is tending to zero, then some of the enumerated models
lose their physical meaning, while the other go over into
the models describing pure elastic materials. These results
have been achieved only due to the consideration of the re-
solvent operators, which allow one to express not only the
stress in terms of the strain but the strain in terms of the
stress as well.
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I. INTRODUCTION

On February 24, 2014, Russian science and fractional
calculus community all over the world celebrated the cen-
tennial anniversary since the birthday of the Russian Aca-
demician Yury Nikolaevich Rabotnov who was an out-
standing scientist in the field of Solid Mechanics and who
made a basic contribution to the development of the theory
of elasticity and plasticity, the theory of shells and stabil-
ity of elastic and viscoplastic systems, the creep theory of
metals and the hereditary theory of elasticity. He actively
worked in the new directions of damage and fracture me-
chanics and mechanics of composite materials.

Rabotnov is a pioneer in the application of fractional
operators based on the fractional derivatives in Mechanics

∗This research was made possible by the Grant No. 7.22.2014/K as
a Government task from the Ministry of Education and Science of the
Russian Federation to Voronezh State University of Architecture and Civil
Engineering

of Solids. He suggested such fractional operators, the re-
solvent operators to which are fractional operators of the
same order. Moreover, he developed the algebra of these
operators. The main Rabotnov’s ideas and results in the
field of hereditary mechanics could be found in [1]–[4].

For the first time the fractional operator was introduced
by Rabotnov in 1948 in his paper “Equilibrium of an elastic
medium with after-effect” published in a Russian academic
journal Prikladnaya Matematika i Mekhanika [1], which in
2014 has been translated into English and reprinted in Frac-
tional Calculus and Applied Analysis, vol. 17, no. 3, pp.
684–696, DOI: 10.2478/s13540-014-0193-1 due to the ini-
tiative of Professor Virginia Kiriakova, the Editor-in-Chief.

The authors of this paper wish to thank Prof. Kiriakova
on behalf of the Russian Solid Mechanics community for
this tremendous contribution in celebrating the centennial
jubilee of Academician Rabotnov. Now researchers all over
the world interested in fractional calculus application in
Mechanics could read this pioneer Rabotnov’s paper! It
is very important, since all rheological models involving
fractional derivatives or fractional integrals could be repre-
sented in the form of Boltzmann-Volterra relationships with
Rabotnov’s fractional operator kernels [5].

It has been emphasized by Rabotnov [2] that the ma-
jority of experiments carried out with viscoelastic materials
are creep experiments, that is why if a rheological model is
written in the form of the stress-strain relationship, then it
is necessary to find the reverse connection, i.e. to express
the strain ε in terms of the stress σ. Precisely this rela-
tion allows one to carry out creep experiments and to deter-
mine the physical constants involving in this strain-stress
relationship. In other words, it is a need to construct the
resolvent operators for each model.

In the present paper, the simplest viscoelastic models
involving fractional derivatives are considered, and their re-
lation to the Rabotnov dimensional fractional operator is
revealed. It is shown that when the order of the fractional
derivative is tending to zero, then some models lose their
physical meaning, while the other go over into the models
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describing pure elastic materials.

II. THE SIMPLEST FRACTIONAL DERIVATIVE

VISCOELASTIC MODELS

Let us consider the simplest viscoelastic fractional calcu-
lus models which could be obtained by substituting the in-
teger order derivatives in the conventional models of vis-
coelasticity by the fractional order time-derivatives using
the Riemann-Liouville definition [6]

Dγσ =
d
dt

t∫
0

σ(t′)
Γ (1− γ)(t− t′)γ

dt′, (1)

where σ is the stress, 0 < γ ≤ 1 is the order of the frac-
tional derivative, and Γ (1− γ) is the Gamma-function.

A. Fractional Derivative Kelvin-Voigt Model

The fractional derivative Kelvin-Voigt model was intro-
duced by Shermergor in 1966 [7] and it has the form

σ = E0ε+ E0τ
γ
σD

γε, (2)

where ε is the strain, γ (0 < γ ≤ 1) is the fractional pa-
rameter, τσ is the retardation (creep) time, and E0 is the
relaxed elastic modulus (prolonged modulus of elasticity,
or the rubbery modulus).

At γ = 1, the model (2) goes over into a conventional
Kelvin-Voigt model of viscoelasticity.

