
 

 

  
Abstract—We deal with numerical analysis of inverse problems 

for orthotropic solids when measured data are given only on the 
boundary of the domain. In this paper we have elaborated an iterative 
procedure to the solution of inverse problems for orthotropic solids 
when input data measured from suitable states are sufficient for 
determination of unknown material parameters. We deal with 
numerical experiments.  
 
Keywords—Inverse problem, orthotropic solid, finite 
difference method. 

I. INTRODUCTION 
NVERSE problems are very important from a practical 
point of view and interesting from a theoretical point of 

view as they are improperly posed problems. An important 
class of inverse problems is a class of identification problems. 
These problems are important, for example, in the non-
destructive testing of materials, the identification of material 
parameters, the study of aquifer problems as well as for 
electrical impedance tomography, etc.  

We deal with analysis of inverse problems for orthotropic 
solids when measured data are given only on the boundary of 
the domain. The inverse problems for orthotropic solids have 
special features in comparison with those for isotropic solids. 
In order to solve orthotropic problems, more unknown 
material parameters of governing differential equations than 
the total number of equations must be determined and 
therefore, in order to determine them, we need input data 
measured from more than one field state. These input states as 
we show cannot be chosen arbitrarily. This fact leads to new 
theoretical problems in the analysis of inverse problems for 
orthotropic solids and also complicates numerical analysis.    

For numerical analysis of such problems we apply discrete 
methods. These are very convenient because in the case of 
practical problems we have to measure input states in discrete 
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points. In [1] and [2] we elaborated an iterative procedure to 
the numerical solution of plane orthotropic and plane 
anisotropic boundary inverse problems using governing 
equations and equations of Hooke`s law. In this paper, we 
have elaborated an iterative procedure to the numerical 
solution of boundary inverse problems for orthotropic plates 
when the input data measured from suitable states are 
sufficient to determine the unknown material parameters using 
generalization of so called Sophie Germain`s equation for 
orthotropic plates. We derive the number of measured input 
states and conditions for these measured input states which 
secure determinability of the numerical solution. We also deal 
with numerical experiments from mathematical point of view. 
Another approach is derived in [3] and [4]. 

II. FORMULATION OF THE PROBLEM 
At first we derive convenient form of the problem. We 

consider Hooke’s law  
 

lklkjiji εcτ ,=    ,     2,1,,, =lkji    ,                             (1) 
 
where  τ   is stress tensor,  lkjic   are elastic coefficients and  
ε   is strain tensor. We apply the summation and differentiation 
rule with respect to indices. The elastic coefficients are 
symmetric. It holds  kljilkijjilklkji cccc ===  . Hooke’s law 
can be written for plane non-homogeneous anisotropic 
problem in the following forms 
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where  xu   and  yu   are displacements in x and y-direction. 
Using Kirchhoff assumption we can obtain 
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xxxx wzu ,, −=    ,     yyyy wzu ,, −=    ,    
  

yxxyyx wzuu ,2,, −=+    , 
 
where w  is displacement in z-direction. Now we can rewrite 
equations (2) of Hooke’s law in the following forms 
 

[ ]yyyxxxxx wcwcwczτ ,,2, 221121111111 ++−=   , 
 

[ ]yyyxxxyy wcwcwczτ ,,2, 222221221122 ++−= ,         (3) 
 

[ ]yyyxxxyx wcwcwczτ ,,2, 222121211121 ++−=    . 
 
Next we integrate with respect to  z   equations (3) and 
introduce moment intensity functions 
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where  h   is a thickness of the plate. Similarly we have 
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The equation of equilibrium between moments and load 

applied normal to the midplane of the plane  p   is 
 

( ) 0,2 ,,, =+++ yxpMMM yyyyxyxxxx   in  Ω ,               (6) 
 
where  Ω   is a two dimensional Lipschitz domain. Then 
replacing  yyxx MMM and,   using equations (4) and 
(5) the equation (6) can be written in the following form 
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in  Ω  . 

