
 

 

  
Abstract—The purpose of the paper is to assess behaviour of 

steel beams during a loading test and the FEM models which take 
into account computational nonlinearities. The steel beams are loaded 
with a single load. The calculation was made in ANSYS and vFEM, 
the own software under development. In case of vFEM which can be 
used for nonlinear solutions of tasks, the computation and algorithm 
are supported by examples. 
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I. INTRODUCTION 
TEEL offers good material properties and is suitable for 
designs and solutions of engineering structures such as 

ceiling beams, latticework structures, or columns.  
 The design [1] and analysis of the advanced steel structure 

is often connected with investigation into behaviour of 
structural details where strain is concentrated in places where 
local loads are applied or in places where the cross-section is 
weaker. This is also the case of structural details [2] and 
imperfections [3], [4] and [5]. Steel is also frequently 
combined with other materials, for instance with glass [6] or 
CFRP reinforcement [7]. This requires a specific approach to 
the analyses and calculations.  

 In those cases, the structural optimising should be 
performed in addition to the standard design and analyses. The 
analyses deal in most cases with 3D computational models and 
the physical [8], geometrical [9] or structural nonlinearities 
which are considered in calculations. Different approaches are 
available for different structural issues [10]. Certain 
experiments exist for some structure solutions [11], but they 
cannot be used in general for other alternatives.  
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 This is, for instance, the case of weakened or reinforced 
cross-section. 

The material and computational models are often simplified 
in the analyses (1D or 2D) or combined computational models 
(sub-models) are used [12] or some phenomena are neglected.  

 In order to understand better the behaviour of structural 
details and selection of the optimum construction, it is 
recommended to focus not only on one type of the structural 
solution. Attention should be paid to the behaviour of steel 
beams without any adaptations with a reinforced/weakened 
cross-section.  And this is the key topic discussed by this 
article which describes and evaluates some experiments of 
steel beams as well as numerical analyses based on the 3D 
computational and material models. Software such as (ANSYS 
[13], SCIA [14]) can be used for calculations. In many cases, it 
is, however, inefficient to use them. Or it is too demanding or 
impossible because of a locked source code or commercial 
nature of the software. Therefore, a better solution would be to 
use the own computational software applications developed in 
Matlab [15] or in similar development environment. When 
designing and optimising the structural solution, it is advisable 
to include into the calculation the real character of input data: 
a different strength or homogeneity of materials [16], [17] and 
[18]. 

The purpose of the paper is to assess behaviour of steel 
beams during a loading test and the 3D models [19] which take 
into account computational nonlinearities [20]. The calculation 
was performed in the academic developed software vFEM. 
Calculations are also performed in ANSYS.  

In case of the own software in vFEM which can be used to 
calculate the nonlinear solution, the computation and algorithm 
are supported by examples. 

II. COMPUTATIONAL TOOLS 
Several computational tools are available for the design and 

analyses of the steel structures. In particular, strain and stress 
in the structure are taken into account.  

 Most computational tools and computational algorithms are 
based on the Finite Element Method. This methods ranks 
among the numerical methods and is based on discretising of a 
computational model into small segments for which an 
approximate solution is searched. The small segments are 
referred to as the finite elements and their basic parameters are 
the base function and shape. A finite element can be a beam, 
2D or 3D element. In the basic approach the linear FEM 
solution is employed where the matrix equation is: 
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 FKu = ,  (1) 
 
where K is the stiffness matrix of the structure, u is the 
unknown vector of displacement and F is the load vector.  

This method is used in ANSYS as well as in the software 
application which is being developed in Matlab – vFEM. 
A typical construction task is used in order to illustrate two 
finite elements implemented in the software. It is a tetrahedron 
with four nodes and one integration point and an isoparametric 
finite element with eight integration points. Fig. 1 shows the 
finite elements. The isoparametric finite element is calculated 
using the Jacobi transformation. In particular, it is based 
on an 3D 8 node isoparametric finite element. The base 
functions of the element are described in (2).    

