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Extension the matrices of one dimensional beam
elements for solution of rectangular plates
resting on elastic foundation problems

Abdulhalim Karasin

Abstract—Complex medium of foundations is a frequently
recurring problem for many engineering structures in case of
transmission of rational, vertical or horizontal forces. In general it is
often difficult to find suitable analytical models for plates on elastic
foundation problems. In this study, it is proposed to extend analytical
solutions of the discrete one-dimensional beam elements resting on
one- or two-parameter elastic foundation for solution of plate
problems. Firstly, the derivations of the governing differential
equations and exact shape functions are obtained. In order to observe
the influences of foundation parameters, some graphical comparisons
have been done on stiffness terms and the shape functions for solving
general plate problems.

KeyWOt‘dS—Finite element, Shape functions, Stiffness matrices,
elastic foundation.

I. INTRODUCTION

N many engineering structures assessment of stress

conditions created by vertical or horizontal forces to the
foundation is a frequent problem of design. In order to include
behaviour of foundation properly into the mathematically
simple representation itis  necessary to make some
assumptions. One of the most useful simplified models known
as the Winkler model assumes the foundation behaves
elastically, and that the vertical displacement and pressure
underneath it are linearly related to each other. That is, itis
assumed that the supporting medium is isotropic,
homogeneous and linearly elastic, provided that the
displacements are “small”. This simplest simulation of an
elastic foundation is considered to provide vertical reaction by
a composition of closely spaced independent vertical linearly
elastic springs. There are several more realistic foundation
models as well as their proper mathematical formulations
given in several references [1-6]. Owing to its convenience in
solution of plate problems as a numerical method the finite
strip method have attracted much attention from many authors
as [7-9]. Among them Huang and Thambiratnam [9] suggested
a procedure incorporating the finite strip method together with
spring systems is proposed for treating plates on elastic
supports. In order to simplify the problem it is possible to use
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a grid of beam elements to model .

II. PROBLEM DEFINITION

The governing equation for transverse displacement w(x,y)
of plates subjected to lateral loads given in Eqn 1.a can be
rearranged for plates resting on two-parameter elastic
foundation by using two-dimensional Laplacian operator in
Eqn 1.b as follows:

4 4 4
OW(X,y) ,0W(X,y) O"w(X
o' ox’oy? oy (1.a)
DV?V2 2w+ k,w+ Kk, V*w=q(Xx,y) (1.b)

where k; is the Winkler parameter with the unit of force per
unit area/per unit length (force/length3), k, is the second
foundation parameter (force/length) and D is the flexural
rigidity of the plate element.

This equation is applicable to all types of rectangular plates
including two-parameter elastic foundation problems. Classical
methods that provide mathematically exact solutions of plate
problems are available for a limited number of limited cases.
There are a few load and boundary conditions that permit Eq.
(1) to be solved analytically for all load and boundary
conditions. Currently, there exist approximate and numerical
methods to solve the governing differential equations of plates
resting on one-parameter and two-parameter elastic foundation
for transverse displacement w. A broad range of the beam or
plates as engineering problems has been solved by computer-
based numerical methods such as finite element and boundary
element methods [10-17]. However closed form solutions for
plates have been published for a limited number of cases.

In this study gridwork model of plates for general
applications suggested solving a wide range of plate problems.
A differential part of ap late supported by a g eneralized
foundation as shown in Fig. 1 can be represented by two
parallel sets of beam elements for rectangular plates [18]. On
the other hand the similar elements can be formed in radial and
tangential directions for circular plates [19].

D( )y _q(xy)
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Fig. 1 The discrete system a) the elements are connected at
finite nodal points of a rectangular thin plate in flexure, b)
Parallel sets of one-dimensional elements replaced by the

continuous surface

Many solution methods have been proposed by
researchers for the problem of beams resting on elastic
foundation have inserted Hermitian polynomials into strain
energy functions that has been derived in this study. In order to
converge to the better solution, the beam needs to be divided
into smaller segments. A representation of the foundation with
closely linear translational and rotational springs underlying a
beam element is illustrated in Fig. 2. The generalized
foundation as a representation of two-parameter model implies
that at the end of each translational spring element there must
be also a rotational spring to produce a reaction moment (k)
proportional to the local slope at that point.
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Fig. 2 Representation of the beam element resting on
generalized foundation

For generalized foundations the model assumes that at the
point of contact between plate and foundation there is not only
pressure but also distributed moments caused by the
interaction between linear springs. These moments are
assumed to be proportional to the slope of the elastic curve by
a second parameter for foundation.