The equation resolvent to (2) has the form

ε(t) = J0
1

1 + τγσDγ
σ(t), (3)

where J0 = E−1
0 is the prolonged compliance, while the

operator

3∗γ (τγσ ) =
1

1 + τγσDγ
(4)

is the dimensionless Rabotnov operator [8].
Considering that DγIγ = IγDγ = 1, we could repre-

sent the operator (4) as

3∗γ (τγσ ) =
Iγτ−γσ

1−
(
−Iγτ−γσ

) , (5)

where

Iγσ =

t∫
0

(t− t′)γ−1

Γ (γ)
σ(t′)dt′ (6)

is the fractional integral.
If we suppose that the right part of formula (5) is the

sum of an infinite decreasing geometrical progression, the
denominator of which is equal to d = −Iγτ−γσ , then we
find

3∗γ (τγσ ) =
∞∑
n=0

(−1)nτ−γ(n+1)
σ Iγ(n+1), (7)

Considering (7), the strain-stress relationship (3) could
be rewritten as

ε = J0 3∗γ (τγσ )σ(t), (8)

or

ε = J0

∫ t

0

3γ (t′/τσ)σ(t− t′)dt′, (9)

where

3γ (t/τσ) =
tγ−1

τγσ

∞∑
n=0

(−1)n(t/τσ)γn

Γ [γ(n+ 1)]
(10)

is the fractional exponential function suggested by Rabot-
nov [1] in 1948, which at γ = 1 goes over into conventional
exponential function. But when γ → 0, it transforms into
the δ-like sequence, since 30 (t/τσ) vanishes to zero at
any t (Γ(0) = ∞) except the magnitude t = 0, at which
30 (0) =∞, i. e.,

lim
γ→0
3γ (t′/τσ) = δ(t′). (11)

That is why at γ = 0, as it follows from (9),

ε(t) = J0σ(t), (12)

while from the stress-strain relationship (2) at γ = 0 we
have

σ(t) = 2E0ε(t). (13)

From the comparison of contradictive formulas (12)
and (13) it follows that the generalized Kelvin-Voigt model
(2) could not be utilized at γ = 0, since it loses the physical
meaning in this case.

B. Fractional Derivative Maxwell Model

The same conclusion, as it has been done above for the
fractional derivative Kelvin-Voigt model, could be made
for the fractional derivative Maxwell model

J∞ (σ + τγε D
γσ) = τγε D

γε, (14)

where J∞ = E−1
∞ is the instantaneous compliance, E∞

is the non-relaxed (instantaneous, or the glassy modulus)
modulus of elasticity, and τε is the relaxation time.

The stress-strain relationship (14) could be rewritten in
another form if we apply the operator Iγ to the left and right
hand-side parts of (14) and consider that IγDγ = DγIγ =
1. As a result we obtain the strain-stress relationship cor-
responding to the generalized Maxwell model written in
terms of the fractional integral, which was for the first time
introduced by Shermergor in 1966 [7]

ε(t) = J∞

σ(t) + τ−γε

t∫
0

t′γ−1

Γ (γ)
σ(t− t′)dt′

 . (15)
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Expressing the value of σ(t) from (14), we have

σ(t) = E∞
τγε D

γ

1 + τγε Dγ
ε(t), (16)

or

σ(t) = E∞

(
1− 1

1 + τγε Dγ

)
ε(t). (17)

Considering (4) and (7), (17) could be rewritten in the
following form:

σ(t) = E∞

ε(t)− t∫
0

3γ (t′/τε) ε(t− t′)dt′
 . (18)

Tending γ to 0 in (15) and (18) and considering that

lim
γ→0

t′γ−1

Γ(γ)
= δ(t′), (19)

lim
γ→0
3γ (t′/τε) = δ(t′), (20)

we find
ε(t) = 2J∞σ(t), (21)

σ(t) ≡ 0, (22)

whence it follows that ε ≡ 0 as well.

C. Fractional Derivative Standard Linear Solid Model

The other situation is with the fractional derivative
standard linear solid model, which for the first time was
suggested by Meshkov in 1967 [9], who was a postdoctoral
researcher of Academician Rabotnov in those times,

J0 (σ + τγε D
γσ) = ε+ τγσD

γε, (23)

where (
τε
τσ

)γ
=

E0

E∞
=
J∞
J0

. (24)

It should be noted that formula (24) was derived by
Shermergor [7] and Meshkov [9] from the comparison
of the resolvent operators describing the stress-strain and
strain-stress relationships. This formula is very important
from the physical point of view, since it provides the cou-
pling between the rheological parameters of the model to
ensure its physical validity.

Let us first express σ(t) in terms of ε(t) from (23). As
a result we obtain

σ(t) = E0
1 + τγσD

γ

1 + τγε Dγ
ε(t), (25)

or with due account for (24)

σ(t) = E0
1 + E∞E

−1
0 τγε D

γ

1 + τγε Dγ
ε(t). (26)

Further we represent (26) in the form

σ(t) = E∞
E0E

−1
∞ + τγε D

γ + 1− 1
1 + τγε Dγ

ε(t), (27)

or after dividing the numerator by the denominator

σ(t) = E∞

[
1− νε

1
1 + τγε Dγ

]
ε(t), (28)

or
σ(t) = E∞

[
1− νε 3∗γ (τγε )

]
ε(t), (29)

where νε = 4EE−1
∞ , and4E = E∞−E0 is the defect of

the modulus, i.e., the value characterizing the decrease in
the elastic modulus from its nonrelaxed value to its relaxed
value.

