
 

 

  
Abstract— Gravitation is still the less understood among the 

fundamental forces of Nature. The ultimate physical origin of its 
ruling constant G could give key insights in this understanding. In 
a previous paper the author proposed, starting from ZPF inertia 
hypothesis and the Polarizable -Vacuum approach to General 
Relativity, a novel model of G as a function of quantum vacuum 
energy density, showing that, according to it, G could actually be a 
function of the distance r from the mass generating the 
gravitational field. In this paper the variability of G within a scalar 
fluid dynamics-like theory of gravity as a pressure force, basing on 
the above previous results, is outlined. An analytical expression for 

  G r( ) , under the hypothesis of spherically symmetric body and 
slowly varying gravitational potential, is also derived in this case 
and compared with that previously obtained within the Polarizable 
– Vacuum approach by starting from different hypothesis. The 
results strongly suggest G could be actually related to the property 
of physical vacuum viewed as a medium characterized by special 
properties and depend from the distance from massive bodies. 

The proposed idea could give new interesting insights into a 
deeper understanding of gravitation and represent a starting 
theoretical point for the engineering of unimaginable solutions 
related, for example, to the field of gravity control and space 
propulsion. 
 
Keywords— Gravitation; Physical Vacuum; Vacuum 

Polarization; ZPF Inertia Hypothesis; Pressure Force; Archimede’s 
Thrust.  

I. INTRODUCTION 
RAVITY is the most mysterious and still incompletely 
understood among the fundamental forces of Nature. A 

reason for this could probably derives from the description 
that General Theory of Relativity (GTR) gives of it in terms 
of “spacetime metric” which may hide some fundamental 
underlying physical details. 

To this aim the study of the physical origin of the 
gravitational constant G  ruling the strength of gravitation, 
through the well know Newton’s law of universal 
gravitation 

 
    

!
Fg = G m1 ⋅m2 r 2( ) !u !r   (1) 

where 1m  and 2m  are the interacting masses and r
r

 is 
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their  relative distance vector, could give very important 
insights. In the commonly accepted theoretical framework 
G  is generally assumed to be a universal constant whose 
currently accepted value is [1] 

 
  
G = 6.67384 ± 0.00080( ) ⋅10−11 m3 ⋅ kg−1 ⋅s−1   (2) 

regardless of the magnitude of the mass generating 
gravitational field and of the distance between them. 
Nevertheless, since from the beginning of the past century, 
some interesting models, involving a variable gravitational 
constant G  has been proposed by authoritative researchers 
[2,3,4]. 

A very interesting and intriguing suggestion, in part also 
coming from these studies, is that G  could be somehow 
related to the QED Zero – Point – Field (ZPF) or the so-
called Quantum Vacuum (QV). 

Indeed ZPF is the only “medium” between gravitational 
matter and then the relation between (QV) and gravitation is 
a task of primary importance in order to establish a quantum 
theory of gravity. Several theoretical and experimental 
results have shown QV can be influenced by 
electromagnetic fields [5,6,7]. In addition to electromagnetic 
field, also the presence of matter is though able to modify 
the structure of QV. In 1967, Sakharov [8] suggested  
gravity could be the effect of a change in the quantum-
fluctuation energy of ZPF quantum vacuum induced by the 
presence of matter as experimentally demonstrated by the 
Casimir effect [9,10,11].  

Later, starting from Sakharov’s results, Puthoff [12] 
proposed the hypothesis that ordinary matter could be 
ultimately composed of sub-elementary constitutive charged 
entities he called “partons”, able to dynamically interact 
with the fluctuating QED quantum vacuum according to a 
sort of resonance mechanism. According to Puthoff’s 
model, the inertia of a body would be the result of the 
interaction between partons and ZPF quantum fluctuations 
whose effect would result in the modification of the 
electromagnetic modes of ZPF at the interface between a 
body and its surrounding space determining the so – called 
Zero-Point-Field Lorentz force [13]. In this way both the 
inertial and gravitational masse of a body could be 
substantially composed of confined e. m. modes of ZPF 
whose presence modifies the previous state of QED QV. 

On the other hand, it is a known fact, theoretically 
explained within the GTR and supported by strong 
experimental evidences, that the gravitational potential 
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generated by mass, depending on the radial distance from it, 
affects the running rate of clocks, the measure of distances 
as well as the velocity of light. 

All the above results and many other available in the 
literature [14,15,16] strongly suggest QV can be actually 
considered as a sort of “optical” medium equipped with a 
own inner structure.  

On this basis, Puthoff [17] showed that, under “standard” 
(weak-field) astrophysical conditions, the basic principles of 
GTR can be coherently reformulated in terms of the changes 
in the permittivity   ε0  and permeability   µ0  constants of a 
polarizable vacuum (PV) of an optical electromagnetic 
medium whose properties are able to reproduce all the 
features of GTR under the above conditions. 

Moreover, in some recent works [18-21] the author 
proposed a model of (QV), characterized by a Planckian 
metric, described in terms of the dynamics of energy density 
in which inertial and gravitational mass are interpreted as 
local stable variations of QV energy density with respect its 
“unperturbed” value. Within this model, gravity is 
interpreted as originated by the local gradients of QV energy 
density 

     
Δρ

!
r ,t( ) , due to presence of mass, giving an 

unbalanced ZPF pressure that manifest itself as gravitational 
force.  

More recent researches [8,22,23] also suggested the 
possibility that G  could be truly expressed as a function of 
more fundamental physical quantities, i.e. the so – called 
“Quantum Vacuum Zero Point Field Mass – Density 
Equivalent” 

  
ρQV  giving a measure of the energy density of 

the QED QV and the Planck time  tP . 
On the other hand many researches [24,25,26,27], 

including some very recent ones [28] authoritatively 
indicate that physical vacuum could be actually constituted 
by a (quantum at microscopic scales) fundamental substrate 
like an elastic solid-state medium or fluid or a Higgs 
condensate.   

This view is also coherent with the framework of QFT if 
we remember that, although the Standard Model (SM) is 
usually interpreted as describing fundamental particles 
(leptons and quarks) and their interactions through bosons, 
all the elementary particles are actually QV excitations and 
with the picture of space-time as arising from a sort of large-
scale condensate of more fundamental objects, in which 
matter appears as excitations of these constituents, 
describable by hydrodynamics techniques [18,27,28]. 

In some previous works, starting from the interpretation 
of inertial and gravitational mass as the seat of standing 
waves of ZPF [13,23] and from the picture of QV as a 
special optical medium characterized by a refraction index 
[17,29], a novel theoretical model describing the 
gravitational constant G  as a function of QV energy 
density, has been proposed by this author.  

According to the above model, the gravitational constant 
G , could be considered as function of physical vacuum 
energy density whose value is in turn determined by the 
presence of mass originating gravitational potential and 
variable with the distance from it, thus making G  
depending upon the radial distance as well.  

An approximate analytic expression of this functional 

relation, for a spherically symmetric mass distribution and a 
weak and slowly varying (with distance from mass) 
gravitational potential, has been also proposed in these 
studies [30,31].  

In this paper we present and discuss a reformulation of 
the above idea in the framework of a fluid - dynamics – like 
theory of physical vacuum in which gravity is viewed as a 
pressure force expressed as a function of a single scalar field 
associated to the density of a universal substrate medium 
supposed to “fill” or constitute the physical vacuum itself, 
comparing the result with that previously derived within the 
PV approach [31]. 

By considering this density as the macroscopic average of 
the local QV mass-equivalent energy density 

  
ρQV   (or a 

definite function of it), we show, assuming the ZPF inertia 
hypothesis for inertial and gravitational mass and the 
already considered relationship between G  and 

  
ρQV , the 

gravitational constant G , even in this case, varies as a 
function of the distance r .   

from the mass generating a gravitational potential.  
In particular, the analytical expression for 

  
G r( )  so 

obtained, under the hypothesis of spherically symmetric 
body and slowly varying gravitational potential, has the 
same functional dependence on  r  of that already obtained 
by this author by means of the PV approach [31] by starting 
from different hypothesis [30] but an opposite monotonic 
behaviour with respect to  r , whose meaning is discussed in 
this work. 

We also demonstrate that, if we assume a fluid-like 
constitutive model of space, characterized by specific 
properties [32,33], the variability of G  with respect the 
radial distance r , emerges, under the simplified hypothesis 
discussed, also without a priori considering any quantum 
relationship between G  and quantum vacuum energy 
density. 

The result strongly suggests G  could be actually related 
to the structure and properties of the physical vacuum 
considered as a medium characterized by special properties. 