There are many researches concerning analysis of beam
element resting on elastic foundation [20-25]. Among the
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references, Eisenberger and Clastornik [25] developed the
formulations based on interpolation (shape) functions for of
solution beams by finite element method with the exact
stiffness matrices. This derivations extended to an analytical
solution for the shape functions of a beam segment on a
generalized two-parameter elastic foundation given in [18],
leading to exact element-level matrices. This study let plates to
be represented by a d iscrete number of intersecting beams.
Thus, itis possible to use mechanical properties of one-
dimensional beam for solution of plate problems of different
types of loading and boundary conditions.

. THEORY AND FORMULATIONS

For particular plate problems, closed form solutions have
been obtained for Eq. (1). However, even for conventional
plate analysis these solutions can usually be applied to the
problems with simple geometry, load and boundary conditions.
With most elements developed to date, there exists no rigorous
solution for plates except in the form of infinite Fourier series
for a Levy-type solution. The series solutions are valid for very
limited cases such as when the second parameter has been
eliminated, and simple loading and boundary conditions exist.
Networks of beam elements that have no such limitations can
represent the plates. The properties of beam elements resting
on elastic foundations will be a very useful tool to solve such
complicate problems. However, the equation of the elastic
curve derived for a beam element resting on a two-parameter
elastic foundation from the equilibrium equations of an
infinitesimal segment of the structural member is:

d2w(x)

4
£l d*w(x)
dx?

e + k,w(x)—k,

=q(x)
2

For different types of loading and boundary conditions it is
possible to extend the exact solution of Eq. (2) for a beam
element supported on at wo-parameter eclastic foundation to
plates on generalized foundations when the plate is represented
by ad iscrete number of intersecting beams. Then finite
element based matrix methods will be used to determine the
exact shape, fixed end forces and stiffness matrices of beam
elements resting on elastic foundations. These individual
element matrices will be used to form the system load and
stiffness matrices for plates.

3.1 Derivation of Exact Shape Functions

For abeam element resting on two-parameter elastic
foundation, the homogeneous form of Eq. (2) is obtained by
using q(x)=0

2
AW | Bw(x)=0 a—Xe

dx? El

d*w(x) k
- B=-
dx*

A — L
El

€)

By the operator method, let then the characteristic Eq. (3) can
be written as:

>

dn

(D* —AD? + B)W(x) =0 ggr _ °

“

Then the roots of the characteristic equation are
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There are three possible combinations of parameters A and
B that must be considered to define Eq. (5). The cases are;

A<2JB, A=2J/B and A>2/B ©

Since the caseAZz\/E(or Ko = V4k1EI ) is avery

special one it is not necessary to obtain solution of the
equation for this case. It is possible to get an accurate solution
by increasing kO a very small amount that let to use the

solution for A> 2\/§ case. Therefore, solution of the
differential equation would be obtained for the other possible
cases.

For the case A< 2\/E Eq. (5) yields as;

1 \/E Mo = \/5
_\/A—i,/(4B—A2) 5 _,/—A+i,/(4B—A2)
3 \/E Yy = \/E

(7N
by utilizing auxiliary quantities for the first and second
parameter as;

12452
\/4
(®)

then the first root can be expressed in the following way;

; Jas+if1e7-166%)  2fs+if(F o)

2+ Y E o)

A

A_ ke

and o=—=
4 AE|

)

By defining new quantities to simplify the terms, both &

and B have dimension of 1/L. Then substitute the new
quantities into Eq. (9), the first root can be written in
simplified form as;

D, =(a’ - %)+ 2iap =\(a +iB) =a+ip (10)
a=\A2+s
B= //12_5 %

- J=
where

The other roots also can be found by the same procedures.
Then the roots are:
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D,=a+iB, D,=-a-ip,