Considering (4) and (7), (29) could be rewritten in the
following form:

σ(t) = E∞

ε(t)− νε t∫
0

3γ (t′/τε) ε(t− t′)dt′
 .

(30)
Then we could express ε(t) in terms of σ(t) from (23).

As a result we obtain

ε(t) = J0
1 + E∞E

−1
0 τγε D

γ

1 + τγσDγ
σ(t), (31)

or with due account for (24)

ε(t) = J0
1 + J∞J

−1
0 τγσD

γ

1 + τγσDγ
σ(t). (32)

Then we represent (32) in the form

ε(t) = J0
J0J

−1
∞ + τγσD

γ + 1− 1
1 + τγσDγ

σ(t), (33)

or after dividing the numerator by the denominator

ε(t) = J∞

[
1 + νσ

1
1 + τγσDγ

]
σ(t), (34)

or
ε(t) = J∞

[
1 + νε 3∗γ (τγσ )

]
σ(t), (35)

where νσ = 4JJ−1
∞ , and4J = J0 − J∞.

Considering (4) and (7), relationship (35) could be
rewritten in the following form:

ε(t) = J∞

σ(t) + νσ

t∫
0

3γ (t′/τσ)σ(t− t′)dt′
 .

(36)
At γ → 0, expressions (30) and (36) take, respectively,

the form
σ(t) = E∞(1− νε)ε(t), (37)

ε(t) = J∞(1 + νσ)σ(t). (38)
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Considering that

1− νε = E0E
−1
∞ = τγε τ

−γ
σ , (39)

1 + νσ = J0J
−1
∞ = τγσ τ

−γ
ε , (40)

from relationships (37) and (38) we have

σ(t) = E0ε(t), (41)

ε(t) = J0σ(t). (42)

But, as it is seen from formula (24),

E0 = E∞, J0 = J∞,

and hence at γ = 0 the fractional derivative standard lin-
ear solid model goes over into the correct model of a pure
elastic body.

Based on formulas (30) and (36), it is possible to write
the connection between the resolvent operators

1
1− νε 3∗γ (τγε )

= 1 + νσ 3∗γ (τγσ ). (43)

In order to prove the relationship (43), it is necessary
to multiply its right hand-side part by the denominator of
the fraction in its left hand-side, to consider the theorem of
multiplication of Rabotnov’s operators [10]

3∗γ (τγε ) 3∗γ (τγσ ) =
τγε 3∗γ (τγε )− τγσ 3∗γ (τγσ )

τγε − τγσ
, (44)

as well as take the formulas

νετ
γ
σ

τγσ − τγε
=

νστ
γ
ε

τγσ − τγε
= 1

into account.

III. KOELLER MODEL AND THE GENERALIZED

RABOTNOV MODEL

The Koeller model [11] is the immediate generaliza-
tion of the fractional derivative standard linear solid model
(23) via involving in the left and right sides by n fractional
time-derivative terms, instead of two terms in the model
(23):

n∑
i=0

aiD
iγε =

n∑
j=0

bjD
jγσ, (45)

where Diγ and Djγ are the Riemann-Liouville derivatives
(1), and ai and bj are some coefficients.

Expressing the strain ε in terms of the stress σ from
(45) and vise versa, we have

ε =

∑n
j=0 bjD

jγ∑n
i=0 aiD

iγ
σ, (46)

σ =
∑n
i=0 aiD

iγ∑n
j=0 bjD

jγ
ε, (47)

Suppose that equations

n∑
j=0

bjZ
j = 0, (48)

n∑
i=0

aiY
i = 0, (49)

possess only simple real negative roots Zj = −t−γj (j =
1, ..., n) and Yi = −τ−γi (i = 1, ..., n). Then dividing in
(46) and (47) the polynomials standing in numerators by
those in denominators, and further decomposing the proper
fractions obtained in the remainder into simple fractions
with due account for the assumptions for the roots of (48)
and (49), we have

σ = E∞

1−
n∑
j=1

mj 3∗γ
(
tγj
) ε, (50)

ε = J∞

[
1 +

n∑
i=1

ni 3∗γ (τγi )

]
σ, (51)

where J∞ = bna
−1
n , E∞ = anb

−1
n , τγi (i = 1, 2, ..., n) are

retardation times, tγj (j = 1, 2, ..., n) are relaxation times,
ni = giτ

γ
i and mj = ejt

γ
j are constants,

gi =
n−1∑
k=0

(
bk
bn
− ak
an

)
τ−kγi (−1)k

 n∏
l=1
(l6=i)