II. INERTIAL AND GRAVITATIONAL MASS AS THE RESULT 
OF STADING WAVES OF QUANTUM VACUUM 

In the model of Hairsh, Rueda and Puthoff (HRP) [12,13] 
a material body is represented, with respect to the 
electromagnetic interaction, as a resonant cavity in which a 
suitable set of oscillating modes of QV. According to this 
hypothesis (also known as ZPF Inertia Hypothesis), the 
inertial and gravitational masses  mi  and 

 
mg  associated to a 

given material body are given by 

 
    

mi = mg = V0 c2( ) η ω( )
0

∞

∫ ρ ω( )dω   (3) 

in which  ω  is the angular frequency of ZPF mode, 

  
ρ ω( )  is the spectral energy density of quantum vacuum 

ZPF fluctuations and 
  
η ω( )  is a function that would 

quantify the fraction of ZPF energy density that 
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electromagnetically interacts with the particles contained in 
the “useful volume”   V0  or, in other words the “efficiency” 
of interaction [13]. In this way the apparent inertial mass of 
a given object would originate by the interaction, during the 
accelerated motion of the body, between the ZPF energy 
density fraction enclosed in the object (given by 

  
η ω( ) ) and 

the partons contained in the volume   V0 .  

The equivalence between the apparent inertial mass  mi  

and passive gravitational mass 
 
mg  (namely the “weak” 

equivalence principle) then “naturally” arises, within the 
HRP model, from the consideration that a body accelerating 
through ZPF is identical to a body that remains fixed in a 
gravitational field and having the QED QV fall past on 
curved geodesic.  

It is now important to stress the physical meaning of such 
volume, that must intended as an electromagnetic resonant 
cavity with conducting wall, being the volume   V0  the space 
enclosed within the cavity walls. In this way the 
electromagnetic modes of ZPF are trapped inside the cavity 
and the resulting energy is accumulated in it. 

This energy cannot be however accumulated without 
limit, since the possible electromagnetic modes inside a 
resonant cavity are upper bounded by a limiting frequency 

  
ωup  whose value is substantially determined by the plasma 

frequency   ωPl  of the electrons in the cavity walls.  
The connection between the modes inside cavity with 

those outside it is allowed by the conductive structure of 
cavity walls.  

Now if we consider an ideal resonant cavity (i.e. 
neglecting energy dissipation of modes) at the absolute 
temperature    T = 0 , outside the cavity there are only the 
ZPF quantum fluctuations while inside it there is a discrete 
number of possible modes possible oscillating at their exact 
characteristic frequencies ranging from 0 up to   ωPl . 

So, said  N  the maximum number of this modes, we have 

 
     
Etot = !ωk 2

k=1

N

∑   (4) 

where     ω1 ≤ ω2 ≤ ...≤ ωN ≤ ωPl . Now, under the above 
assumptions, the energy given by (4) must be equal to the 
quantity given by (3) multiplied by 2c , namely  

 
     

Etot = mc2 = V0 η ω( )
0

∞

∫ ρ ω( )dω = !ωk 2
k=1

N

∑   (5) 

On the other hand we know that the density of ZPF 
electromagnetic oscillation modes in the frequency interval 
between  ω  and    ω + dω  is given by 

 
    
N ω( )dω = ω2dω π2c3( )dω   (6) 

and, assuming an average energy per mode equal to 

  !ω 2 , we obtain the spectral energy density of ZPF 

fluctuation as 

 
     
ρ ω( )dω = !ω3 2π2c3( )dω   (7) 

that substituted into (5) gives 

 
    
η ω( ) = π2c3 V0( ) δ ω − ωk( ) ωk

⎡
⎣

⎤
⎦

k=1

N

∑   (8) 

Equation (8) states that the spectrum of electromagnetic 
field inside the cavity is composed by a sum of  N  lines 
placed at    ω = ωk  whose amplitude diminishes with the 
increase of frequency.  

Equation (8) holds under the simplification that no 
dissipation occurs. Nevertheless it can be shown [13] that, if 
the dissipation is small, a more accurate expression for the 
line-shaped functions 

   
δ ω − ωk( ) ωk  is given by the so-

called Lorentzian –lineshape function, whose expression is 

 
    
l ω( ) = Δω 2π( ) ω − ω0( )2 + Δω 2( )⎡

⎣
⎢

⎤
⎦
⎥
−1

  (9) 

where the quantity   Δω  is the lineshape broadening 
parameter and describes the various types of dissipation and 
broadening effects.  

By discretizing (9) and using it in (8), we have 

 
    
η ω( ) = π2c3 2πωV0( ) Δω

k
k=1

N

∑ ω − ω
k( )

2
+ Δω

k
2( )⎡

⎣⎢
⎤
⎦⎥
−1

  (10) 

where, as above,   ωk  is the proper frequency of the k-th 

mode and     Δωk > 0  its frequency broadening.  
Finally, the mass associated to a resonant cavity (not 

including the overall mass of the walls) is given by (3) using 
the result of (10), namely 

 

    

m = V0 c2( ) η ω( )
0

∞

∫ ρ ω( )dω =

= π2c5 2πω( )ρ ω( )×
0

∞

∫

× Δωk
k=1

N

∑ ω − ωk( )2
+ Δωk 2( )⎡

⎣⎢
⎤
⎦⎥
−1

dω

  (11) 

now using (7) in (11) and recalling the definition of 
energy given by (5), we can write 
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m = π2c5 2πω0( )ρ ω( )×
0

∞

∫

× Δωk
k=1

N

∑ ω − ωk( )2
+ Δωk 2( )⎡

⎣⎢
⎤
⎦⎥
−1

dω =

= π2c5 2πω0( ) !ω3 2π2c3( )×
0

∞

∫

× Δωk
k=1

N

∑ ω − ωk( )2
+ Δωk 2( )⎡

⎣⎢
⎤
⎦⎥
−1

dω =

= 1 c2( ) Δωk 2π( ) ω − ωk( )2
+ Δωk 2( )⎡

⎣⎢
⎤
⎦⎥
−1
×

0

∞

∫
k=1

N

∑

× !ω 2( )dω

 (12) 

or, in a more compact form, 

 
     

m = Ak ω( )
0

∞

∫
k=1

N

∑ !ω 2( )dω   (13) 

where we have posed 

 
    

Ak ω( ) = c−2 Δωk 2π( ) ω − ωk( )2
+ Δωk 2( )⎡

⎣⎢
⎤
⎦⎥
−1

0

∞

∫  (14) 

Equation (13) is very meaningful since it shows the total 
mass inside the resonant cavity associated to a body can be 
expressed, even in the presence of dissipation, as the 
overlapping of the zero point energies of all the 
electromagnetic modes of QV, each of them broadened by a 
suitable factor given by (14). Furthermore, it is expected 
that the most part of modes are not overlapping as long as 
the cavity size remains small, since their frequency 
separation will become comparable with the broadening 
  Δω  only at the highest frequencies [13].    

 

III. THE EFFECT OF GRAVITATIONAL FIELD IN THE 
POLARIZABLE-VACUUM APPROACH TO GENERAL 

RELATIVITY 

In the Polarizable – Vacuum (PV) formulation of GTR 
[17], the metric changes in terms of variations of 
permittivity and permeability of a polarizable QV and the 
Maxwell’s equations in curved space are treated in the 
isomorphism of a polarizable medium characterized by a 
variable refractive index in flat space.  In this way, as 
already suggested by Eddington [34] almost a century ago, 
the bending of a light ray around a massive object could be 
considered as a refraction effect of the space (actually the 
vacuum) in flat space. In this model the reduction of light 
velocity (as well as all the other effects on time and length 
intervals) are interpreted as the effect of an effective 
increase of the refractive index of QV.  

The basic assumption of PV approach is to consider that 
the presence of a mass induces vacuum polarization effects 
so that the polarizability of vacuum around a mass differs 
from its asymptotic value (in the far-field condition). 
Formally it is done by assuming, for the vacuum, the electric 

flux density   
!
D  is given by the following expression 

      
!
D = ε

!
E = Kε0

!
E   (15) 

where   
!
E  is the electric field,   ε0  is the permittivity of 

vacuum interpreted as the polarizability of the vacuum per 
unit of volume, and  K  is the modified (by the presence of 
mass) dielectric constant of the vacuum (considered as a 
general function of position) due to the vacuum 
polarizability changes. The quantity  K  then represents, 
within PV model, the fundamental variable since it rules the 
variations of all fundamental physical quantities due to the 
altered properties of medium (QV) in the presence of the 
mass. Some theoretical cosmological considerations about 
fine structure constant [15] require 

 
    
ε K( ) = Kε0, µ K( ) = Kµ0   (16) 

then, accordingly, the light velocity will be a function of 
K  

 
  
c K( ) = c K   (17) 

where  c  is the asymptotic light velocity in flat space 
(   K = 1 ). Equation (17) has a very important meaning since 
it shows the dielectric constant of vacuum is a sort of 
refractive index of the PV in which vacuum polarizability 
changes in response to GTR-induced effects. Equation (17) 
implies a “rescaling” of the other fundamental physical 
quantities as energy, mass, time and length intervals. In 
particular, as observed by Dicke [15] by using a limited 
principle of equivalence, if   E0  is the energy of a system in a 
flat space (   K = 1 ), we have, in general 

    E = E0 K   (18) 
in a region of space in which    K ≠ 1 . The combined use 

of  (17) and (18) gives 
 

   m = K 3 2m0   (19) 

for the rest mass   m0  of a particle. As a consequence of a 
change in energy due to the variation of QV polarizability 
we have, starting from     E = !ω , 

 
    ω = ω0 K   (20) 

  and the correspondent equations for time interval 
 

   Δt = Δt0 K   (21) 
 and  for length interval 
 

   Δl = Δl0 K   (22) 
According to (22), the dimension of a material object 

varies with the local changes in QV polarizability so 
reproducing, from a different standpoint, the variable metric 
of GTR. Furthermore, according to (21) and (22), the 
“natural” measurement of light velocity by rods and clocks 
returns the unperturbed value  c  so maintaining the 
invariance of the locally measured velocity of light assumed 
by Einstein’s Theory of Relativity.  

