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F.E.M. and experimental studies concerning
new devices for seismic damping of buildings
subjected to earthquakes

Adriana Ionescu

Abstract— This paper presents the F.E.M. and experimental
studies of new Romanian devices for dissipation of seismic energy
for buildings affected by Romanian Vrancea earthquakes. These
devices were tested by experimental and F.E.M. studies in static
cases because their behaviors are the same in dynamic cases. The
studies were made in order to determine the stiffness and damping
non-linear parameters of these new devices which are necessary to
obtain the hysteresis curves. The hysteresis curves obtained within
the study can be simulated with Bouc-Wen model of hysteresis and
the mathematical relation of this type of hysteresis can be used in
order to simulate the new SERB dampers on a building subjected to
seism using special simulation software.
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I. INTRODUCTION

HE most used method for protecting the building during

earthquakes is by using seismic dampers which can be

positioned in the foundation or at the supra-structure
above the soil. The most common choice is structural passive
control systems which have been developed in the past years
and they include seismic isolation systems and energy
dissipation systems. Among those systems we find friction
dampers, metallic dampers, visco-elastic dampers and viscous
dampers.

The Romanian earthquakes have some particularities in the
Vrancea seismic zone, as it is the velocity, which is smaller
(0,3 m/s) then in other countries. A correct approach of the
process of designing the damping systems of a building
structure, must take into account the particularities of the
seismic zone where the building is positioned.

This paper analyze four new types of dampers specifically
invented for the romanian earthquakes conditions. These
dampers are named SERB. These dampers can be used in any
country and any seismic zone not only in Romania.

In order to use them on a finite element model of a building
structure equipped with these dampers we must find the
hysteresis graphics of these new dampers. They were
determined by simple experiments by the Romanian inventor
PhD. eng. Viorel Serban [9] but it is necessary to simulate
them by F.E.M. with powerful software like Ansys program in
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order to extend the experimental study.
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II. PROBLEM FORMULATION

In this section we present the F.E.M. analysis of three new
SERB damping devices used for protecting the buildings
during earthquakes.

The components of these three new dampers were modeled
in Ansys software using 3d finite elements and contact friction
finite elements. The load case for these 3d FEM models is the
axial force, which is used for elongating then compressing the
damper in the same cycle.

The load case for all three models consists of:

Phase 1 — action of the central resort for tensioning the
group of metallic discs.

Phase 2 — compressing the damper with the axial force
increasing from O to testing value in 5 seconds.

Phase 3 - elongating the damper with the axial force
increasing from O to testing value in 5 seconds.

Between phase 2 and phase 3 we have an intermediate phase
which decrease the compressing force to O kN in 5 seconds.
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Fig. 3 Oy displacements SERB 1 [mm] (phase 1) — section view
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Fig. 4 Oy displacements SERB 1 [mm] (phase 2) — section view
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Fig. 5 Oy displacements SERB 1 [mm] (phase 3) — section view
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Fig. 6 Von Mises stresses SERB 1 [MPa] - phase 1 - 3D view
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Fig. 7 Von Mises stresses SERB 1 [MPa] (phase 1) — section view
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Fig. 8 Von Mises stresses SERB 1 [MPa] (phase 2) — section view
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Fig. 9 Von Mises stresses SERB 1 [MPa] (phase 3) — section view
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Fig. 11 Oy displacements SERB 2 [mm] (phase 1) — section view
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Fig. 12 Oy displacements SERB 2 [mm] (phase 2) — section view
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Fig. 13 Oy displacements SERB 2 [mm] (phase 3) — section view
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Fig. 14 Von Mises stresses SERB 2 [MPa] - phase 1 - 3D view
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Fig. 16 Von Mises stresses SERB 2 [MPa] (phase 2) — section view
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Fig. 19 Von Mises stresses [MPa] compression F= 1000kN (section)
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Fig. 20 Von Mises stresses [MPa] elongation F=1000 kN
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Fig. 21 Oy displacements [mm] compression F=1000kN (section)
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Fig. 22 Oy displacements [mm] - elongation F=1000 kN (section)
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Fig. 23 Von Mises stresses [MPa] elongation F= 500kN (3D view)
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Fig. 24 Oy displacements [mm] elongation F= 500kN (3D view)
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Fig. 25 Von Mises stresses [MPa] compression F= 750kN (3D view)
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All three SERB dampers F.E.M. models are 3D models
which have several loading cases.

