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Abstract – The stability of nonlinear systems is studied by the 

method of partial discretization.  The steady motion of a mechanical 

system is defined here as its motion without resonant oscillations. In 

order to avoid resonance oscillations in the operating modes of the 

system a quasianalytic evaluation of the behavior of the solution of 

the perturbed state equation is made. The equation is partially 

discretized in the class of generalized functions (Dirac delta 

function). An analytical solution characterizing the behavior of a 

small perturbation f in time has been obtained. The efficiency of 

the proposed approach is based on the simplicity of the solution and 

visualization of its results. This is illustrated by the example of 

stability analysis of resonance oscillations at the basic frequency of 

physically and geometrically nonlinear systems. The results obtained 

in this paper are in good agreement with well-known results obtained 

by other methods. 
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I. INTRODUCTION 

HE problem of stability of motion is one of the main 

problems of modern dynamical systems having a wide 

range of practical applications in engineering. Nonlinear 

dynamical systems are of special interest. 

Nonlinearity of dynamical systems may be caused by 

different factors. In practice of machine design and operation, 

nonlinearity of systems may be due to the influence of large 

inertial forces and technological loads. They may cause elastic 

[1] or plastic deformation of individual elements or of the 

system as a whole. Another source of nonlinearity is initial 

stresses, physically nonlinear properties of elements of the 

system, nonlinear viscous friction and other factors [2]-[3]. 

They can lead to the emergence of complex oscillatory 

processes with modulation frequencies and resonance 

phenomena at sub- and ultra frequencies. Therefore, in order 

to provide stable movement of nonlinear systems it is 

necessary to identify resonance frequencies and to exclude 

them from the operating modes. 

 

 
This work was supported in part by the Ministry of Education and Science 

of the Republic  Kazakhstan under Grant 0112PK01496. 

L. Khajiyeva is with the Department of Mechanics and Mathematics al-
Farabi Kazakh National University, Almaty 050040, Kazakhstan  

(corresponding author e-mail: khadle@mail.ru). 

Askat Kudaibergenov is with the Department of Mechanics and 

Mathematics al-Farabi Kazakh National University, Almaty 050040, 

Kazakhstan  (e-mail: ask7hat@mail.ru). 

 Askar Kudaibergenov is with the Department of Mechanics and 
Mathematics al-Farabi Kazakh National University, Almaty 050040, 

Kazakhstan  (e-mail: as5kar@mail.ru). 

A. Kydyrbekuly is with the Institute of Mechanics and Theoretical 
Ingineering, Almaty 050010, Kazakhstan  (e-mail: almatbek@list.ru).  

Investigation of stability of motion of mechanisms and 

machines depends on the choice of the dynamic model. The 

most widely studied model is a nonlinear dynamical model 

with one degree of freedom. This model not only describes 

movements of machine elements as absolutely rigid units, but 

it can also describe oscillations of systems with discrete 

masses.  

On the other hand, such models can be used for rough 

description of oscillations of systems with distributed 

parameters. In this case, dependences on spatial variables are 

eliminated using the Bubnov-Galerkin, Rayleigh-Ritz 

methods, finite element method and others. This approach is 

widely used by the authors studying stability of motion of 

elements of machines and mechanisms taking into account 

their nonlinear deformations. 

Among the early studies of resonant oscillations in 

nonlinear systems with one degree of freedom, it is necessary 

to mention the work of W. Szemplinska-Stupnicka [4]. The 

author was the first to study resonant oscillations at high 

frequencies and problems of their stability. 

In some papers the stability of periodic oscillations was 

studied by asymptotic methods and methods of a small 

parameter. They refer to quasi-linear and quasi-Lyapunov 

systems [5]-[7], etc. In these works the conditions of 

asymptotic stability were obtained using Lyapunov's function 

with rather rigid restrictions on the degree of nonlinearity. In 

[8] the stability of periodic oscillations of a nonlinear system 

was considered without restrictions on its nonlinearity and 

non-autonomous terms.  