D,=a-if, D,=—a+ip (11)

Considering the above roots for solution of Eq. (3) is:

a,e™ (cos|px]+ sin[ px]) +

a,e ™ (cos[ x| - sin[Ax]) +
W(X) = a,e”(cos[px] - sin[px])+

a,e ™ (cos[px] + sin[5x))

(12)
Using hyperbolic functions,
e = Cosh|ax]+ Sinh[ax]
e ™ = Cosh[ax] - Sinh[ex] 13)

Substituting the above hyperbolic functions and rearrange
Eq. (12) with defining the new constants, the closed form of
the solution in terms of hyperbolic and trigonometric functions
is obtained as:

¢, cos[Bx]cosh[ax]+
¢, cos| Ax]sinh[ax]+
W(X) = c, sin[£x]cosh[ax]+
¢, sin[x]sinh[ax]+

()

(14)

By neglecting foundation effects for torsional degree of
freedoms, a linear description of the angular displacement at
any point along the element can be expressed as @(x)=
al+a2x. Inserting the angular displacements due to torsional
effects, Eq. (14) can be rearranged as follows:

c, +
c, cos[,&]cosh[ax]JEg)
¢, cos|Ax]sinh[ax]+

W(X)=c, +
¢, sin[x]cosh[ax]+
¢, sin[x]sinh[ax]+
(15)

then, the closed form equation can be expressed in matrix form
as:

T
w=BC (16)

The generalized displacement vector which forms boundary
conditions shown in Fig. 3 is obtained with x= 0 and x= L.

From the figure:

{Q}T = {¢1 0,,W,,0,,0, 'Wz}

{E}T = {T1'M1’V1 'TZ’MZ’VZ} an
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Fig. 3 a finite element of a beam (a) generalized displacements
(b) loads applied to nodes

Then the arbitrary constant elements of the vector C can be
related to the end displacements in matrix form as follows;

ld]=[H]-[c], [c]=[H]"[d] (s)

where [H] is a 6x6 ,Substitute Eq. (18) into Eq. (16) then the
closed form solution of the differential equation can be written
in matrix form as:

[w]=[B]" -[H]" -[d] (19)

Eq. (19) can be redefined by introducing vector N that
includes six shape functions. Then the closed form of the
solution in terms of shape functions and the generalized
displacements defined in Fig. 3 is:

#(x=0)

dw

&(x=0)

=0 T -1

=) 5700 where [n]=[8] -]

dw

&(X= L)

w(x=1L)

(20)

Finally for A< 2\/§ after the necessary evaluations the
shape functions determined and can be represented as follows;

Shape functions for A< 2\/§
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(-

B cosh[ax]sin[ﬂx] -p sin[ﬂ)(]cosh[a(Z L- X)] -
a sinh[ax]cos[ B(2L — x) |+ a sinh[ax]cos| 5]
Ve s (052 + B —a’cos2pL]- B° cosh[ZaL])

a? cos| fx]cosh[ax]+ B2 cos[fx]cosh[ax] -

B cos| x|cosh[a (2L — x)] - @? cosh[ax]cos[ (2L — x)]-
| apf sin[ﬂx]sinh[a(2L - X)] +af sinh[ax]sin[ﬂ(ZL - X)]

N (@ + B —a® cos[2AL] - B* cosh[2aL])

Bcosh[a(L + x)sin[ (L - x)] - f cosh[er(L — x)]sin[ B(L - x)]-
B asinh[a(L - x)]cos[B(L — x)]+ asinh[a(L - x)]cos[B(L + x)]

Vs (az +p-a’ COS[ZﬂL]— B’ cosh[2aL])
a? coshla(L —x)]cos[ B(L — )]+ B2 cos[ B(L — x)]cosh[a (L — x)]-
a? cosh[a(L — x)|cos[B(L + x)] - 7 cos[ B(L — x)]cosh[a (L + x)] +
v - afsin[B(L + x)]sinh[a(L — x)] - e sinh[a(L + x)Jsin[ (L - x)]

(a® + p* —a* cos2AL] - p* cosh[2aL )