For the metallic friction parts of the dampers we have used
special steel features. The friction between parts was simulated
using contact elements surface to surface with friction
coefficient p=0.3 for friction without lubrification.

For SERB 1 damper model it was used only one cycle with
three phases with F=350 kN.

For SERB 2 damper model we have used only one cycle
with three phases with F=550 kN.

For the phase 1 of the loading cycle we have used a force for
the resort which implies a displacement of 5 mm. This initial
stress is necessary for SERB 1 and SERB 2 dampers in order
to work with friction phenomenon. The value of initial stress is
controlling the damping force.

For SERB 3 damper model we have used four cycles with
two phases (compression and elongation). This four cycles
were realised with four forces: F;=250 kN, F,=500 kN, F;=750
kN and F,=1000 kN.

For SERB 3 damper it was not necessary phase 1 on the
cycle because this damper works without initial stress.

The hysteresis curves for all three dampers models were
determined by Ansys results and they are presented in fig. 27,
fig. 28 and fig. 29.
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Fig. 29 Ansys hysteresis curve for SERB 3
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We can observe that all three dampers hysteresis have
special shapes which cannot be simulated with usual damping
models: Maxwell, Kelvin-Voigt, Zener, etc.

These shapes are very useful for drift limitation because the
damping force is increasing fast with displacements.

For these types of dampers it is recommended to use Bouc-
Wen damping model in order to obtain the mathematical
relation for the hysteresis graphics.

In order to validate the results of these F.E.M. studies we
have done several experimental studies on SERB dampers
which are presented in the next section.

III. EXPERIMENTAL STUDIES

The experimental studies were realized at IMSAR Bucharest
and ICECON Bucharest, two important research laboratories
in Romania.

The first tested damper, SERB 3, it was invented for
equipping the building supra-structure in order to reduce the
relative displacement between stories and to dissipate the
seismic energy through the friction phenomenon between his
metallic components.

This damper was tested at ICECON Bucharest using the
SANS testing machine in a stationary regime.

During earthquake the damper is charged with forces in a
dynamic transient regime. Because the friction between the
metallic components of the damper is without lubrication, the
friction force is depending only on the quality of the surfaces
in contact and the normal force which act on the friction
surfaces. In this case the friction force is not depending on the
velocity between the contact surfaces.

That is the reason why the results obtained by experimental
studies on SERB dampers using applying loads in static
regime, are the same with the results for the case of using
dynamic loads.

Because F.E.M. models of all three SERB dampers have
similar component parts and they are using the same finite
element types with similar boundary condition, we have
choosing to test by experiments only SERB 3 damper,
assuming that F.EIM. models for SERB 1 and SERB 2
dampers will be validated based on SERB 3 validation
process.
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Fig. 30 Testing the SERB 3 damper on SANS testing machine at
ICECON laboratory

The testing of SERB 3 damper consists in compressing the
damper with forces of 300 KN to 1000 KN in cycles with low
velocity and to stop the action of compressing force in order to
allow the damper to come back at the initial state before
another cycle of increasing the force to the next level of
compression.

During these cycles the laboratory equipment had store the
data in files in order to process them. After processing the data
files we have obtained the hysteresis curve for compression.

Due to the construction of the damper it is not necessary to
test the damper with elongation forces because the hysteresis is
anti-symmetrical.

The hysteresis curve of SERB 3 damper obtained by this
experiment is presented in fig.31.
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Fig.31 The experimental hysteresis curve for
SERB 3 damper

The second damper SERB 4 it was invented for equipping
the building at the foundation in order to work in parallel with
the base isolation system during earthquakes.
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Fig. 32 Testing the SERB 4 damper on special testing machine at
IMSAR Bucharest laboratory

This damper has metallic components in contact and the
friction phenomenon during earthquakes is without lubrication.
That is the reason why we have tested this damper with static
compression and elongation forces, although this damper is
subjected to dynamic forces during earthquakes. The results
are the same in static and dynamic cases.

The testing was realized at IMSAR Bucharest laboratory on
a special testing machine which acts on the damper with cycles
of compression and elongation forces with low velocity (static
regime).