(
τ−γl − τ−γi

)
−1

ej =
n−1∑
k=0

(
bk
bn
− ak
an

)
t−kγj (−1)k

 n∏
l=1

(l6=j)

(
t−γl − t

−γ
j

)
−1

Moreover, it could be shown that the models (50) and
(51) are resolvent one only if the following equalities are
valid:

1 +
n∑
j=1

mjt
−γ
j

τ−γi − t−γj
= 0, (52)

1 +
n∑
i=1

niτ
−γ
i

τ−γi − t−γj
= 0. (53)

From the n-th order Eqs. (53) we could define n mag-
nitudes of t−γj (j = 1, ..., n), while knowing t−γj from the
set of n Eqs. (52) we find the values mj (j = 1, ..., n).

If we suppose now that constants mj and t−γj (j =
1, ..., n) are known, and it is a need to determine constants
ni and τ−γi (i = 1, ..., n). In this case, from the n-th or-
der Eqs. (52) we could define n magnitudes of τ−γi , while
knowing τ−γi , we could find the values of ni from the set
of n Eqs. (53).
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The analysis of relationships (52) and (53) shows that
the following constrains are implied on the relaxation and
retardation times [10]

τ−γk < t−γk < τ−γk+1, τ−γn < t−γn . (54)

Note that relationships (52) and (53) differ a little from
those presented in [2], since in this paper we use fractional
operators in dimensionless form, what has allowed us to
generalize relationship (24) for the case of the generalized
Rabotnov model [10]

n∏
i=1

τi

n∏
j=1

tj


γ

= 1 +
n∑
i=1

ni, (55)


n∏
j=1

tj

n∏
i=1

τi


γ

= 1−
n∑
j=1

mj . (56)

Formulas (55) and (56) are the immediate extension of
formulas (39) and (40).

To prove formula (55), we adopt relationship (53)
rewritten in the following form:

1 +
n∑
i=1

ni
1− xτγi

= 0, (57)

where x = t−γ .
Reducing all terms of (55) to the common denomina-

tor, we are led to the equation of the nth order:

xn + c1x
n−1 + c2x

n−2 + ...+ cn = 0, (58)

where

cn =
1 +

n∑
i=1

ni

(−1)n
n∏
i=1

τγi

. (59)

Utilizing one of the Viet formulas concerning the roots
of the algebraic nth-order equation, i.e.,

cn = (−1)n
n∏
j=1

t−γj , (60)

and substituting cn by (60), as a result we are led to the
relationship (55).

In a similar way, to prove formula (56) we adopt rela-
tionship (52) rewritten in the following form:

1−
n∑
j=1

mj

1− ytγj
= 0, (61)

where y = τ−γ .

Reducing all terms of (61) to the common denomina-
tor, we are led to the equation of the nth order similar to
(58), where

cn =
1−

n∑
j=1

mj

(−1)n
n∏
j=1

tγj

. (62)

Considering the Viet formula concerning the roots of
the algebraic nth-order equation

cn = (−1)n
n∏
i=1

τ−γi , (63)

and equating relationships (62) and (63) to each other, as a
result we are led to formula (56).

Tending γ to 0 in (55) and (56) yields, respectively:
n∑
i=1

ni = 0, (64)

and
n∑
j=1

mj = 0. (65)

Now tending the fractional parameter γ → 0 in the
generalized Rabotnov resolvent models (50) and (51) with
due account for (20), (64) and (65), we are led to two unre-
pugnant equalities (41) and (42) describing the pure elastic
behavior of the material.

IV. CONCLUSION

The simplest viscoelastic models involving fractional
derivatives, namely: fractional derivative Kelvin-Voigt
model, Maxwell model, standard linear solid model and
Koeller model, which is the generalization of the fractional
derivative standard linear solid model, are considered, and
their connectedness with the Rabotnov dimensional frac-
tional operators is revealed.

Using the resolvent operators for each model, which
allow one to express not only the stress in terms of the
strain but the strain in terms of the stress as well, it has
been shown that not all of the simplest fractional derivative
models retain their physical meaning when the fractional
parameter vanishes to zero.

The role of the resolvent operators is shown for each
of the models under consideration, since they allow one to
define the physical meaning of the parameters involving in
these models.

For the Koeller model, it is demonstrated its connect-
edness with the generalized Rabotnov model involving the
sum of Rabotnov fractional operators under the certain
restrictions for the coefficients entering into the Koeller
model.

For the generalized Rabotnov models, formulas cou-
pling the relaxation and retardation times with the elastic
moduli entering in these models have been deduced.
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In conclusion it should be emphasized once again that
nowadays the ideas of the Russian Academician Rabotnov
are still widely used worldwide for solving intricate static
and dynamic problems dealing with behavior of hereditar-
ily elastic bodies [8].
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