On the other hand for the case A> 2\/§ it is noted that
the roots of Eq. (5) are definite. Therefore, by substituting the
auxiliary parameters defined in Eq. (8) into Eq. (5) the first
root can be expressed. Similarly using the same procedures
and after the necessary evaluations as previously done the
shape functions for this case be found and illustrated as
follows;

Shape functions for A> 2\/E

xm

192
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asinh|(e — g)x]+ Bsinh[(a — g)x]+ asinh(e + g)x]-

Bsinh[(a + B)x]- Bsinh[2al —ax — fx]+ asinh[2 8L —ax — fx]—
| asinh2AL + ox - px]+ Bsinh[2al —ox+ fx]

2(0{2 - B + p* cosh[2aL]-a* cosh[2ﬂ|_])

(arsinh[28L]+ Bsinh[2aL])
(acosh[ax]sinh[gx] - g cosh[Bxsinh[ax]) +
— coshlax]ooshlx] a3 sinh[ax]sinh[ Ax](cosh[2 AL ] - cosh[2aL )
(a2 - %+ p? cosh[2alL]- a2 cosh[ZﬂL])

V3=

‘//4:E

—asinh[(a + )L - x)]+ Bsinh[(a + B)L - x)]+
asinh[ol — AL — ax — px|- Bsinh[al + AL+ ax — fx]—
asinh[ol — AL — ax + |- Bsinhal — AL —ax + fx]+
asinh[ol + AL —ax+ ]+ Bsinh[al — AL+ ax + fX]
2(a” - B + p* cosh[2aL]- & cosh[2 L))

Vs =

2<:osh[/)’>(](ﬂ2 cosh[ﬂl_]sinh[aL]Jr off cosh[aL]sinh[ﬂL]sinh[ax])f
2cosh [ax](aﬂ cosh[ﬂL]sinh [aL] +a’ cosh[aL]sinh [ﬁl_]sinh[ﬁx])+
_| 2’ — B*)(cosh[al Jsinh[ AL |sinh[ex]sinh[ Ax])
(az — B+ p? cosh[2al |- o cosh[Z/i‘L])

For both A<2\/§ and A>2\/§ cases, when

foundation parameter k1 and kO tends to zero (dependently
A—0, 6—0, a—0, p—0), the terms of shape functions reduces
to Hermitian functions as expected.

LimLimv: -1

Limimt -] (] -
Limtimie) (1] ()

b 4] 4]

a—0 £—0

(21a)
the non-dimensional forms of the shape functions as Hermitian

s X

polynomials for L can be formed
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Treg-ogte s
v, =3¢ -2£° -1
ey

Ve =2&° -3¢7

For observing the influence of the foundation parameters, it
is necessary to compare the expressions in Equations For both

A< 2\/§ and A> 2\/§ cases of shape functions with the
Hermitian polynomials in Eq. (21). For clarifying the
comparison let the parameters be;

For A<24/B
a=2+5 =T+t
L= -5 =21-t
and For A>2+/B
a=m=ﬂm
B=~s-2 =aft=1

where t is dimensionless as;

(21b)

k&

(-9 __4El
' K,
4E|

Then the effect of the foundation parameters k1 and k0 on
the shape function terms given for both A< 2\/§ and

A> 2\/§ cases with corresponding terms of Hermitian
polynomials are shown in Figs. 4 — 7. From the figures it can
be noted that the shape functions related to beams on elastic
foundations are very sensitive to variation of foundation
parameters after some limits. On the other hand it is obvious
that shape functions converge towards Hermitian polynomials
when the parameter AL becomes smaller.

3.2 Derivation of Element Stiffness Matrix

The element stiffness matrix of a b eam element, which
relates the nodal forces to the nodal displacements resting on
two-parameter elastic foundation, can be obtained by the same
procedures. As a summary, the stiffness matrix [Ke], for the
prismatic beam element shown in Fig. 2. can be obtained from
the minimization of strain energy functional U as follows:

[Ke]:%

(22)
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El pd*w(x)d? w(x)OIX

2 5 dx? dx’
k L
1

where U=?£W(X)W(X)dx_
R EUGEUEN
25 dx

Substituting w(x) and its derivatives from the shape
functions into Eq. (22), the stiffness matrix can be written in
the following form,;