 
 )1)(1)(1(
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The author used the tetrahedron as a finite element, for 

instance, in [21]. 
 
 

 
Fig. 1 8-node (brick) element, 4-node element in 3D 

 

A. Numerical example – Cantilever 
An elastic analysis of the bracket was carried out as 

correction of the computational model. Two types 
of calculations have been carried out. The only difference in 
the structural geometry was the cross-section of the element 
(Fig. 2). In the first case, the rectangular cross section 
0.16 m x 0.074 m has been chosen. In the second case, the 
sample was a steel rolled profile, IPN 160. 
 
 

    
Fig. 2 meshing for 8-node element (IPN 160 – left, rectangular - 

right) 
 

The length of the cantilever beam is 1 m. It is loaded with a 
single force of 10 kN at the loose end. A beam model and 3D 
finite models (4 node, isoparametric and 8 node elements) 
were used.   

Cross-section stress  
deflection Bar 4 node 8 node 

Rectangle  [MPa] 31.67 28.93 30.57 
 [mm] 0.63 0.63 0.63 

IPN 160  [MPa] 85.47 82.84 83.22 
 [mm] 1.70 1.85 1.83 

Table 1. comparison of the stress and deformation at the beam 
bracket for different computational models 

 
 

 
 

Fig. 3 stress σx [MPa] for the 8 node element, deformed cantilever, 
cross-section rectangular (0.16 m x 0.074 m), load 10 kN 

 
 

 
 

Fig. 4 stress τxz [MPa] for the 8 node element, deformed cantilever, 
cross-section rectangular (0.16 m x 0.074 m), load 10 kN 

 
 

 
 

Fig. 5 stress σx [MPa] for the 8 node element, deformed cantilever 
beam, cross-section IPN160, load 10 kN 

 
Fig. 3 and 4 show the normal and shear stress for the first 

case, while Fig. 5 and 6 shows the second case.  
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Table 1 lists the results: the deformation in the loading 
direction as well as the maximum stress in the fixing point.  
  

 
 

Fig. 6 stress τxz [MPa] for the 8 node element, deformed cantilever 
beam, cross-section IPN160, load 10 kN 

 
The values indicate that the difference between the stresses 

and deformations is not more than 7 per cent. For such values, 
it is advisable to consider suitable setup of the input 
parameters in the model, for instance, a finite element mesh. 
Such setup has been also considered in further calculations. 

B. Modeling of support cantilever 
Stress values in edges of flange are expressed according 

to the equation (3). Limit value of normal stress 
isσx = 85.47 MPa. This result corresponds with calculated 
value in FEM model.  

 
 

elY

Y
x W

M
,

=σ  (3) 

 
The Tab. 2 shows maximum normal stresses σx for 10 kN 

load in cantilever. Stresses were evaluated as mean value from 
results calculated in edge elements on flange. The similar 
stress as calculated according to the equation (3) exhibit 
variant with supports divided into all nodes in cantilever. 
A result for this variant is shown in figure 5. Normal stress 
takes the value σx = 83.22 MPa.  The highest difference was 
calculated for variant with one node support. This is due to 
concentration of stress in neighborhood of a node.   From 
other considered options better reflects cantilever support 
flanges. This type of support can be interpreted as a pair of 
forces. It symbolized bending moment (dominant reaction in 
restrain).  
 

Support All cross-
section Axis  Web Flange 

σx [MPa] 83.22 411.84 138.34 109.23 
Table 2. Comparing of stress for different types of support 

III. NONLINEAR ANALYSIS 

A. Nonlinear solver 
In the nonlinear analysis, the stiffness matrix of the structure 

obtained from (1) is not constant any more but is a function of 
nodal dislocations. The set of nonlinear equations is then:   

 

 FK(u)u =  . (4) 
 
Where K is the stiffness matrix of the structure which 

depends on the load and displacement vector. The nonlinear 
set of equations can be solved approximately only. The 
Newton-Raphson method was used in vFEM.  