The first Lyapunov’s method is also used to study the 

problem of robust stability and stabilization of linear time-

invariant systems with delayed perturbation [9]-[11], etc, as 

well as stability of nonlinear systems including delayed 

perturbations [12].  This problem is especially difficult for 

systems with time-varying delay. In this case the analysis of 

stability becomes a much more difficult job.  In  [13]  the 

stability of the trivial equilibrium position of mechanical 

systems with time-varying delay was studied.  

The tool most widely used to analyze the stability of linear 

and nonlinear dynamic systems is the second (main) A.M. 

Lyapunov’s method [14]. Most authors base their study of 

stability of motion on the application of the second 

Lyapunov’s method. In this case, Lyapunov stability implies 

the existence of initial disturbances or conditions under which 

the motion of the system remains within certain limits. These 

limits depend on the strength and geometrical parameters of 

the element. The stability boundary evaluation problem is  

important in many engineering disciplines.  The methods 

developed for this purpose avoid the need of carrying out 
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extensive experiments and simulations of the systems design 

process [15].  

To determine the areas of instability of motion the authors 

often use the Floquet theory [4], [16]-[18], which enables 

them to construct a characteristic determinant based on the 

perturbation method and known properties of equations of 

Mathieu or Hill type [4], [17]-[18]. It sets the boundaries of 

such areas. The fundamental works of T. Hayashi [17], A. 

Tondl [18] and V.V. Bolotin [19] on studies of parametric 

instability of nonlinear mechanical systems are also well 

known. They consider in details stability of vibrations of 

mechanical systems for sub- and ultra-harmonics and methods 

of determining their boundaries. 

 The other, not less well-known approach, is identification 

of areas of instability in accordance with the Routh-Hurwitz 

criterion. In this method, the rank of the determinant 

significantly affects the calculations. For example, in case of 

resonance at high frequencies it is difficult to determine the 

areas of instability due to the high rank of the characteristic 

determinant [4]. In some papers the stability of solutions of 

dynamic models is studied based on the geometric 

representation of stability (geometric method) [20], 

discretization of models in time, application of the iteration 

methods [16], [21] and other methods. 

A great variety of methods is used to solve stability 

problems. Nevertheless, the development of tools of dynamic 

analysis of mechanical systems is of great practical interest.  

In this paper stability of nonlinear dynamical systems is 

analyzed by the method of partial discretization. A steady 

motion of a mechanical system is defined here as its motion 

without resonance oscillations. In order to exclude them from 

the operating modes of the mechanical system, a quasianalytic 

evaluation of the solution to the perturbed equation of state is 

made. For this purpose the equation is partially discretized in 

the class of generalized functions. Discretization of the 

equation enables us to obtain an analytical solution 

characterizing the behavior of a small perturbation f in 

time.   

The paper describes the state of the problem and the 

principle of partial discretization of the equation in the class of 

generalized functions. In this work the Hill-type equation was 

partially discretized and its analytic solution was obtained. As 

an example, a resonance at the basic frequency in physically 

and geometrically nonlinear systems with one degree of 

freedom was considered.  A numerical analysis of the 

behavior of solutions of Hill equations was made. The results 

obtained in this work are in good agreement with the results of 

other authors, which shows the efficiency of the proposed 

approach based on the simplicity of solution and visualization 

of the obtained results.  

II. STATEMENT OF THE PROBLEM 

Let us consider a nonlinear dynamic model with one degree 

of freedom: 

 
2

0( , ) ( ).f Ф f f f F t     (1) 

In case of motion of bodies with distributed parameters, 

when spatial variables are excluded from the model of elastic 

body motion, the unknown ( )f t  can represent a function of 

generalized displacements. This approach is widely used in 

practice of dynamic analysis and solution of problems of 

stability of elastic body motion, in particular, motion of rod 

elements. It is known that in many technical areas, structural 

elements, reducible to the design of the rod, are widely used. 

The degree of nonlinearity of  ( , )Ф f f  with respect to the 

function of generalized displacements ( )f t   corresponds to 

the assumptions of the model. In addition, it characterizes 

nonlinearity of elastic characteristics (geometrical and 

physical nonlinearity) and dissipative forces. 