E.j{d;izN}F {dd{N}}d

el
(23)

where N is, a 6x1 matrix of the exact shape functions, given
in Appendix. Their first and second derivatives in matrix
forms are;

-t o)
CanaiCa I

Substituting N from the shape functions and its derivatives,
using Eq. (24), into Eq. (23) and carrying out the necessary
integrals and procedures the stiffness terms are obtained. For

the cases A< 2\/§ and A> 2\/§ the terms are defined as;

The stiffness terms for A< 2\/§
2Elap(psinh[2al |- asin[28L])

kzz =
(~a? - p% +a’ cos2pL]+ 7 cosh[2aL))
 _Ela’+p )% - a® +a? cos[2 /L] - 82 cosh[2al])
B (~a? - g% +a? cos[28L]+ B2 cosh[2alL))

e o —4Elaf? (- a cosh[al ]sin[AL]+ B cos[ AL ]sinh[aL])
27 plea?-p?+a’cos[2L]+ B cosh[2aL])
. - 4E1apla® + B2 )sin[BL]sinh[aL])
® " (~a? - % +a®cos[2AL]+ % cosh[2aL )
. _ 2Elapla® + p7 Nasin24L]+ Bsinh[2aL))
® " (~a?-p?+a’ cos2L]+ B2 cosh[2al])
o = _4Elﬂa(a2 + B ) e coshlal sin[AL]+ B cos[ AL ]sinh[a])
- (~a? - g% + a? cos[2pL]+ B cosh[2al ))

The stiffness terms for A> 2\/§
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K = 2EIa(psinh[al |cosh[al ] - o sinh[ AL ]cosh[AL])
# (= a? sinh|(AL)? |+ B2 sinh(aL)? )
B 2 a2 (oazﬁz(cosh(ozL)2 sinh(AL)* —cosh(AL)’ sinh(al )’ ))
o= o)LL M SR o)
ke = 2EIBa(a sinh[BL]cosh[al] - Bsinh[al ]cosh[AL])
® (~a?sinn|(pL)? |+ g2 sinhl(aL)ZJ)
. 2Elﬁa(az —ﬁz)sinh[aL]sinh[ﬁLj
® " [“a?sinh|(AL)? [+ g2 sinh|(aL )
‘ Elﬂa(a -p? Xasmh[ZﬂL]+ﬂsmh[2aL])
® ( a smhl J+ﬂ smhlaL D
= 2E1Bala’® - B kacosh[aL]smh[ﬂL]+ Bcosh[AL]sinh[aL ]
- (= a? sinh|(AL)? |+ B2 sinh(aL)? )
The other terms of the stiffness matrix are;
GJ
ku = k44 = _k14 = _k41 = T
Kip =Kig = Kis =Ky =Kip =Kyg =Kys =Ky =0
Kz =Kgs =Keg =Kpg,  Kyg =Kgs =Kgp =Ky

ksz = kzsv kzz = kssl ke3 = k3sl kee = k33

These terms tends to be the conventional stiffness terms
when foundation parameter k1 and k6 tends to zero (A—0 and
6—0 or a—0 and p—0). They are verified as expected for the
both cases as follows;

. . 4EI
Lim Limkz %T

a—-0 S0

6EI
LimLimkz: —- T
a=0 -0

. . 2E
LimLimkzs >=—

a—0 S0

. . 6E
LimLimks - =%

a0 po0 L

12EI
LimLimks > =5~

a—-0 -0 L

12EI
LimLimks — -

a0 f-0 L

(25)