The key point, for our following treatment, is the explicit 
expression of  K  as a function of the mass and the distance 
from it. It can be obtained by following a lagrangian 
approach [35]. The starting point is the lagrangian of a free 
particle 

 
   
L = −mc2 1− v c( )2   (23) 

INTERNATIONAL JOURNAL OF MECHANICS Volume 9, 2015

ISSN: 1998-4448 93



 

 

that, using (17), becomes 

 
   
L = − m0c

2 K( ) 1− Kv c( )2   (24) 

whose density  L  is 

 
     
L = − m0c

2 K( ) 1− Kv c( )2δ3 !r − !r0( )   (25) 

being   
!
r  the generic position and    

!
r0  is the position of the 

particle with respect a given frame or reference. The 
interaction between a particle of charge  q  and an 

electromagnetic field given by the four-potential 
     
φ,
!
A( )  is 

described by the lagrangian density 
 
Lp   

 

     

Lp = − m0c
2 K( ) 1− Kv c( )2 + qφ−q

!
v ⋅
!
A

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
×

×δ3 !r − !r0( )
 (26) 

On the other hand the lagrangian density of the 
electromagnetic field itself is, in PV formulation 

 
    
Lem = − 1 2( ) B2 Kµ0 −Kε0E

2( )   (27) 

and we must also specify a lagrangian density for the 
quantity  K , being considered as a scalar variable, that can 
be obtained, by imposing the standard Lorentz-invariant 
form for the propagational disturbance of a scalar and 
following [15], in the form 

 

     

!
LK = − c4 32πGK 2( )×
× ∇K( )2 − K c( )2 ∂K ∂t( )2⎡
⎣
⎢

⎤
⎦
⎥
  (28) 

 
so that the total lagrangian density for a matter-field 

interaction in a PV with a variable dielectric constant, is 
 

  
L = Lp + Lem + LK   (29) 

The equation of motion in a dielectric vacuum is then 
obtained, using the principle of least action, by the variation 
of the lagrangian density 

   
δ L∫ dVdt  with respect the 

particle variables 
   
x,y,z,t( )  while the equation, in  K , 

describing the effect of vacuum polarization due to the 
presence of matter and field, is get by the variation of  L  
with regard to the  K  variable 

 

     

∇
2

K − K c( )
2

∂
2

K ∂t
2( ) =

= − 8πG K c
4( ) ×

× m
0
c

2
2 K( ) 1 + Kv c( )

2( ) 2 1 − Kv c( )
2⎡

⎣⎢
⎤
⎦⎥
δ

3 !
r −

!
r
0

( ){ } +

− 4πG K c
4( ) B

2
Kµ

0
+ Kε

0
E

2( ) +

+ K 4K
2( ) ∇K( )

2

+ K c( )
2

∂K ∂t( )
2⎡

⎣⎢
⎤
⎦⎥

 (30) 

We are now interested in the simplified case of a static 
field, for which    ∂K ∂t = 0 , with spherical symmetry. In 
this case we have, from (30), after some simple 
manipulations 

 
   

d 2 K dr 2 + 2 r( ) d K dr( ) = 1 K( ) d K dr( )
2

 (31) 

 whose solution, satisfying the Newtonian limit, is [17] 

 
   
K = K( )2 = e2GM rc2

  (32) 

As shown in [17] this solution correctly reproduces the 
usual GTR Schwarzschild metric in weak-field conditions as 
those occurring in the Solar System and is in agreement with 
the scaling factor used in the previous analysis proposed by 
this author [25]. 

IV. GRAVITATIONAL FIELD IN A FLUID DYAMICS THEORY 
OF GRAVITY 

A certain number of models, aimed to describe a theory 
of gravity based on the idea that physical space could be 
really “filled” with a constitutive continuum medium 
characterized by specific properties, has been proposed 
[24,25,26,27] some time ago besides the PV model 
previously discussed. Nevertheless a lot of these attempts 
remain in a early developments, while some of them don’t 
give a complete dynamical explanation of gravitation (since, 
for example, don’t include a celestial mechanics or a 
complete treatment of the Newtonian limit). 

Nevertheless among these, there is one proposed some 
years ago by Arminjon [33,36] that appears quite interesting 
in connection with our picture of gravity as originating from 
physical vacuum density gradients.  

In this model the physical vacuum is supposed to be a sort 
of perfect barotropic fluid or “micro-ether” characterized by 
its own pressure  pe  and density   ρe  related by an equation 

of state 
   
pe = f ρe( ) . As previously observed by Romani 

[32] such type of fluid should not interfere with the motion 
of material bodies being able to exert pressure forces only. 
Furthermore, as a “perfect” fluid, this micro-ether should be 
a neither entropic nor dissipative system and then resulting 
continuous at any scale.  

By reducing the gravity to a pressure force the considered 
model then interprets any interaction at a distance ultimately 
as a contact action. 

In few words, the gravitational force is viewed, within 
this picture, as an Archimedes “thrust, occurring at the scale 
of elementary particles, due to the vacuum fluid. Such 
interpretation was been already proposed by Euler in the 
XVIII century [37] according to which the particles of 
matter (all supposed to have the same density), called 
“molecules”, are pushed by the fluid (characterized by a 
density less than the matter one) filling the “empty space” 
each with a force proportional to the extension or the 
volume of the considered molecule, due to fluid pressure 
gradients. 

In this way Euler was able to reproduce the correct 
dependence of the weight of a body from    r−2  (being  r  the 
distance from Earth centre) in the Earth’s gravitational field. 

In the Euler’s model the vacuum fluid is considered as 
having zero compressibility so implying the instantaneous 
“propagation” of the gravitational interaction and then 
reproducing the classic Newtonian Gravity (NG) behaviour. 

On the other hand in the fluid-like model here considered 
[33] the fluid compressibility is different than zero allowing 
for a finite time of propagation of interaction within the 
fluid medium, able to give a physical explanation of 
gravitational waves in terms of classical mechanics concepts 
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(and then without necessarily introducing the concept of 
graviton).  

The detailed theoretical treatment (like, in particular, the 
equivalence principle between gravitation and metrical 
effects of the motion and space-time metric) of the above 
fluid-pressure model of gravity is reported in the cited 
references and will not be considered here unless necessary. 
In this paper our goal is, in fact, to generalize the model 
already proposed in [33] to the case of a variable 
gravitational constant G , comparing the results with those 
obtained within the PV model previously discussed. This 
represents a completely new approach not previously 
considered in the cited references.  

In order to develop a consistent model of gravity as a 
pressure force exerted by a fluid, we must assume the fluid 
itself defines the preferred inertial frame [33] in which we 
can relate the gravitational effect to the local state of this 
fluid. The possibility to define and use, for the motion 
description of any body in the Universe, a preferred inertial 
frame has been shown to be not incompatible with the 
experimental previsions of Einstein’s Special Theory of 
Relativity  (STR) that on the other hand, as known, is based 
on the equivalence of all the possible inertial frames and the 
Lorentz invariance requirement.  

One of the first and most important examples of 
preferred-frame theory of relative motion is represented by 
the Lorentz – Poincare ether theory (LPET) [38,39] in which 
the relative effects of motion (the metrical effects associated 
to the length contractions and time dilatation) are considered 
as “true” effects due to the motion of a given inertial frame 
(in which the motion itself is described) with respect the 
preferred inertial frame E  in which the first 
synchronization of clock is made (according to the 
Einstein’s procedure) and respect to which the simultaneity 
is absolute. 

This ether-preferred frame of reference, where the 
Maxwell’s equations hold, also constitutes, within the 
LPET, the support (elastic) medium for the propagation of 
electromagnetic waves, sometimes interpreted, by Lorentz 
himself, as a fluid [39].  

The LPET was proved to be fully compatible with the 
results of STR by a lot of authors [40,41,42], so showing the 
assumption of the existence of a fluid-constitutive medium 
of physical vacuum would be consistent with the relativity 
principle. 