This damper has the possibility to increase the friction force
by acting on a system with screws and springs.

This testing was creating for spring force corresponding to
the distance of 203 mm between the screws heads.
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Fig. 33 The experimental hysteresis curve for
SERB 4 damper

The hysteresis curve has a special shape which can be
modeled with modified Bouc-Wen model of hysteresis.
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IV. THEORETICAL MODEL

In order to use the hysteresis curve of the SERB dampers we
must find mathematical relations which describes those curves.

All the program software which simulates the behavior
buildings equipped with dampers during earthquakes, have the
possibility to simulate the dampers with usual hysteresis curve.
But, because the SERB damper have unusual hysteresis curve,
they can not be modeled with usual mathematical model for
damper hysteresis as Maxwell, Kelvin-Voigt or Zener.

That is the reason why we use the Bouc-Wen model to find
the mathematical relations for this type of hysteresis.

The general model of Bouc-Wen hysteresis is:

L S (1)
A=l 1B +7 sen(¢ 2]

where: A, f, y, n are the parameters which controls the
magnitude and shape of hysteresis curve, z(¢) where z is the
damping force and ¢ is the damper displacement.

Using o = f + y and n = 1 we find the following parameters
to approximate the first experimental hysteresis curve: A = 0.1,
p=-3.5,y=1.6.

The first theoretical hysteresis curves for SERB 3 damper is
presented in fig. 34 and fig. 35.
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Using oo = f + y and n = 1 we find for the second theoretical
hysteresis the following parameters to approximate the
experimental hysteresis curve: A = 0.097, f=-4.5,y=1.5.

For the second damper it is recommended to use the
modified Bouc-Wen model [8] (papillon model). In this case
the mathematical relation used for SERB 4 hysteresis curve is:

=sgn(&)d& 2

dz
A-p-z
For the first fitting of experimental hysteresis curve of
SERB 4 we have found the parameters A = -0.1, § = -2. In this

case the first theoretical hysteresis is presented in fig. 36, for
positive values of forces and displacements.
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Fig. 36 The theoretical hysteresis curve fo SERB 4 damper

For the second fitting of experimental hysteresis curve of
SERB 4 we have found the parameters A = -0.48, f = -5. In
this case the second theoretical hysteresis is presented in fig.
37, for positive values of forces and displacements.
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Fig. 37 The theoretical hysteresis curve fo SERB 4 damper

Because the usual programs software like ETABS, SAP
2000, SCIA, ANSYS, do not permit the Bouc-Wen hysteresis
model for the dampers used, we have used the program
GenEcAm (made by the author) in order to obtain influence of
SERB 3 and SERB 4 dampers on buildings behavior during
earthquakes.
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V. CONCLUSIONS

The Romanian SERB dampers used for equipping the
buildings are efficient devices for protection during
earthquakes but they can not be analyzed using the usual
program software like ETABS and SAP 2000 because they
have unusual shape of hysteresis curve.

SERB dampers can be positioned at the supra-structure of
the buildings (SERB 1, SERB 2, SERB 3) or at the foundation
(SERB 4).

The hysteresis curve of SERB dampers can be modeled with
Bouc-Wen model of hysteresis in order to be used by the usual
programs software for buildings seism simulation, and the
parameters of this model are presented in this paper.

SERB dampers were tested by experiments but our F.E.M.
simulation extends the study by using different load cases then
the experiments. The numerical results are similar with the
experimental results and they complete each other in order to
observe the differences in the hysteresis curves for different
types of load cases.

These hysteresis curves are useful in F.E.M. simulation of
buildings equipped with these new dampers for which the
F.E.M. software does not have specific damping elements in
their finite elements library.

These shapes of hysteresis are very useful for drift limitation
because the damping force is increasing fast with
displacements.

A great advantage of using SERB devices is the cost of the
damping system which is five times smaller then the same
damping system which use Taylor devices.

SERB devices can be optimized in order to assure an
optimized shape of hysteresis curve for each type of buildings.
The optimization consists in modifying the dimensions of the
metallic components which contribute to the friction and
elastic phenomenon. This optimization process can be done
with dampers F.E.M. models presented in this paper, which
have been validated with the experimental results.

By using SERB devices we can reduce the drifts by 20% to
30% in order to protect the building during earthquakes [3].
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