IV. REPRESENTATION OF CONTINUOUS SURFACE BY
GRILLAGES OF BEAMS

As Wilson [26] has indicated the structural behaviour of a
beam resembles that of as trip in ap late, so replacing a
continuous surface by an idealized discrete system can
represent a t wo-dimensional plate. The differential equation
requires that the bond between the foundation and the plate be
accounted for the soffit of the “equivalent” strip is not affected
by the foundation in twisting. The torsion constant for the
rectangular beam strips is adopted by Bowles [27]. The
representation of a plate through the grid work (or lattice)
analogy at which the discrete elements are connected at finite
nodal points is shown in Fig. 1. The plate through the lattice
analogy at which the discrete elements are connected at finite
nodal points can be represented by one dimensional beam
elements. The plate is modelled as an assemblage of individual
beam elements interconnected at their neighbouring joints. In
gridwork systems at edge nodes two or three, at interior nodes
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four of the typical discrete individual beam elements shown in
Fig. 4 are intersected. The beam element has 3 Degree of
Freedom at each node. That is, element node DOF’s at i are
two rotations, 1 and 2, and one translation, 3, at j they are
similarly 4 and 5 for rotations and 6 for translation. The
replacement implies that there are rigid intersection joints
between all sets of beam elements, ensuring slope and rotation
continuity. Because of plane rigid intersection, the elements
can resist torsion as well as bending moment and shear.
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Fig. 4. Typical numbering of nodes, DOF’s and elements of
a rectangular plate gridding for free edges boundary conditions

Matrix displacement method based on stiffness-matrix
approach is a useful tool to solve gridworks with arbitrary load
and boundary conditions. The solution can be obtained by
using a proper numbering shame to collect all displacements
for each nodal point in aconvenient sequence the stiffness
matrix of the system.

The SI unit for magnetic field strength H is A/m. However,
if you wish to use units of T, either refer to magnetic flux
density B or magnetic field strength symbolized as poH. Use
the center dot to separate compound units, e.g., “A'm’.”

V. RESULTS AND DISCUSSIONS

Some examples of plates on elastic foundation solved to
check the validity of the solution technique by the finite grid
solution (FGM). Comparison with known analytical and other
numerical solutions yields accurate results as an approximate
method.

The first example is to analyze the plane-grid system solved
by Wang [28] shown in Fig. 5. The system is a monolithic
reinforced-concrete simple supported on four columns at A, B,
C and D. the values of flexural and torsional rigidities for all
elements are EI=288000 kip-ft2 and GJ=79142.4 kip-ft2
respectively. Two loading conditions are to be investigated:
firstly a 10-kip concentrated load applied at H and (LC1) and
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than a uniform load of 3 kif on the element BF (LC2).

iy
12f ~
El
AT :
E
P=10
12 By o
2
—_— k! l
D
16t 16t

Fig. 5. The reference grid system [28]

There are 8 nodes, 11 elements and 20 degrees of freedoms
in the Figure. The element internal bending and torsional
forces and the displacements values of the reference for both
loading conditions are compared with the Finite Grid Solution
and they are tabulated in Tables I and II respectively.

Table I The Comparison of the End Forces with the
Reference, [28].

COMPARISON OF INTERNAL FORCES
EL LC1 LC2
No L.EndM FE.EndM Tors. M |L.EndM E EndM Tors M
) Ref. 02243 20,1033 04221 0.6877 266887  3.3374
FGM| 022432 201 042159  0.68671 2667 33349
., Ref -12.7902 0733 01456 333826 04430 6.6647
© FGM| -19.785  0.73496 -0.14548 33.33 A3532 46642
, Ref. 2761 231228 12437 6.0038 -3.286  -0.8249
" oM 27607 23128 -1.243§ 6.0043  -8.2632 -0.82374
1 Ref. -23.4002 03811 02419 164802 24026 102131
FGM| -23408  03883% 02400 16.424 24 10.204
5 Ref. -2.0833 12746 -2.528 6.6936  -404419 -0.016§
FGM -2.983 12734 23512 -6.691 49436 99123
p Ref. -0.4221 118008 022432 3.3376 62843 0.63671
FGM| -0.42139 02 022432 35349 6.2884 0.68671
- Ref -10.337 25228 2983 -3.43%4 00166  6.601
| OFGM|  -10.538 2522 2085  -5.4648 00123 6.601
g Ref. 05677 289362 031443 31271 400286 -6.6871
FGM| 056707 28048 031447 31283 48992 -6.6871
9 Ref. -30.4418 0 49497 00034322 -60.06%6 4353324 1.474]
FGM| -30432 40445 0034322 50022 43334 14741
10 Ref. 02966  22.6673  0.70354 32602 822064 40535
FGM| 029773 22663 070884 5.3034 22266 -4.0588
1 Ref. -22.6776 27461 023401 -174.4697 325234 10.249
FGM| -22478 27422 0.253402)  -174.45 32908 10.249