Let us consider a periodic solution of (1). To study 

stability of the periodic solution 
0 ( )f t   we will set a small 

deviation f  from its equilibrium state: 

 

0( ) ( )f t f t f  . (2) 

 

Stability of the periodic solution 
0 ( )f t  depends on the 

nature of behavior of its small deviation f  in time, i.e. 

solution of the equation for the perturbed state of the system: 

 

00

0f f f
ff

  
    

     
   

, (3) 

 

where the symbol  
0

 means that the solution 
0 ( )f t  is taken 

as an argument of functions. 

If the solution f of (3) is limited for t  , the motion of 

the system is considered to be stable. If f   for t , 

by definition, the motion is unstable, which is identical to the 

criterion of Lyapunov stability. 

The possibility of transition from (1) to (3) is presented in 

[10], where the author refers to Trefftz's research of properties 

of periodic solutions of equations in the form (1). The 

limitation of the solution (1) and its asymptotic stability lead 

to its periodicity with a very small period equal or multiple to 

the period of external perturbing force. 

A new variable   is introduced:  

 

0

exp 0,5
Ф

f
f

 
  

      

. (4) 

 

Then (3) is reduced to the Hill parametrical equation with 

respect to the variable  . 

For the case of basic resonance the Hill equation is written 

as: 





2

0 1 1 22

2

sin cos sin 2

cos2 0,

s c s

c

d
t t t

dt

t


    



      

  

 (5) 
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where 
0 ,  

1 ,s  
1 ,c  

2 ,s   
2 ,c  are functions of frequencies, 

amplitudes, and phases of oscillations of harmonic solutions of 

Eq. (1) , 1 ,r
1 ),  respectively. 

Solutions of Hill equations will determine the behavior of 

small perturbations f in time t. 

To exclude secular terms, growing with time, from the 

solution, various  methods are used, for example, Newton’s 

iteration [16].  
Among the methods of dynamic analysis of vibrations of 

mechanical systems there are methods based on the 

construction of characteristic determinants defining the 

boundaries of instability regions of resonant modes. For this 

purpose, the Floquet theory is used [17].  

The boundaries of instability regions can be determined 

directly from the amplitude-frequency characteristics, that is, 

from the resonance curves using the Routh-Hurwitz criterion. 

In this case it is not necessary to solve the Hill-type equation.   

One of the methods used to solve such equations is partial 

discretization of equations in space or in time (the straight line 

method) [22]. A similar approach was used in [23] for partial 

discretization of the equation for oscillations of a curved 

beam.  The discretization was made in the class of generalized 

functions. 
At each step of partial discretization the variable coefficient 

of the equation was represented as a constant. This enabled the 

author to determine the magnitude of flexure of the beam 

analytically. 

Here the analysis of stability of the solution (1) is based on 

discretization of the second term of the parametric Hill-type 

equation in the class of generalized functions. 

In this paper the method of partial discretization is applied 

to the Hill-type equation in order to avoid a time-consuming 

process of determination of characteristic determinants and 

boundaries of instability regions of resonant modes. The Hill-

type equation is simplified, which enables us to obtain 

analytical solutions of Hill equations characterizing the 

behavior of small perturbations f  in time t. 

III. PARTIAL DISCRETIZATION OF THE HILL 

EQUATION 

According to the method of partial discretization, the 

second term in Eq. (5) is represented discretely in the class of 

the generalized functions: 

 
2

1 0 1 12
1

2 2

0 1 1 1 1 2 1

2 1 1 1

1
( )[( sin cos

2

sin 2 cos2 ) ( ) ( )

( sin cos sin 2

cos2 ) ( ) ( )] 0,

n

k k s k c k
k

s k c k k k

s k c k s k

c k k k

d
t t t t

dt

t t t t t

t t t

t t t t


  

   

   

  




  

  

     

     

      

    

 (6) 

 

where 

( )kt is discrete representation of function ( )t  for the value 

of the argument ktt  ;  

1,k n  is number of  splitting of the argument t ; 

( )kt t   is Dirac's delta function. 