It is based on calculation of unbalanced forces. As errors do 
not cumulate during the calculation, it is not necessary to 
calculate the task again. The approach is based on the Euler 
method where the calculation is divided into loading steps: 

 
  ii FuuK ∆=∆)( , (5) 
 
Where K(u) is the stiffness matrix which depends on the 
dislocation factor u, ∆ui  is an increment in strain for the 
loading step ∆Fi .  

The assumption is the balanced condition   
 

 0ff intext =− , (6) 

 
where fext is a vector of external forces and fint is the vector of 
internal forces. For the nonlinear calculation, the stiffness 
matrix K(u)  changes into K´ . In a certain loading step 
(iteration) the balanced condition ceases to exist and the 
residual vector is created:  

      
  gff =− intext . (7) 
 

A deformation increment, α∆ , resulting from the residual 
vector is solved using: 

 
 gαK =∆´ . (8) 

 
It is also necessary to create a new stiffness matrix and to 

calculate a new residual vector. The calculation is repeated 
until the residual vector is zero or until the required accuracy 
is reached. In that loading step, the calculation is finished.  

Then, a new loading step 1+∆ iF  is used and the process is 
repeated. The calculation is over once the required load is 
obtained. Sometimes, the calculation can end before the 
required load is reached. This is, for instance, the situation 
when the new balanced condition can be found for the 
structure. 

B. The material model of steel 
Steel is an isotropic material with a high strength. The 

compressive strength and tensile strength are same. Typically, 
the strength is between 300 MPa to 700 MPa. It follows from 
the strain stress curve in Fig. 7a that behaviour of the steel is, 
at the beginning, linearly elastic. The linear elasticity exists up 
to the level which is identified as the limit of proportionality. 
An important value is the yield point - if it is exceeded, plastic 
deformations appear. The stress-strain curve beyond the yield 
point depends on a specific composition of the steel, working 
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procedure, technology adaptations or the selected degree of 
idealisation. 

 
Fig. 7 stress-strain diagram a) structural steel b) the ideal elastic-
plastic behaviour c) the ideal elastic-plastic behaviour with linear 

hardening d) the multilinear behaviour 
 

Fig. 7 shows the idealised stress-strain diagrams for design 
of structure. These are the linear elastic, ideal elastic-plastic, 
ideal elastic-plastic behaviour with linear hardening and 
multilinear stress-strain diagram. It is recommended to use the 
ideal elastic-plastic stress-strain curve or an elastic-plastic 
stress-strain diagram with linear hardening.  

 This diagram requires good information about the yield 
point, initial modulus of elasticity, the modulus of elasticity for 
the hardening, and the maximum relative deformation. 
The condition of elasticity for the single-axis state of stress in 
the elastic-plastic stress-strain diagrams simplifies the 
expression as follows:  
  
 yf≤σ , (9) 
 
where σ is stress for the single-axis state of stress and fy is  The 
relative deformation is limited by εs,lim. Because this is a 3D 
task, it is necessary to define a condition of plasticity for the 
space. The HMH condition was chosen for that purpose. 

For the other calculations and vFEM, an ideal elastic-plastic 
model of steel was chosen. The final theoretical matrix of 
stiffness of the elastic-plastic material is as follows: 
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In that case a possibility would be to use a zero stiffness 

matrix for the calculation and algorithmising of the ideal 
elastic-plastic material. The result might be that the set of 

equations become singular in places where plasticising clusters 
occur.  

For those reason the computational process should be such 
so that algorithms, could be developed easily. The calculation 
uses the small material stiffness which is defined by an 
auxiliary parameter  
  
 

0

1

E
E

=ρ , (11) 

 
where E1 is the small material stiffness for calculation and E0 is 
the material stiffness of structural steel. The new stiffness of 
the finite element is considerably lower than the original 
stiffness. It is not, however, zero. Because the stiffness 
decreases, ρ ranges between 1 and 0. Below are more details 
about ρ. The parameters influence, in particular, the rate of 
convergence for iterations. 