Nevertheless, both LPET and STR don’t provide for 
gravitation and, furthermore, almost all the theoretical 
models of gravity, somehow related to the assumption of 
classical or quantum constitutive media of physical vacuum, 
so far proposed, introduce some kind of Lorentz symmetry 
violation. 

On the other hand, more recent researches [19,21,43] 
have shown it is possible to build different versions of STR 
basing on space and time transformations different than the 
Lorentz’s ones as, in particular, the Inertial Transformations 
(IT) suggested by Selleri [44] that exactly define a preferred 
inertial systems compatible with that assumed by LPET. 

All the above considerations then suggest that, in absence 
of gravity, the “equivalence” between the Einstein’s Special 
Theory of Relativity and the LPET and the consequent 
“indetectability” of physical vacuum (fluid) medium, 

corresponds to a uniform field of density and pressure 
within it while, in the presence of gravity, the emergence of 
the gradients of such quantities would make the fluid-
medium “detectable” just through its gravitational effects. 
This also would determine the  “revelation” of the preferred 
fluid medium reference system also determining the 
equivalence between the metrical effect of motion and 
gravitation [36]. 

More specifically, as proposed in [36], the definition of 
the preferred inertial frame S  can start by considering a flat 
space-time as a Lorentz manifold  Γ  equipped with a flat 
metric   γ

0 , coinciding with the medium filling the physical 
vacuum in LPET. We then consider an application 
(coordinate chart)  Ω  from the set  Ρ  of the points of the 
manifold  V  onto   R

4 , 
    
Ω : P→ xµ( ) , such that 

   
γµν

0 = ηµν , where 
 
ηµν  is the Minkowski tensor of the 

space-time and the invariant infinitesimal distance is 
expressed in the usual way as 

    
ds2 = ηµνdxµdxν . In this way 

we can define a reference body as a manifold B  in such a 
way that every point of  B  is a vector 

 
    
!
x ≡ x j j = 1,2,3( )   (33) 

 and the “absolute” time 
    t ≡ x0 c   (34) 
where c  is the (constant) velocity of light in the preferred 

frame. Since we want the fluid itself somehow defines the 
preferred system of reference (that coincides with the 
Lorentz – Poincarè rigid ether) it is obvious that its 
“microscopic” motion must not be relevant for the 
mechanics we would describe with respect to it (otherwise 
we should define another more “fundamental” system of 
reference independent from the fluid motion with respect to 
which describe the fluid motion itself). A solution, proposed 
in [36], is to suppose the reference body B  to “follow” the 
average motion of the fluid (or micro-ether). In particular, if 
the velocity  

 
    
!
vf

' ≡ d
!
x dt   (35) 

(with   
!
x  and  t  respectively given by (33) and (34)), the 

density 
   
ρf

'  and the pressure 
  
pf

'  of fluid (micro-ether) are 

defined, we can introduce the corresponding macroscopic 
quantities 

    

!
vf =

!
vf

'
V 0

, 
    
ρf = ρf

'
V 0

 and 
   
pf = pf

'
V 0

, 

obtained as volume-averaging (using the volume measure 

   V 0 = x1x2x3  associated to the Euclidean metric 
    
gij

0 = δij in 

B  according the given chart  Ω ) in macroscopic finite 
domains of the space B . Then the preferred inertial frame 
 S  is defined as the set of the point of space whose local 
velocity field is given by the time and space averaged 
microscopic velocity field 

 
    

!
v t,

!
x( ) ≡ !

vf
'

t,
!
x

  (36) 

   ∀
!
x ∈ B  and for a   t ∈T , being a  T  some fixed time 

interval. 
According to the definition given by (36), the requirement 

that the reference body follows the average motion of fluid 
“particles” (micro-ether) can be expressed as 
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!
v T,

!
x( ) = 0   (37) 

for any space-time point 
    
t,
!
x( )  and then the (37) can be 

considered as the “operative” definition of the preferred 
inertial frame  S .   

Within this picture, gravity is then interpreted as the 
effect of the macroscopic portion of the constitutive fluid 
medium pressure, whereas the microscopic fields 

   
!
vf

' , 
   
ρf

'  

and 
  
pf

'  would account for the microscopic behaviour of 

Newton’s gravity whose variations are negligible on very 
small distances.  

Since the fluid is assumed to be not viscous we can write, 
using the divergence theorem, the pressure force acting on a 
massive body  M  as 

 

   

!
F = − pf

!
n ⋅dS = −

∂S M( )
∫ ∇pf dV

V M( )
∫   (38) 

where 
  
V M( )  is the overall volume associated to the 

body  M  and 
  
∂S M( )  the total boundary surface delimiting 

the volume 
  
V M( ) .  

The connection between the pressure force and the 
gravity force is then established by assuming that  

 

    

!
F = − ∇pf dV

V M( )
∫ =

!
gρM dV

V M( )
∫   (39) 

where   
!
g  is the gravitational acceleration and   ρM  is the 

matter density of the considered macroscopic body. Actually 
the mass of every macroscopic body can be considered as 
the sum of the masses of its constitutive particles that are in 
turn subjected to gravity so implying the force of gravity is 
due to the pressure of the fluid filling the void between the 
particles and then acting on a small fraction of the 
macroscopic volume V  associated to a body. Consequently 
the force of gravity on a single particle can be written, 
assuming 

  
∇pf  substantially constant in the neighbourhood 

of the particle, as 
 

   

!
Fi = −∇pfVi   (40) 

where  Vi  is the volume associated to a particle  i . This 

also means that if we consider   
!
g  uniform in the 

macroscopic domain associated to the body  M (a condition 
usually verified for NG) we can write the (39) as 

 
    
−∇pf Vi =

!
g ρiVi

i
∑

i
∑   (41) 

from which we obtain 
 

    
!
g = −∇pf ρp   (42) 

having defined 
 

   
ρp = ρiVi

i
∑ Vi

i
∑   (43) 

Equation (43) represents the average mass density of the 
particles within a macroscopic domain enclosed in the 
volume  V  and it is supposed to be a function of 

 
pf  only, 

namely 
   
ρp = f pf( ) , in order to ensure the independence of 

(42) from the particular kind of matter composing the body 

 M . This also implies the average particle density 
  
ρp  is the 

same for every massive macroscopic body, being a function 
of the pressure field only.  

This last assumption is crucial and, as we’ll also discuss 
in the following, it is strongly related to the dynamical 
mechanism supposed to rule the formation of matter and 
how the latter locally (around a body) influences the fluid 
density field.  

In particular, this assumption somehow requires the 
matter particles itself to be made of the same constitutive 
fluid filling the physical vacuum. In [33,36] this hypothesis 
is assumed as a postulate following the suggestion given, 
several years ago by Romani [32] in a purely classical 
context considering particles as organized flow or “vortex” 
in the constitutive fluid.  

On the other hand, in a more modern conception, also 
considering quantum aspects as those related to ZPF 
features, as previously discussed, we can consider inertial 
and gravitational mass as the manifestation of the 
electromagnetic QV energy whose density is “altered” by 
the presence of a massive body interacting with its e.m. 
fluctuating modes. We can then ultimately picture every 
matter particle as a “structured” form of a constitutive fluid-
like substratum of physical vacuum, a view also confirmed 
by a more sophisticated model, involving coherent 
excitations of ZPF modes, elaborated by this author [45]. 

So without discussing more about this aspect, which 
would be beyond the scope of this paper, we can assume, 
from (43) 

 
   
ρp = ρf   (44) 

so that (42) becomes 
 

    
!
g = −∇pf ρf   (45) 

 The use of the macroscopic averaged quantities 
  
ρf  and 

 
pf  in (45) ensures [33], since gravity mainly varies over 

large distances, 
  
∇pf  to be uniform at macroscopic distance 

(even if 
   
ρf

'  and 
  
pf

'  are not so at microscopic scale) and also 

allows the possibility that other interactions (as, for 
example, the electroweak and nuclear ones) acting on 
smaller scales, could also be explained by the constitutive 
fluid dynamics at these scales. This also establishes a further 
connection between the model proposed in [33] and our 
present and previous [18,20,23,30,31] results. 

The dynamic connection between the source of gravity 
(massive bodies) and the gravitational field   

!
g  can be then 

established by setting up a dynamic equation relating the 
matter density field with the fluid density and pressure 
fields.  

As well known, in classical mechanics, the relationship 
between matter and gravitational field is given, in the 
stationary case, by the Poisson equation 

     ∇
2φ = 4πGρM   (46) 

where   ρM  is the mass density,  φ  the gravitational 

potential and    ∇
2 = ∂2 ∂x2 + ∂2 ∂y2 + ∂2 ∂z2 . 