It is not difficult to solve (16). For the initial conditions: 

 

0t   
0(0)  ,  

0(0)  ,  

 

it is written as: 

 

1 0 1 1
1

2 2

0 1 1 1 1 2 1

2 1 1 1 0 0

1
( ) ( )[( sin cos

2

sin 2 cos2 ) ( ) ( )

( sin cos sin 2

cos2 ) ( ) ( )] ,

n

k k s k c k
k

s k c k k k

s k c k s k

c k k k

t t t t t

t t t H t t

t t t

t t H t t t

   

  

   

   




  

  

      

     

      

     

 (7) 

 

where ( )kH t t  denotes the Heaviside step function. 

Specifying t  discretely, we obtain a recurrent formula for 

calculation of unknown ( )t  on k-th step of splitting of the 

argument t : 

 





1 2 0 1 1 1 1 2 1

1
2 1 1 1 1

1 1 0 1 1 2

1

2 1 1 0 1
2

1

( ) ( )( sin cos sin 2

1
cos 2 ) ( ) 1 ( )

2 2

( )( sin cos sin 2

cos 2 ) ( ) ( sin

co

k s c s

k k
c k k

k k s k c k s k

k

c k j j s j
j

c

t t t t t t

t t
t t t t t

t t t t t

t t t t

    

 

   

  






 



 


        

   
      

 

       


     







2 2

1
1 1 1

0 1 1 2

1
2 0 0 1

1 1 0 1 1

s sin 2 cos 2 ) ( )

1
1 ( )( )

2 2

( sin cos sin 2

1
cos 2 ) 1 ( )

2 2

( )( sin cos

j s j c j j

k k
j k k k k

s k c k c k

k k
c k k k

k k s k c k

t t t t

t t
t t t t t

t t t

t t
t t t

t t t t

  

   

  

  


  




 

    

   
      

 

      

   
       



     

 2 2sin 2 cos 2 ) .s k c kt t   

(8) 
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Unlike [14]-[15], where the method of partial discretization 

is applied to studying of parametric system oscillations, in this 

paper it is used directly for the solution of the perturbation 

equation in terms of ( )t . It is possible to determine stability 

of the state analyzing the nature of ( )t  behavior, according 

to the Lyapunov stability criterion. If the magnitude ( )t  

decreases with time t  (damping process) then 0f  , i.e. 

the state is stable. If the oscillatory process is growing, then 

we have an unstable state. 

The efficiency of the proposed method will be shown below 

on the example of stability analysis of resonant oscillations of 

physically nonlinear systems. 

IV. ANALYTICAL SOLUTION OF THE HILL EQUATION 

A. Physically nonlinear systems 

As an example, let us consider the motion of physically 

nonlinear systems. The equations of motion for these systems 

are taken in the form: 

 
22

2

1 2 1 2 0 12
cos .

d f df df
k k f f F F t

dt dtdt
 

 
       

 
 (9) 

 

In (9) dissipative forces, which are supposed to be nonlinear 

and viscous due to damping properties of physically nonlinear 

media (rubber and similar materials are used as oscillation 

dampers), are taken into account. 

Physical nonlinearity of the system (soft-type nonlinearity) 

is characterized by an arbitrary angle of rotation of cross 

elements, which corresponds to quadratic nonlinearity of the 

restoring force. 