IV. EXPERIMENT 
In order to support and validate the numerical calculations, 

an experiment was performed: This was a three-point bending 
test of a steel beam, IPN160. The test was carried out in the 
laboratory of Building Materials, at VŠB - Technical 
University of Ostrava.  

 The purpose was to monitor the loading process, the 
principle of failure and the stress-strain curve. The obtained 
data were used for validation of the numerical analysis in 
ANSYS and vFEM (the software under development). Fig. 8 
shows the process of the experiment. Two tests were carried 
out. In Fig. 9 there is a typical breakdown.   

 

 
Fig. 8 three-point bending test on IPN 160 – experiment. 

 
 

 
Fig. 9 failure in the beam - web buckling. 
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Fig. 10 shows the load-displacement diagram with the 
loading process.  

     
Fig. 10 beam failure - web buckling. 

 

The progress of the both tests is very similar. There is 
a minor change in the total load capacity and in the 
descending branch.  

V. NONLINEAR ANALYSIS  
The software has been used to analyses the loading 

curve in a three-point bending test of a steel beam. The 
three-point bending test is applied to a plain beam which is 
loaded in the middle of its span with a single load. The 
steel grade is S235 and the cross-section is IPN 160. The 
distance between the supports is 0.9 m. For the layout see 
Fig. 11.  

 

      

 
 
 
 
 
 
 
 

Fig. 11 the structure under modelling. 
 

As this is a 3D model, the position of the loading force and 
the supports is chosen in line with reality.  

 The load is applied along the line on the flange width. The 
supports are located in a line, along the lower flange.  

First, the numerical analyses were performed in the new 
software under development. Then, ANSYS was used for 
validation.  
 

A. The parametric study for ρ 
The parametric study ρ for was performed in order to 

understand better the elastic-plastic calculation. 

 As described above, the correct value of ρ needs to be 
determined in order to obtain correct convergence of the 
calculation. A parametric study has been created for the 
convergence parameters and the load curve has been 
monitored for different values of that parameters. The 
convergence parameter changed from 1.0e-1 to 1.0e-4. Fig. 12 
shows the calculated curves. 

 

   
Fig.12 load curves for various convergence parameter. 

 
The chart above contains, in addition to the load curve, the 

elasticity (bilinear) load curve (the dash line curve). The 
curves suggest that the nearest convergence towards the 
bilinear solution should be reached for ρ = 0.001.  For that 
value, the first plastic areas appear approximately in the half of 
the linear area. If compared with the other curves, the 
convergence is, however, the nearest one to the value resulting 
from the elasticity analysis.  
  

Parameter ρ 0.1 0.01 0.001 0.0001 
Number of 
iterations 80 36 27 21 

Table 3. influence of on the calculation rate 
 

It follows from the chart that the lower ρ is, the more 
drammatic increase in deformation is with lower load 
increments. The lower  ρ requires less iteration steps in order 
to obtain the results. The table 3 above shows dependence of 
the iteration steps on  ρ. 

 
 

0,9 m 
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Fig. 13 progress of plasticizing. Dark parts of the beam plasticize 
with the lower load. Point of the loading force. 

 

B. Limit stress 
An important parameter which influences the calculation is 

the limit stress. This is the stress which, if exceeded, cause the 
material to plasticize. In case of steel, the limit stress is often 
represented by the yield point. For S235 the yield point is  
fy=235 MPa. Several calculations with different limit values 
have been carried out for the structure. Fig. 13 shows the 
progress of plasticizing.  

 The reason was the comparison between the calculated 
values and the values measured in the experiment. The yield 
point for S235 is determined by the 5 per cent quantille. For 
steel of that grade, the limit stress is considerably higher that 
the specified stress.  