For simplicity we are going to deal with orthotropic solids. 
In the plane orthotropic case  c   has only 4 nonzero 
components and (7) can be written in the following form 

 

3
222222

66666666

21212121

21111111

12,,,,2,

,,4,,4,,4,4

,,,,,,2,,2

,2,,,,2,

hpwcwcwc

wcwcwcwc

wcwcwcwc

wcwcwcwc

yyyyyyyyyyyy

yxyxyxxyyyxxyyxx

xxyyyyxxyxxyyyxx

yyxxxxxxxxxxxxxx

=+++

++++

+++++

++++

    (8) 

 
in Ω , where we use following notations ,111111 cc =  

,222222 cc =  ,212211 cc =   662121 cc =  . 
In the case of the inverse problems we have to determine the 

elastic coefficients we need for their determination following 
boundary conditions 
 

,)()(,)()( 22221111 sascsasc ==  
(9) 

Ω∂∈== ssascsasc ,)()(,)()( 66662121    , 
 

In the case of the boundary inverse problems we have also 
to determine the displacement w  using measured values of the 
displacement w  on the boundary Ω∂ . We consider for the 
displacement w   following boundary conditions 

 
Ω∂∈== ssgswsgsw n ,)()(,)()( 2,1    ,             (10) 

 
where  n,(.)   denotes the differentiation in direction of the 
outer normal.  

In the case of plane orthotropic problem moments have the 
following forms 

 
( ) [ ]yyxxx

w wcwchM ,,12 2111
3 +−=    , 

 
( ) [ ]yyxxy

w wcwchM ,,12 2221
3 +−=    ,                   (11) 
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and equation (6)   
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with following boundary conditions 
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on corresponding parts of  the boundary  Ω∂ . 

The convenient formulation of our boundary inverse 
problems for orthotropic plates represents equation for 
displacements (8) with corresponding boundary conditions (9), 
(10), relations for moments (11), equation of equilibrium (12) 
with corresponding boundary conditions (13), (14).  

However, in the case of boundary inverse problems for 
orthotropic plates, the system (8) – (14) does not form a 
complete system of equations and is not sufficient for 
determination of the unknown elastic coefficients. We show 
that for determination of the unknown elastic coefficients, it is 
necessary to add input data measured from next state of the 
displacement  v . For this next state of input data we consider 
the equations and boundary conditions analogical to (8) and 
(10) 
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in  Ω , 
 

Ω∂∈== ssgsvsgsv n ,)()(,)()( 4,3                   (16) 
 
corresponding equations for moments 
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corresponding equation to (12)  
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with corresponding boundary conditions 
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on corresponding parts of  the boundary  Ω∂ . 

Now the question of whether the states of displacements  w   
and  v   can be chosen arbitrarily arises. We show that these 
states of displacements cannot be chosen arbitrarily. 

III. SOLUTION OF THE PROBLEM 
For solving boundary inverse problems for orthotropic 

plates (8) – (20) we have elaborated the following iterative 
procedure: 
• determination of an initial approximation of the elastic 

coefficients  0
66

0
22

0
21

0
11 ,,, cccc   as the linear interpolation 

of the boundary conditions (9); 
• determination of  the displacements 0w   from the equation 

(8) and  0v   from the equation (15); 

• determination of the moments  000 ,, yx
w

y
w

x
w MMM ,  

from the equation (12) rewritten  in the following forms 
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We can consider equations (21), (22) as ordinary 
differential equations of the second order. The equation 
(23) can be written for example in the following form 
 
( ) 0

1,
0

, pM
xyyx

w =     .                                                  (24)  

 
The equation (24) we can solve at first as ordinary 
differential equation of the first order according variable x  
and after it as ordinary differential equation of the first 
order according variable y . We also determine  ,0

x
vM  

,0
y

vM  0
yx

vM   using similar approach; 

• determination of new state of  the elastic coefficients  
1

66
1
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1
11 ,,, cccc   from the system of six equations of   (11) 

and (17) using following formulas 
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• we can continue with determination of ,, 11 vw  ,1
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etc.  