A Poisson – like equation can also be obtained [33] 
within the described fluid model by considering the (45) and 
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the divergence theorem applied to   
!
g  namely 

 
     

!
g ⋅
!
n dA =

∂V
∫ ∇ ⋅

!
g dV

V
∫ = − ∇2pf ρf

V
∫ dV   (47) 

if 
  
ρf  is uniform within the volume  V and the by Gauss 

theorem 
 

     

!
g ⋅
!
n dA =

∂V
∫ − 4πG ρM

V
∫ dV   (48) 

so that, equating the (47) and (48), we finally have 
 

    
∇2pf = 4πGρMρf   (49) 

that can be considered as the field equation for the fluid 
medium pressure 

 
pf .  

As shown in [33] the (49) can be assumed to hold even if 
the fluid density 

  
ρf  is not strictly uniform. This must be the 

case since, in general, due to the non-zero macroscopic 
compressibility of the fluid 

   
K ≡ dρf dpf , the density 

  
ρf  

cannot be considered uniform but 
   
ρf = f pf( ) .  

It is then evident that, within this picture, the case of NG 
will correspond to the condition of incompressible fluid 
(   K = 0 ) determining an infinite velocity of interaction that 
can be considered as the limiting case of the behaviour of a 
compressible fluid as occurring in the static case.  

The general case of non zero compressibility then will 
give raise to the propagation of pressure wave (like acoustic 
ones) within the medium with a finite “velocity” of 
propagation 

 
uf  given by     

 
    
uf = dpf dρf( )1/2

  (50) 

We can then interpret these waves just as “gravitational-
pressure” waves by also assuming the conservation of fluid 
and that its average motion, with respect to the preferred 
frame  E , obeys the second Newton’s law.  

We must now observe that, in all the previous equations 
of this section, we have not considered the effect of the 
spatial variability of  G , as supposed in the previous 
sections. In order to consider now this possibility we note 
the “classic” gravitational Poisson equation (46) as well as 
its “equivalent” version (49) in the considered fluid model 
are obtained by using the Gauss theorem applied to the 
vectorial flow 

   
Φ
!
g( )  of vector   

!
g  across a closed surface 

  ∂V delimiting the volume V  containing the matter 
distribution of total mass M , namely  

 
     

Φ
!
g( ) ≡ !

g ⋅
!
n dS = −4πGM

∂V
∫  (51) 

Nevertheless, as known, this important result holds 
provided that the function describing   

!
g  has a spatial 

dependence like    r−2  where  r  is the radial distance from the 
centre of mass of the considered massive body.    

In our model (see previous sections) we just suppose  G  
could actually vary as a function of physical vacuum density 
and then, ultimately, as a function of the distance from the 
mass generating the gravitational field (or, equivalently, the 
fluid density perturbation in the fluid model). In this case, 
for a point-like mass  m , we can assume a generalized 
Newton’s law and write the gravitational field at a point  P , 

as  
 

    
!
g r( ) = −G r( ) m r 2( ) !ur   (52) 

where   
!
ur  is the unitary vector from the mass to the point 

P  and  r  its distance form the mass.  
Equation (52) doesn’t in general satisfy the Gauss 

theorem (51) due to the presence of the function 
  
G r( )  and, 

in the most general case of a mass distribution characterized 
by a density function 

    
ρM
!
x( ) , we have 

 
   

Φ
!
g( ) =

!
g
!
x( ) ⋅ !n dS

∂A
∫   (53) 

with 

 

     

g
!
x( ) =

= − G
!
x −
!
x '( )

V
∫

!
x −
!
x '( )ρM

!
x '( ) !

x −
!
x '

3
d3x '

  (54) 

where   
!
x  is a point of space outside the distribution,    

!
x '  a 

point inside it and    ∂A  a generic closed surface surrounding 
the mass distribution. 

We can then write 

 

     

∇2p
f
ρ

f

V

∫ d3x ' =

= G
!
x −

!
x '( )

V

∫
!
x −

!
x '( )ρM

!
x '( ) !

x −
!
x '

3
d 3x '

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⋅
!
n dS

∂A

∫
 (55) 

and, exchanging the order of integration, gives 

 

     

∇2pf =

= ρf G
!
x −
!
x '( )

∂A
∫

!
x −
!
x '( )ρM

!
x '( ) !

x −
!
x '

3
⋅
!
ndS

 (56) 

Equation (56) represents our generalization of (49) and of 
the model described in [32,33,36] to include the possibility 
of a variable gravitational constant 

  
G r( )  based on the idea 

already developed in our previous works. 

V. THE CONSTANT G AS A FUNCTION OF PHYSICAL 
VACUUM ENERGY DENSITY IN THE SCALAR MODEL OF 

GRAVITY  

A. The relation between gravitational constant G and 
QV energy density 

As well-known, the physical vacuum cannot be 
considered, due to Heisenberg uncertainty principle, as a 
void deprived by any physical dynamics but as physical 
entity manifesting a complex and fundamental background 
activity in which, even in absence of matter, processes like 
virtual particle pair creation – annihilation and 
electromagnetic fields fluctuations, known as zero point 
fluctuations (ZPF) continuously occur.  

The maximum amount of “virtual” energy density 

   
ρQV ,max  stored in the “unperturbed” ZPF fluctuations of 

QV can be estimated by considering the Planck’s constants. 
Planck showed, basing on dimensional arguments, that the 
values of gravitational constant  G , velocity of light  c  and 
Planck’s constant  ! , it was possible to derive some natural 
units for length, time and mass, i.e. respectively the co-
called Planck’s length ( lP ), time ( tP ) and mass ( mP ). 
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Then he (and we with him) reversed the point of view by 
considering these quantities as the most elementary ones, 
from which the “fundamental” constants (as  G ,  c  and so 
on) can be derived.  

In order to assume GTR to remain valid up the Planck 
scale, we must have 

 
    
ρQV ,max = mPc

2 lP
3   (57) 

where    lP = 1.616×10−35 m ,    mP = 2.177×10−8 kg  
when  G  has the currently accepted constant value 

   6.67384×10−11m3kg−1s−2  and    c = 299792458ms−1 .  

 The value of 
    
ρQV ≈ 10113Jm−3  so obtained by (57), can 

be considered as the maximum possible value 
   
ρQV ,max  of 

QV energy density, since it would represent, within the 
currently accepted picture, the maximum energy density can 
exist “without being unstable to collapsing space-time 
fluctuations” [13] associated to the value given in [1]. 

As already shown [22,23,25,30,31] the relationship 
between the gravitational “constant”  G  and QV energy 
density 

  
ρQV  can be expressed in a “natural” way by noting 

that, dimensionally 

 
   
G⎡⎣
⎤
⎦ = L⎡⎣

⎤
⎦
3

M⎡⎣
⎤
⎦
−1

T⎡⎣
⎤
⎦
−2

  (58) 

and 

 
    
ρQV
⎡
⎣⎢

⎤
⎦⎥ = M⎡⎣

⎤
⎦ L⎡⎣
⎤
⎦
−3

  (59) 

where we’ll indicate from now on, for simplicity, with 

  
ρQV  the so-called Mass – Density – Equivalent (MDE) of 

QV energy density (equal to 
   
ρQV c2  where 

  
ρQV  is the 

originally defined QV energy density function) referring to 
it simply as QV energy density, so we can write 

 
    
G = 1 ρQVtP

2( )   (60) 

where  tP  is the Planck’s time whose value is 

   tP = 5.391×10−44 s  in correspondence to 

   G = 6.67384×10−11m3kg−1s−2 .  
We can then assume that also  G  is a function of ZPF 

energy density defining a fundamental property of space 
itself, originated from QV and related to the most 
elementary units for time, length and mass by the equation 

 
   
G = lP

3 mPc
2tP

2( )   (61) 

Equation (60) can be naturally generalized to the case of a 
variable QV energy density by formally assuming 

 
    
G ρQV( ) = 1 ρQVtP

2( )   (62) 

Equation (62) also means that, far from any mass, where 
the quantum vacuum energy density reaches its 

“unperturbed” value given by (57), the gravitational 
constant  G , given by (62), takes the value given by (61) 
while, in the proximity of a mass its value varies according 
to (62). We’ll see in the following that its value, at a given 
point of space will, depend upon its radial distance from the 
center of mass of the body (or the system of bodies) 
generating the gravitational field itself. 

B. Quantum Vacuum energy density in a gravitational 
potential according to the Polarizable-Vacuum approach 

The results so far obtained allow us to interpret the mass 
of a body as the place of occurrence of electromagnetic 
standing – waves of ZPF that determines a storing of 
electromagnetic energy density within the body itself.  

This dynamics of ZPF together with the consideration of 
other theoretical elements [13] show that, inside the portion 
of space associated to “electromagnetically useful” volume 

  V0 , the energy density of ZPF reduces giving rise to a 
standing wave structure in which this energy is “stored”. 
Outside this structure, on the contrary, the QV energy 
density is higher and determines the gravitational potential 
associated to that mass. 