 

 
Fig. 14 load curves for different values of the limit stress 

 
Fig. 14 shows the load curves for different values of the  
limit stress. For the sake of clarity, the A test and the B test 

is shown in the chart. The chart in Fig. 14 shows, in addition to 
the load curve, the load chart obtained from a three-point 
bending test of a steel beam.  

Next curves symbolize results from numerical models. The 
different between models is in limit stress. For the first case 
was limit stress set up on yield stress 235 MPa. The first 
change of stiffness of construction was recognized for smaller 
deflection and load capacity was about 115 kN. It means, that 
yield stress as limit stress for calculation reflecting parameter 
ρ is extremely small.  

For this case was generated model with ultimate stress. 
According to the show results, the calculated values was not 
achieved. The most adequate value of limit stress was mean 
value of ultimate stress 402 MPa.  
 

C. Influence of the support and force  
Several fixing alternatives and possible locations of the load 

force have been also investigated in the three-point model test 
(Fig.  11). For those places in the structure, concentration of 
stress is often an issue. Therefore, results might be unreliable 
and reality might be described incorrectly. 

Different fixing and load alternatives, both in single cases 
and combinations, have been evaluated for the beam. In the 
first alternative, the loading force was divided along the flange 
width into one row. In another alternative, the loading force 
was divided into three rows – this increased the loading area 
and reduced local impacts of the load.   
 

 
 

Fig. 15 different supports and loads in the structure model 
 

The supports were located in a line along the flange width. 
In one alternative, the support was modelled in one line only, 
while the second alternative used a pair of the line supports.  
 

 
Fig. 16 influence of the location of the supports and load on the 

loading process 
 

It follows from the chart (Fig. 16) above that the location of 
the support plays a little role only for the load capacity and 
deformation which depend on the load. On the other hand, 
distribution of the load is significant. If the load is distributed 
into several nodes of the finite element mesh, the maximum 
increase in the load is achieved. Another factor which has been 
influenced is the increase in the elastic area of the structure. 
The first plasticizing of the material occurs with the 
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considerably higher load than in the case when the load had 
been applied in one row along the beam flange.  
 

D. 4.3 Calculations in ANSYS  
The calculations were performed also in ANSYS. A 3D 

computational model from the finite volume elements was 
created for the analysis.  

Both physical and geometrical nonlinearities were taken into 
account there. Contact elements were used in places where the 
boundary conditions existed.  

Fig. 17 shows the computational model of the beam. 
For the nonlinear solution, two material models were 

chosen. The multilinear and bilinear strain-stress curves for the 
steel were used there. The material models were based on the 
strength and yield point of the steel. Fig. 18 shows the load 
displacement diagram.   
 

 
Fig. 17 ANSYS – the FEM mesh in the model 

 

   
Fig. 18 load-displacement diagram 

 

  
Fig. 19 deformation in the horizontal direction 

 
For the sake of clarity, the graphics in the figure shows the 

horizontal deformation of the entire model. 
 

VI. CONCLUSION 
The paper discussed the approach to the nonlinear analysis 

of steel structures. The Finite Element Method and 3D 
computational models were used for this. The computational 
model of the beam includes the material model of the steel. 
This system is an elastic-plastic model which is used in the 
calculation as an auxiliary parameter. 0.001 was chosen as the 
best value for the model. This value was validated for a steel 
beam model. The limit stress for the three-point bending test 
was calculated in the software. The results prove good 
correlation between the numerical calculation and experiment. 
Then, the numerical analysis for the experiment was performed 
in ANSYS. In this case, the stiffness of the beams was slightly 
overrated in the multilinear stress-strain curve. The reason 
might be approximation in the stress-strain curve. The paper 
also discusses impacts of various locations of the supports and 
load forces. The supports distributed into several nodes in the 
structure have not had any major impact on the loading 
process. The load distributed onto a bigger loading area 
increased slightly the calculated load capacity and, in turn, 
increased the elastic area of the load curve.  
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