From Eqs. (25) we can see that the iterative procedure can 
be used only if 
 

( ) ( ) 0,,,,
22

≠− yyxxxxyy vwvw ,    
 

0, ≠yyw ,   0, ≠yxv       in  Ω    . 
 

It means that the input states of displacements cannot be 
chosen arbitrarily. 
 

IV. NUMERICAL EXPERIMENTS 
For numerical analysis we can apply discrete methods. They 

are very convenient because in the case of practical problems 
we have to measure input states in discrete points. We assume 
that the domain Ω  is rectangular. We consider on this domain 
uniform grid. Using central differences we can rewrite the 
iterative procedure from previous part to discrete form.  

We deal with numerical experiments from mathematical 
point of view. It means that we construct the problem with the 
exact solution, afterwards we compute the numerical solution 
of this problem using discrete form of the iterative procedure 
and in the end we compare the computed solution with the 
exact one. 

We use discrete form of the iterative procedure with 
stopping condition that the difference of two computed 
consecutive states of the material parameters is less than 10-7. 
We consider the following plate 1,02,0 ×=Ω ,  

06.0=h . For example for the following constant elastic 
coefficients 

 
2,1,5,7 66212211 ==== cccc                                (26) 

 
the displacements 

 
yxvyyw 201.0,)1(05.0 =−=                                 (27) 

 
and corresponding moments and loads 

 
6108.1 −=x

wM  ,   6109 −=y
wM ,    0=yx

wM   , 
 

yM x
v 61052.2 −−=  ,   yM y

v 7106.3 −−=  ,                   (28) 
 

xM yx
v 61044.1 −−=  ; 
 

,0=p      0=q                                                      (29)  
 
using loads given by the equation (29) and the boundary 
conditions constructed from the equations (26) - (28), using 
discrete form of the iterative procedure we obtain on all 
meshes results at once with  the error of  computation about 
10-9 %. Similar situation is also for the linear elastic 
coefficients. For example for the following elastic coefficients 
 

1,1 2211 +=+= ycxc    , 
(30) 

( ) ( ) ( ) ( )11,11 6621 ++=+++= yxcyxc  
 
displacements given by (27)  and corresponding moments and 
loads 
 

( ) ( )[ ]11108.1 6 +++= − yxM x
w , ( )1108.1 6 += − yM y

w , 
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0=yx
wM ,   ( )1106.3 7 +−= − xyM x

v  , 
   (31) 

( ) ( )[ ]11106.3 7 +++−= − yxyM y
v  , 
 

( ) ( )11102.7 7 ++−= − yxxM yx
v  ; 
 

0=p ,   ( )34102.7 7 += − xq                                           (32) 
 
using discrete form of the iterative procedure we also obtain 
on all meshes results at once with the error of computation 
about  10-9 % . 

Different situation is for the nonlinear elastic coefficients. 
For example for 
 

( ) ( ) ,1,1 2
22

2
11 +=+= ycxc  

(33) 
( ) ( ) ( ) ( )11,11 6621 ++=+++= yxcyxc  

 
the displacements given by (27)  and corresponding moments 
and loads 
 

( ) ( )[ ]11108.1 6 +++= − yxM x
w , ( )26 1108.1 += − yM y

w , 
 

0=yx
wM ,   ( )27 1106.3 +−= − xyM x

v  , 
(34) 

( ) ( )[ ]11106.3 7 +++−= − yxyM y
v  , 
 

( ) ( )11102.7 7 ++−= − yxxM yx
v  ; 
 

6106.3 −−=p ,   ( )34102.7 7 ++= − yxq                     (35) 
 
in the Table 1 we are able to see the percentage of errors in the 
computed solutions in the second column with respect to the 
exact solutions of the meshes given in the first column. In the 
third column we report the numbers of iterations after which 
we obtain the numerical solution with the specific stopping 
condition on the given mesh. We can see from the results that 
we obtain small errors for a course mesh and when the number 
of grid points increases, errors also increase slightly but are 
still small. 