Table II The Comparison of the Displacements with the
Reference [28].
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COMPARISON OF THE DISFL ACEMENTS
DOF LC1 LC2
NO:  Befersnce Beference FGM

1 -2.5330E04 22105E04 -22107E
2 3.3381E-04 7.8336E-04)

3 -3 3864E-04 -5 3624E-04

4 1.6270E-06 6 3100E-05

3 3.8483E-03 3.3156E-03

] -3.0022E-04 -22836E-03

] -5.6902E-04 -3.5186E-04

g 1.3430E-06 -1.6420E-05

g 3.197TE-04 6.8 108E -0

10 1.9858E-03 1.3383E-03

11 2.5270E-04 1.3033E-04

12 -4 5830E-03 1.0781E-03

13 1.6046E-03 1.53444E 02

14 2.2834E-04 -8 8223E-04

15 -3.6335E04 G 7300E-04

16 3 .6087E-03 24308E-02

17 2.7384E04 3.0392E-04)

18 6. 7089E-03 -33384E-04

1% 7.8387TE-04 8 A 2 3087TE-03 S079E-03
20 -51238E05  -31238E-05 85332E04)  8.5352E-04

From the Tables I and II apart from errors associated with
rounding the input numbers, which are less than 0.05%, the
results obtained are almost the same as the reference values.
The results those can be accepted as exact are valuable for
checking the correctness of the method.

However in order to check the validity of the method for
plates resting elastic foundation, an example of a simply
supported square plate subjected to a uniformly distributed
load considered [29]. In the reference the side length a, the
flexural rigidity D and Poisson ration v were chosen as 8 m,
1000 Nm and 0.3 respectively. The uniformly distributed load
q was taken as IN/mm?2. Firstly for the simple supported case,
Winkler and two-parameter foundations considered. The
comparison of the FGM results with the Local Boundary
Integral Equation method (LBIE) on the centerline of the plate
for three different Winkler coefficients is given in Table III.
From the table one can see that the maximum relative error for
deflections of points located on the axis passing through the
centre of the plate is about less than 1%. This reflects a high
degree of accuracy.

Table III The comparison of the deflections at the
centerline for a simply supported plate resting on a Winkler
foundation with the LBIE [29].
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On the other hand for two parameter foundation case, the

numerical results of the maximum deflection wy,,x are given in
Table IV. The relative error is also less than 1 % as for the
one-parameter foundation. Then it can be concluded that the
accuracy is high and comparable with the one valid for
Winkler model.

Table 4. The comparison of the maximum deflections for a
simply supported plate resting on a two-parameter foundation
with the LBIE,[29].

coefficients

k1 12 LBIE FGM  Relative
(N/m3) (Nim) (mm) (mm) Ermor %

100 100 68147 6.7913 034

300 3001 30276 30034 0.80

500 5001 1911 1.8041 0.38

For all of the three cases, comparison with the other
solution methods, with less than 1% error, yields accurate
results as an approximate numerical method.

VI. CONCLUSION

For particular plate problems, closed form solutions have
been obtained. However, even for conventional plate analysis
these solutions can only be applied to the problems with
simple geometry, load and boundary conditions. For plates
supported by the two-parameter elastic foundations the
solution is usually much too complex and there is apparently
no analytical solution other than for simple cases. A grid work
analogy called the Finite Grid Method involving discretized
plate properties mapped onto equivalent beams with adjusted
parameters and matrix displacement analysis are used to
develop a more general simplified numerical approach for
plates on elastic foundations. In this solution the plate is
modeled as an assemblage of individual beam elements
interconnected at joints. The solution method of this technique
is acceptable as a correct treatment from the point of view of
use the strain energy functions.

In this method the plate is modeled as an assemblage of
individual beam elements interconnected at their neighboring
joints. By this representation, also the plate problems which
have non-uniform thickness and foundation properties,
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arbitrary boundary and loading conditions and discontinuous
surfaces, can be solved in a general form. It has been verified
the validity of the solution with a broad range of applications.
of plates on either one or two parameter elastic foundation.
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