The stability of the main resonance is studied. The solution 

of (9) is expressed as 

 

0 1 1( ) cos( ).f t r r t      (10) 

 

In this case the Hill equation is written as (5): 

 





2

0 1 1 22

2

sin cos sin 2

cos2 0,

s c s

c

d
t t t

dt

t


    



      

  

 (11) 

 
where 

 
2 2 2 2

0 1 2 0 1 2 12 0.25 0.5 ,r k k r        

 
2

1 2 1 2 1 1 1 2 1 1(2 )sin cos ,s r k r k k r         

 
2

1 2 1 2 1 1 1 2 1 1(2 )cos sin ,c r k r k k r         (12) 

 

2 2 2

2 2 1 10.5 sin2 ,s k r    

 
2 2 2

2 2 1 10.5 cos2 .c k r    

 

According to the above technique, using the method of 

partial discretization for the initial conditions
0(0)   and 

0(0)  , we obtain an analytical solution to physically 

nonlinear systems (11): 

 





1 2 0 1 1 1 1

1 2

1

2 1 1 0 1 1
2

1 2 2 1

1

1 1 1

0 1

( ) ( )( sin cos

cos sin 2

cos 2 ) ( )( sin

cos sin 2 cos 2 ) ( )

1
1 ( )( )

2 2

(

k s c

c k s k

k

c k j j s
j

c j s j c j j

k k

j k k k k

s

t t t t t

t t

t t t t

t t t t

t t
t t t t t

   

 

  

   

 



 




  

      

   

    

     


    

 




  
  

 





1 2

1

2 0 0

1 1 1 0 1 1

2 2

sin cos sin 2

1
cos 2 ) 1

2 2

( )( )( sin cos

sin 2 cos 2 )

k c k c k

k k

c k

k k k k s k c k

s k c k

t t t

t t
t

t t t t t t

t t

 

  

  

 



  

    


   

      

   

  
   



 (13) 

 

with coefficients (12). 

B. Geometrically nonlinear systems 

Another type of nonlinearity of mechanical systems is 

geometric nonlinearity (nonlinearity of rigid type). It may be 

caused by finite deformations, initial stresses and other 

factors. 

For a nonlinear system of the type 

 
22

3

1 2 1 32
cos

d f df df
k k f f F t

dt dtdt
 

 
      

 
, (14) 

 

we studied stability of the basic frequency of the resonance: 

 

1 1( ) cos( )f t r t    . (15) 
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The perturbed equation of state (3) is reduced to the 

parametric Hill-type equation with respect to the variable 

 (5). For this equation, the functions 
0 1 1, , ,s c  

2 ,s 2c  

are defined as:  

 
2 2 2 2 2

0 1 3 1 1 2 11,5 0,25 0,5 ,r k k r        

 
2

1 2 1 1 1 1 1 1sin cos ,s k r k k r         

 
2

1 2 1 1 1 2 1 1cos sin ,c k r k k r        (16) 

 
2 2 2 2

2 3 1 1 2 1 11,5 sin2 0,5 sin2 ,s r k r       
 

2 2 2 2

2 3 1 1 2 1 11,5 cos2 0,5 cos2 .c r k r        
 

As in the previous case, the analytical solution of Hill-type 

equations is determined by formula (13). In this case, the 

coefficients 
0 1 1 2 2, , , ,s c s c     are defined by relations 

(16). 

The solution (13) is a recurrent formula for discrete 

representation of solution ( )t  in time t on the k-th step of 

partition of the argument t . By analyzing the nature of 

behavior of ( )t , we can judge about the stability of the 

studied state. 

V. NUMERICAL RESULTS 

A. Physically nonlinear system 

In this work the methods of numerical analysis were used to 

analyze the behavior of ( )t  representing the behavior of a 

small variation f with time. 

 Calculations were made for parameters of the system 

1 2 1 2 0 10.2; 0.1; 5; 0.5; 5; 50.k k F F        The step 

of discretization was t =0.05.  

Stability of the solution (13) was studied by subdividing the 

amplitude-frequency characteristics of the main resonance 

(Fig.1) into three frequency areas – subresonant, resonant and 

postresonant modes of oscillations. 

It has been established that both subresonant and 

postresonant modes of oscillations are damping (Fig. 2, Fig. 

3), which does not contradict the physical sense of the studied 

phenomenon.  

In the zone of resonant frequencies an increase in the 

oscillation amplitude is observed, which shows that the 

process is instable (Fig.4). 