 
Table 1 numerical results for the problem (27), (33) – (35) 

 

Mesh Percent error Number of 
iterations 

8   x   4 3.7 10-5 157 

12   x   6 8.1 10-5 330 

16   x   8 1.5 10-4 573 
 

For the following elastic coefficients 
 

( ) ( ) ( ) ( ) ,11,11 2
22

2
11 ++=++= yxcyxc  

(36) 
( ) ( ) ( ) ( )11,11 6621 ++=+++= yxcyxc  

 
the displacements given by (27)  and corresponding moments 
and loads 
 

( ) ( )[ ]11108.1 6 +++= − yxM x
w  ,  
 

( ) ( )26 11108.1 ++= − yxM y
w , 

(37) 
0=yx

wM ,   ( ) ( )11106.3 27 ++−= − yxyM x
v  , 

 
( ) ( )[ ]11106.3 7 +++−= − yxyM y

v  , 
 

( ) ( )11102.7 7 ++−= − yxxM yx
v  ; 
 

( )1106.3 6 +−= − xp ,  ( )[ ]314102.7 7 +++= − yyxq  
(38) 

we obtain similar results as it is shown in the Table 2. 
 
Table 2 numerical results for the problem (27), (36) – (38) 
 

Mesh Percent error Number of 
iterations 

8   x   4 4.0 10-5 259 

12   x   6 7.4 10-5 578 

16   x   8 1.3 10-4 1032 
 
If we change the displacements 
 

yxvyw 22 01.0,05.0 ==                         (39) 
 

for corresponding moments and loads 
 

( ) ( )[ ]11108.1 6 +++−= − yxM x
w  ,  
 

( ) ( )26 11108.1 ++−= − yxM y
w , 
 

0=yx
wM ,  ( ) ( )11106.3 27 ++−= − yxyM x

v ,              (40) 
 

( ) ( )[ ]11106.3 7 +++−= − yxyM y
v  , 
 

( ) ( )11102.7 7 ++−= − yxxM yx
v  ; 
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( )1106.3 6 += − xp ,  ( )[ ]314102.7 7 +++= − yyxq   
(41) 

we obtain the same results for the same elastic coefficients as it 
is shown in the Table 3. 

 
Table 3 numerical results for the problem (36), (39), (40), (41) 

 

Mesh Percent error Number of 
iterations 

8   x   4 4.0 10-5 259 

12   x   6 7.4 10-5 578 

16   x   8 1.3 10-4 1032 
 
For the following elastic coefficients 
 

,exp,exp 2211 ycxc ==  
(42) 

( ) ( )11,1 6621 ++== yxcc  
 

the displacements given by (27)  and corresponding moments 
and loads 

 
6108.1 −=x

wM ,   yM y
w exp108.1 6−=  ,  0=yx

wM  , 
 

xyM x
v exp106.3 7−−=  ,  yM y

v 7106.3 −−= ,       (43) 
 

( ) ( )11102.7 7 ++−= − yxxM yx
v  ; 

 
yp exp108.1 6−−=  , 

(44) 
( ) xyxq exp106.3121044.1 76 −− ++=  

 
as it is obvious from the Table 4 that the accuracy of 
computation is not so good as in the previous cases. This fact 
is caused by the discretization error, which is in this case 
rather greater than in the previous cases. If we want to obtain 
better results we have to use better discretization scheme. 

 
Table 4 numerical results for the problem (27), (42) – (44) 
 

Mesh Percent error Number of 
iterations 

8   x   4 1.5 118 

12   x   6 2.4 238 

16   x   8 4.2 978 
  

V. CONCLUSION 
In this paper we have elaborated iterative procedure to the 

numerical solution of plane orthotropic boundary inverse 
problems when the input data measured from two suitable 
states are sufficient for determination of four unknown elastic 
coefficients despite of the fact that we have only two 
governing differential equations for their determination. 

We derive conditions for measured input states which 
secure determinability of the numerical solution. 

From computed examples we can see that the errors of 
computed solutions depend on the discretization errors. If we 
want to obtain better results we have to use better 
discretization scheme. 

This approach is possible to generalize also to plane 
anisotropic boundary inverse problems. 

This approach is possible to use for identification of 
unknown elastic properties for new materials. 
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