This view is also coherent with the model already 
developed in previous works [23,30,31,46] in which the 
inertial mass of a body or particle is interpreted as the result 
of the reduction of the local QV energy density determining, 
in its neighbourhoods (where the QV energy density is 
higher), an energy density gradient 

     
Δρ

!
r ,t( )  

which 

originates the gravitational potential.  
The decrease of energy density inside the massive body 

can be mathematically proved within the model of PV by 
considering the correspondence between the parameter  K  
and a refraction index  n  of QV and calculating the 
expression of vacuum refraction index inside and outside the 
massive body for a not too strong gravitational field.  

In the model so far discussed the energy spectrum related 
to ZPF modes of standing waves inside the resonant cavity 
originating the inertia of a body is substantially discrete and 
includes a finite number of modes whose frequencies are in 
the interval     ω1 ≤ ω ≤ ωN , with    ωN ≤ ωPl . Nevertheless, 
when the size of cavity increases so do the number of modes 
and, due to broadening of frequencies, we obtain a 
continuous-like frequency spectrum. Physically this must be 
the case since, when the maximum size of the cavity 

   Lmax →∞ , all the modes are possible and we obtain the 
limit of continuum. 

We can then interpret the standing waves inside the 
resonant cavity associated to a massive body like those 
generated within a continuum elastic fluid medium 
[13,23,30,31,46] whose properties characterize the QV 
behaviour.  

Actually, the observation that light propagation in 
vacuum can be modified by the interaction with an 
electromagnetic field strongly indicates vacuum itself is a 
special kind of optical medium. Furthermore, the results of 
the PV approach to GR, showing a deep analogy QV and a 
dielectric medium, further indicate this vacuum must have 
an inner structure that can change by the interaction with 
matter and electromagnetic fields.  
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This general view is also consolidated within the QFT by 
the consideration that all the elementary particles are 
actually QV excitations and by some recent studies, based 
on this assumption, picturing space-time as arising from a 
sort of large-scale condensate of more fundamental objects, 
in which matter is a collective excitations of these 
constituents, describable by hydrodynamics techniques 
[18,28]. 

For such a medium the relation between the (longitudinal) 
wave propagation velocity  v  and the medium density  ρ  
can be written as 

    v = Γ ρ   (63) 

where Γ  is a constant related to the specific medium 
characteristics. 

Applying our analogy to (63) we have 

 
   
c = ΓQV ρQV   (64) 

where  c  is the velocity of light, 
  
ρQV  is the ZPF energy 

density and 
 
ΓQV  a constant related to QV structure. 

Inserting (64) in (17) and squaring both the members we 
obtain 

 
    
ρQV = K 2ρQV ,0   (65) 

where 
  
ρQV  is the QV density in a generic point of the 

space around the mass, 
   
ρQV ,0  the asymptotic density in the 

flat space and  K  the QV “refraction” index given by (32). 
It shows that QV energy density in the space surrounding 
the body is multiplied by a factor   K 2  with respect its 
“unperturbed” asymptotic value. We can finally write the 
relation between  G  and QV density by inserting (32) in 
(65), namely 

 
    
ρQV = ρQV ,0e

4GM rc2
  (66) 

that also coincides with the expression already found in a 
previous work [30] by considering the gauge of light 
velocity introduced in GTR by the presence of a 
gravitational field.   

C. The relation between G and density in the fluid 
dynamics theory of gravitation 

As we have seen from the above discussion the (60) 
allows us to consider G  as a function of QV energy density 

  
ρQV . We now make the assumption that 

   
ρQV = ρf  since 

both of them refers to the mass density of the fundamental 
medium we think to “fill” the physical vacuum itself.  

This means we can formally write the (56) as 

 
     

∇2pf = ρf G ρf( )
∂A
∫

!
x −
!
x '( )ρM

!
x −
!
x '

3
⋅
!
ndS   (67) 

in which at the right side appear the same variables as in 
(49). 

Equation (56) leads, in general, to a field equation 
different than (49) due to the presence of the function 

   
G
!
x( )  

nevertheless, if we consider the case of weak and slowly-

varying gravitational fields we can also suppose in (67) the 
function 

   
G
!
x( )  to be practically uniform within the volume 

 V  associated to the considered massive body and on its 
delimiting surface   ∂A  (but varies at the scale    Δx ≫ R , 
being  R  the “radius” of the greater sphere containing the 
mass distribution  M ). With these assumptions the (67) 
formally reduces to the (49), although it now represents an 
approximate field equation valid under more specific 
conditions. From the fluid dynamic standpoint this 
corresponds to assume a low value of the fluid 
compressibility  K .  

We can then linearize the (50) around some reference 
value 

    
ρf ,0, pf ,0 = f ρf ,0( )⎡
⎣⎢

⎤
⎦⎥  such as 

 
    
pf − pf ,0 = uf

2 ρf ,0( ) ⋅ ρf − ρf ,0( )   (68) 

where, for convenience, we have assumed 
 

     
pf ,0 = lim!

x →∞
pf
!
x( ); ρf ,0 = lim!

x →∞
ρf
!
x( )   (69) 

namely the asymptotic values of  
 
pf  and 

  
ρf  far from any 

sources of gravitational fields. By substituting the (68) in 
(45) we obtain, after some simple algebraic manipulations 

 
     
!
g = −uf ,0

2 ∇ρf ρf( )   (70) 

where 
    
uf ,0 = uf ρf ,0( ) . Now if we assume, as in the case 

of NG, the field given by (70) is related to a suitable 
potential function  U , namely 

    
!
g = −∇U   (71) 

we have, using (70) 
 

    
uf ,0

2 ∇ρf ρf( ) = ∇U   (72) 

For a spherically symmetric dependence of the functions 

  
ρf  and  U  upon  r  such that 

 
    
ρf = ρf r( ); U = U r( )   (73) 

we have, solving the first order differential equation (72) 
 

    
uf ,0

2 ln ρf ρf ,0( ) = U ρf( )   (74) 

with the boundary condition 
    
U ρf ,0( ) = 0 .  

VI. THE CONSTANT G AS A FUNCTION OF DISTANCE FROM 
MASS GENERATING GRAVITATIONAL POTENTIAL 

A. Polarizable – Vacuum approach 
We are now in position to obtain the dependence of 

gravitational constant  G  on the distance from the mass 
originating the gravitational potential. 

Equation (66) can be formally rewritten as 

 
    
ρQV r( ) = e4G r( )M rc2

ρQV ,0   (75) 

where we have just explicitly expressed the functional 
dependence of 

  
ρQV  and  G  on  r  and assumed the value of 

   
ρQV ,0  as constant. Multiplying the (75) side by side by   tP

2 , 

taking the reciprocals and using (62), we have 

 
   
G r( ) = G0e

−4G r( )M rc2

  (76) 
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where 
    
G0 ≡ 1 ρQV ,0tP

2 . A similar expression for ZPF 

density can be also obtained by using the (62) in (75), 
namely 

 
    
ρQV r( ) = e4M rρQV r( )c2tPρQV ,0   (77) 

Equations (76) and (77) respectively describe the 
dependence of  G  and 

  
ρQV  on the radial distance  r  from 

the mass M  generating the gravitational potential.   
They are transcendent equations and cannot be solved 

analytically but their qualitative behaviour can be discussed 
in the case of weak and slowly-varying gravitational fields. 
In this case we can expand the exponential factor in (76) 
obtaining, at the first order in  G    

    e
−4GM rc2

= 1− 4GM rc2 + ...   (78) 

Using this result in (43) we find  

 
   
G r( ) = G0 1− 4MG r( ) rc2⎡

⎣⎢
⎤
⎦⎥   (79) 

Equation (79) is a first order approximate equation for 

 
G r( )  that can be immediately solved to give the solution 

 
   
G r( ) = G0 1 + 4G0M rc2( )   (80) 

The asymptotic behaviour of this function appears to be 
coherent with general physical assumptions since we have 

 

   

lim
r→+∞

G r( ) = G0

lim
r→0

G r( ) = 0
  (81) 

the case   r → +∞  corresponding to a point far from 
gravitational source (in which  G  assumes its “unperturbed” 
value   G0 ), while the case    r → 0  to point at the center of 
spherically symmetric mass in which gravitational field is 
zero. 

B. Fluid dynamics model of gravitation 
Using the condition (72), the solution of  (73) is 

 
    
ρf r( ) = ρf ,0e

U r( ) uf ,0
2

  (82) 

now, recalling that 
  
uf ,0  represents the asymptotic value 

of the gravitational perturbation propagation speed (i.e. 
when there are no gravitational fields), we must assume [33] 

 
   
uf ,0 = c   (83) 

where c  is, as usual, the velocity of light in the vacuum.  
The great experimental accuracy of NG imposes that 

every “alternative” theory of gravity must “reduce” to NG 
under the appropriate conditions so we assume, in the weak 
and low-varying gravitational field case, 

  
U r( ) = −G M r  

and obtain 

 
    
ρf r( ) = ρf ,0e

−GM rc2
  (84) 

then, using the (62) as in the previous section 

 
   
G r( ) = G0e

G r( )M rc2

  (85) 

We note that (84) is similar, as regards its functional 
dependence, to  (76), obtained within the PV approach in the 
previous section, although different in its mathematical 
behaviour and physical meaning as we’ll see in the 
following.  