 

 
 

Fig. 1 amplitude-frequency characteristics of a main resonance at  

2 11; 10F   (curve 1), 2 10.5; 50F   (curve 2) 

 

 

 
 
Fig. 2 behavior of the physically nonlinear system in the subresonant 

zone of oscillations at 0.5, 1.5r   

 

 

 
 
Fig. 3 behavior of the physically nonlinear system in the postresonant 

zone of oscillations at 7.26, 0.15r   
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Fig. 4 behavior of the physically nonlinear system in the resonant 

zone of oscillations at 1.8, 8r   

B. Geometrically nonlinear system 

In this case numerical analysis of behavior of ( )t  was 

made for parameters 1 3 1 30, 2; 0; 1; 1.k k       The 

step of discretization in time was taken equal to t =0.05.  

For this purpose, three frequency ranges – the areas outside 

the resonance zone (to the left and to the right) and the area 

inside the resonance zone were defined on the graph of 

instability zones of the main resonance (Fig. 5).  

 

 

 
 

 
Fig. 5 instability zone of the main resonance of the geometrically 

nonlinear system 

 

 

The instability zone of the main resonance (Fig. 5) was 

obtained using the Floquet theory for testing results. 

It was found that for frequencies outside the resonance zone 

vibrations damped (Fig. 6, Fig. 7) as it was expected. In the 

zone of instability of the main resonance, as in the case of 

physically nonlinear systems, growing oscillation amplitude, 

indicating instability of the process, was observed (Fig. 8). 

 

 

 

 

The application of the method of partial discretization to the 

problem of stability of oscillations gives an analytical solution. 

It enables us to detect zones of stable and unstable oscillations 

of the system. Selecting appropriate geometrical and physical 

parameters of the system by varying them, we can choose such 

operating modes of the system that enable us to avoid 

unwanted resonances. 

The approach used in this paper is universal. It is 

successfully applied to nonlinear systems with one degree of 

freedom. It is also possible to apply it to the analysis of 

stability of nonlinear deformable systems. To do this, it is 

necessary to  transform the model of elastic motion of a body 

by excluding spatial variables and transforming the model to 

the form (1).  

 

 

 
 

Fig. 6 behavior of the geometrically nonlinear system 

 in the stability zone of oscillations  at 1, 2r   

 

 

 
 

 
Fig. 7 behavior of the geometrically nonlinear system in the stability 

zone of oscillations  at 4, 0,7r   
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Fig. 8  behavior of the geometrically nonlinear system in the 

instability zone of oscillations  at 4; 2,5r   

 

CONCLUSION 

The paper considers the problems of stability of nonlinear 

mechanical systems and methods of their analysis. As a stable 

state of the dynamic system the authors define the movement 

of the system in the absence of resonance oscillations. These 

requirements are identical to the definition of Lyapunov 

stability. Therefore, we used the method of analysis of 

stability of nonlinear systems based on the assessment of 

behavior of solutions to perturbed equations of state. 

 Application of the method of partial discretization to the 

perturbed equations of state enabled us to conduct quasi-

analytic evaluation of the behavior of its solutions. For this 

purposes, the Hill-type equation was partially discretized in 

the class of generalized functions. This considerably 

simplified the solution of the Hill-type equation, as its variable 

coefficients were presented as constants at each step of 

discretization in time. 

The analytical solution of the perturbed equation of state is 

a recurrent formula for calculating the oscillation amplitude. It 

enables us to predict the parametric instability of resonant 

modes of motion of nonlinear systems. The efficiency of the 

proposed method is shown on the example of physically and 

geometrically nonlinear systems. The results are in good 

agreement with the results obtained by other methods. 

The proposed method of stability analysis of nonlinear 

systems is applicable not only to the systems with one degree 

of freedom but also to the systems with distributed parameters 

(mainly, to one-dimensional elements, which are widely used 

in engineering). In this paper the authors considered the case 

of a basic resonance. 

The results of this research can be applied to the analysis of 

stability of oscillations at high frequencies. The other subject 

of research can be oscillations of elastic systems with more 

complex topology of deformation. 
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