The same reasoning adopted in the last section allows us 
to write, in this case 

 
   
G r( ) = G0 1−G0M rc2( )   (86) 

that differs from (80) in the sign and a multiplicative factor  
in front of  G  as expected by (84). 

It is very interesting to note that, within the fluid pressure 
model of gravity, it is possible to derive the (85) also 
without using the quantum “definition” of  G  given by (62), 
in the static linearized and spherically symmetric case of the 
gravitational field generated by a spherical mass  M  of 
radius  R . This can be easily viewed by considering that, for 
  r > R , the (49) is just the Laplace equation, because 

    
ρM r( ) = 0 , whose general solution, in spherical 

coordinates, is given by  
 

   
pf
!
r( ) = pf r( ) = A +C r   (87) 

where  A  and  C  are two constants depending on 
boundary conditions for 

 
pf . In particular we have, from our 

assumptions 
 

   
pf r →∞( ) = A = pf .0   (88) 

and, since by (84) 
  
pf r( )  is a decreasing function of   r , 

it must be    C < 0  so, by inserting (87) in (45) and using 
(68), we finally have 

  
 

    
g = C r 2ρf ,0 +Cr c2( )   (89) 

For large values of  r  the (89) must give the 
corresponding NG expression    g = −GM r2  so we have 
the equation 

 
    
C r 2ρf ,0 +Cr c2( ) = −GM r 2   (90) 

which gives 
 

    
C = −ρf ,0GM   (91) 

that, substituted in (89), gives 
 

   
g = − G 1−GM rc2( )⎡

⎣⎢
⎤
⎦⎥ M r 2( )   (92) 

This result, already found in [33], is here interpreted in 
completely different way, not previously recognised, by 
assuming a variable value of gravitational constant  G  given 
by the expression 

 
   
G r( ) = G 1−GM rc2( )   (93) 

where  G  indicates the “unperturbed” value of 
gravitational constant, so that the field produced by a 
massive body  M  at a distance  r  from it  in the spherically 
symmetric case and for a weak and low-varying 
gravitational field is given by 

 
   
g = −G r( )M r 2   (94) 

that is formally identical to the known Newtonian 
expression provided that  G  varies according to the (93). It 
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is also remarkable to note that the (93), with    G ≡G0 , is 
identical to (86), obtained from the same model but 
assuming the relation (62) between  G  and QV energy 
density. 

VII.      DISCUSSION 

Both the models of gravitation, alternative to NG, 
discussed in this paper are based on the assumption that 
physical vacuum is not really empty but “filled” with a 
constitutive medium, respectively a fluid in one case and an 
elastic medium characterized by optical properties in the 
other, somehow related to an underlying dynamics of QV or 
ZPF whose large-scale manifestation is the emergence of a 
classical variable of state, the medium density, governing its 
dynamics. On this point, in a previous paper [18], the author 
has in fact shown that the space-time described by GR can 
be in principle considered as the low-energy long-
wavelength geometro - hydrodynamic limit of a more 
fundamental dynamics of the physical vacuum, considered 
like a Bose – Einstein condensate. Within this picture, in 
fact, it has been shown that, whatever micro – scale QV 
dynamics we could consider, the most readily decohered 
variables, namely those having the highest probability to 
become classical (and then representing the Universe at 
large scales), are just density and pressure 

    
ρ,p( ) , i.e. 

precisely the hydrodynamic variables of state characterizing 
the models of gravitation above here discussed.    

In both of these, in fact, gravitation results from the 
occurrence of pressure gradients in the medium constituting 
physical vacuum that determine a “pushing” contact force 
towards the regions of space characterized by lower pressure 
and density so actually acting as an “Archimede’s thrust”.  

Nevertheless, although the final effect is the same in both 
the models, namely the generation of pressure and density 
gradients, the dynamics by which they are generated is very 
different in the two cases.  

As we have seen, in the PV approach the physical 
vacuum is pictured as on optical – like medium 
characterized by a variable polarizability  K  whose changes 
are induced by the presence of a massive body.  

This implies the velocity of light and other fundamental 
quantities, as the energy and mass of a free particle and the 
length and time intervals, are “gauged” as functions of  K . 
If we now assume that mass, in this medium, is due to the 
local formation of stationary elastic waves, due to the ZPF 
interactions, we can relate the medium density around a 
body to its asymptotic value far from gravitational filed by 
means of the light velocity gauge also expressing it as a 
function of medium polarizability. As a result  the physical 
vacuum density is expected to decrease in the space with the 
distance from a massive body according to (77). 

This behaviour is also coherent with the picture of the 
physical vacuum as optical medium in which the bending of 
light around a massive body (explained, within GR, as the 
curvature of space-time) is due to the local increase of 
refraction index (in turn related to a medium density rise) 
around the massive body. 

According to this model, gravity is then originated by a 
ZPF energy density gradient due to the presence, at a given 

point of space, of a massive body. Inside the body, the ZPF 
energy density is decreased, giving rise to the standing 
waves structure described by (15), while correspondingly 
increases outside it.  

When two massive bodies are close each other, this ZPF 
energy density rise in the space between them is necessarily 
smaller than that occurring when the body is isolated, so 
giving rise to a “depressure” manifesting itself as 
gravitational attraction. We could then think of the 
mechanism generating pressure gradients as an indirect 
process (or, in other words, as a “two – step” process)  in 
which the first step consists in the increase of the vacuum 
density outside a single  massive body while the second one 
in the emergence of the pressure gradient due to the 
presence of two or more massive bodies in a given region of 
space from which gravity originates as a pressure force. 

On the contrary, in the fluid – like model of physical 
vacuum the pressure gradient originating the gravitational 
force of attraction due to a massive body is directly given by 
(45), according to which gravitational field is directed along 
the direction in which density decreases, namely towards the 
massive body. 

Nevertheless it must be stressed that, within this model as 
it is, no physical explanation of such reduction of density 
around the body is given but it is a priori assumed as the 
consequences of some other preceding fluid-dynamic 
process (as, for example, the formation of vortices [32]).  

An important remark concerns the physical meaning of 
the quantity   G0 : it represents the value of  G  at a point 
“infinitely” far from mass  M  in which the ZPF is 
unperturbed. Its value should be determined by experimental 
measurements (far from any mass) or extrapolated by means 
of the know value of gravitational field at a given distance 
from a mass  M .  

Contrary to what one could think, the value of   G0 , within 
both the discussed models, is not equal, in principle, to the 
quantity 

  lP
3 mPc

2 tP
2  with the Planck units given by the 

commonly accepted values because the latter in turn are 
calculated by assuming the value of  G  given in [1] (namely 
measured at Earth’s surface or deduced by astronomical 
observations [47] in the presence of massive bodies). 
Furthermore, we should also consider the contributions to 
ZPF, and then eventually to  G , coming from strong and 

 
Fig. 1. Plot of  G  vs distance from Earth center for 

Earth
r R≥ . The 

values of  G  and r are expressed in standard units.  
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weak interactions, at this stage not still included in our 
model of the function describing 

  
G r( )  (and not considered 

in the HPR model of inertia as well [12,13]).   
It is remarkable to note that (80) and (86), like the more 

general (76) and (85), doesn’t contain any Planck’s unit, 
allowing, in principle, the calculation of  G  using only the 
value of   G0 , experimentally determined.  

A possible estimation of   G0 could be obtained by using 
the know value of  G  at Earth’s surface, as given by (1), in 
the (76) and (85) with   r = REarth  and   M = MEarth .  
Following this procedure we obtain, from (76) 

 

   

G0 = G REarth( )×
×exp 4G REarth( )MEarth REarthc

2⎡
⎣⎢

⎤
⎦⎥ =

= 6.673840019×10−11m3 ⋅kg−1 ⋅ s−1

  (95) 

and, from (85) 

 

   

G0 = G REarth( )×
×exp −G REarth( )MEarth REarthc

2⎡
⎣⎢

⎤
⎦⎥ =

= 6.673839995×10−11m3 ⋅kg−1 ⋅ s−1

  (96) 

where we have assumed    c = 299792458m ⋅ s−1 , 

   REarth = 6372.7955×103 m  and    MEarth = 5.9736×1024 kg . 

The values of   G0 , given by (95) and (96) represent the 
asymptotic value of gravitational constant calculated by 
considering the gravitational field generated by the Earth as 
if it was far from all the other masses of Universe.  

By using these values of   G0  we can plot, by way of 

qualitative example, the functions 
  
G r( )  respectively given 

by (80) and (86) as a function of the radial distance  r  (Fig. 
1) from the Earth center.  

In evaluating these graphics we must remember that (80) 
and (86) just represent an approximation, at first order, of 
the value of 

  
G r( )  that is valid when    ΔG → 0 , so they 

don’t necessarily give the actual numerical values of the 
“whole” functions 

  
G r( )  in particular in the slope-region of 

the curves, since it is just here the contribution of the higher 
order terms could be more important; nevertheless they give 
correct indications about their qualitative behaviour (under 
the assumed hypotheses) for   r > REarth  and the asymptotic 
behaviour for   r → +∞ . 

We just note the numerical values given by (95) and (96) 
are respectively slightly higher and lower of that commonly 
assumed [1] in agreement with the predictions of the two 
models. However the quantity 

   
Δ = G0 −G REarth( )  is 

always very exiguous, appearing at eight decimal digit in the 
first case (PV approach) and ad the fifth decimal digit in the 
second one (fluid model) so also making it hard to be 
experimentally revealed by a direct measurement. 

This difficulty is in part also due to the need for 
performing such possible measurement far from any mass 
able to influence the results or, equivalently, within a region 

characterized by a distribution of masses able to nullify, 
with a very high precision, the gravitational field at the 
measurement point. 

Nevertheless, to this regard, we should recall the 
estimations given by (80) and (86) are respectively based on 
the simplifying assumptions (68) and (78) so that the 
inclusion of higher order terms in these expressions could 
modify the value previously calculated, so making the 
difference 

   
G0 −G REarth( )  larger and then more easy to 

reveal.  
Furthermore, even if the value of  Δ  was so small for a 

giving mass, this wouldn’t imply the resultant physical 
effects is negligible in the proximity of a system of massive 
bodies, because of the summation of contribution of each of 
them to the overall value of  G .  

Both the models here considered, although starting from 
different dynamical hypotheses, finally allow for a variable 
value of gravitational constant 

  
G r( ) , whose expression is 

respectively given by (80) and (86) in the simplified case of 
weak and low-varying gravitational field and spherical 
symmetry. 

Nevertheless, although characterized by a nearly identical 
functional form, they show an opposite behaviour as 
function of  r , namely diminishing with the distance from 
mass in PV approach and increasing in the fluid model.    

This discrepancy is direct consequence of the different 
starting dynamic model assumed in the two cases: an elastic 
medium allowing for the generation of transversal waves in 
the PV approach and a fluid medium determining the 
propagation of longitudinal compressive waves (like the 
acoustical ones) in the fluid model.     

This deep difference naturally pones a further critical 
question about the propagation of light in the latter model, 
since an ideal classical fluid is not be able to carry 
transversal waves. 

It is then clear that only a complete definition of a starting 
dynamical model describing the interaction between matter 
and physical vacuum [45] (also in term of quantum 
processes) and how the former modifies the vacuum density 
could be able to give unambiguous indications about the 
actual variability of  G  over large distances.  

A possible and advisable indication in this direction could 
came, on the other hand, by experimental tests of the above 
results. 

In principle, a possible experimental test of (76) and (85) 
could be performed by measuring (for example on a 
satellite, orbiting around the Earth), with very high 
precision, at specified distances 

  
rSAT ,i  from the Earth 

center, the values of 
   
G rSAT ,i( ) ,  comparing the latter with  

that measured at the Earth’s surface 
  
G REarth( ) . More 

specifically we can write   ∀i , using (76) 

 
   
G RSAT ,i( ) = G0e

−4G rSAT ,i( )M rSAT ,ic
2

  (97) 

and 

 
   
G REarth( ) = G0e

−4G REarth( )M REarthc
2

  (98) 
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Dividing side by side (97) by (98) we obtain the equation 

 
   

G r
SAT ,i( ) G R

Earth( ) =

= Exp − 4M c2( ) G r
SAT ,i( ) r

SAT ,i
−G R

Earth( ) R
Earth[ ]{ }

  (99) 

in which only measurable quantities and known constants 
appear.   

A similar procedure applied to (85) gives instead 

 
   

G r
SAT ,i( ) G R

Earth( ) =

= Exp M c2( ) G r
SAT ,i( ) r

SAT ,i
−G R

Earth( ) R
Earth[ ]{ }

  (100) 

In any case, in a realistic set-up, very high measurement 
precisions would be required in order to reveal the minimal 
variations between the values of 

  
G r( )  given by (99) and 

(100) at different distances from Earth.  
Furthermore, the influence of other celestial bodies 

(firstly the Sun and the Moon) on the ZPF energy density at 
the measurement points should be taken into account. This 
would introduce additional terms into (68) and (78) able in 
principle to modify the form and behaviour of solutions and 
represents an important theoretical question to be addressed 
in the future developments of the model, already in 
progress.  

VIII. CONCLUSIONS 
In this paper two models of gravitation, different than NG 

but in principle reducible to it, allowing the possibility to 
admit the variability of gravitational constant  G  have been 
presented and discussed. 

Both these models start from the fundamental hypothesis 
that physical vacuum is not really empty but “filled” with 
medium (de facto representing the space itself), a large-scale 
manifestation of some quantum substratum [18] related to 
ZPF dynamics, and assume a functional relation between  G  
and QV energy density through the Planck’s units.  

However these two models are based on different 
dynamical approaches concerning the kind and features the 
above medium: in fact the first one treats it as a polarizable 
elastic medium while the second one as a compressible fluid 
medium. 

In the first model the PV approach to Einstein’s GTR is 
considered, according to which the physical vacuum can be 
pictured as a dielectric polarizable medium, characterized by 
a refraction index as function of the gravitational field, in 
which all the modifications induced by the presence of 
mass, as described by GTR, can be viewed as due to the 
altered value of the above refraction index. Then starting 
from some previous theoretical results, the inertial and 
gravitational mass of a body have been interpreted as the 
result of the seat of standing waves of ZPF analogous to 
longitudinal waves generated inside a continuum elastic 
medium.  

These waves are able to alter the local QV energy density 
determining a decrease of ZPF energy density within the 
massive bodies and, correspondingly, a ZPF energy density 
increment in their surrounding space so generating QV 
energy density gradients (unbalanced ZPF pressure) giving 
rise to the gravitational force. 

The second model pictures the physical vacuum as a 

compressible fluid medium, interpreting gravity as an 
“Archimede’s thrust” due to the decrease of fluid density 
associated to the presence of a massive body.  

In both the models gravity emerges as a “pressure” force 
generated to the density gradients induced in the physical 
vacuum by the presence of the massive bodies pushing them 
towards the regions with lower density and pressure. 

In this paper we have shown these models imply physical 
vacuum density around a massive body depends on the 
distance from it and, consequently, that gravitational 
constant  G  also depends on ZPF energy density and on the 
distance from the mass generating the gravitational field.  

Furthermore, in the simplified case of a spherically 
symmetric massive body, an approximate analytical 
expression of the function 

  
G r( ) , describing the radial 

dependence of gravitational “constant”, has been obtained 
for each of the two considered models. 

Nevertheless, as we have seen, they describe an opposite 
behaviour of 

  
G r( )  with increasing of  r  from mass, namely 

an increasing of 
  
G r( )  in the first model and its decreasing 

in the second one. 
This is a direct consequence of the different mechanism   

by which matter is supposed to interact with physical 
vacuum, altering its energy density in the two cases.  

Despite this dichotomy, which could be solved only 
within a more general model of the interaction between 
physical vacuum and matter whose attempt in under 
progress [45], the obtained results appear very interesting 
since they show that the gravitational “constant”  G  could 
be actually variable with the distance from massive objects, 
depending on the physical vacuum density. 

Furthermore, as we have also shown in this paper, the 
variability of  G  seems to naturally appear in compressible 
fluid model, even without firstly assuming the quantum 
relation between  G  and QV energy density, so suggesting a 
deep connection between this variability and the model of 
gravity as a pressure force due to vacuum density gradients.   

Although the theoretical model assuming a functional 
connection between gravitational constant and physical 
vacuum energy density is still in a preliminary phase and 
involves some simplifying assumptions to be addressed in 
its future developments, its theoretical, experimental and 
applicative consequences could be very deep. They will be 
discussed in details in future and forthcoming publications. 

Finally, important insights about the actual dependence of 
 G  on  r  could be given by precision measurements of 
gravitational constant performed at different distances from 
a massive celestial body like, for example, those possibly 
performed on an artificial satellite in orbit around the Earth. 

A variable gravitational constant  G  could have very deep 
consequences on the current framework of theoretical 
physics with from GTR to Quantum Field Theory (QFT) 
and cosmology and unthinkable possible applications in 
intriguing fields as, for example, the gravity modification 
and space propulsion. 
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