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Numerical Solution of Boundary Inverse
Problems for Plane Orthotropic Elastic Solids

Igor Brilla, FrantiSek Janicek

Abstract—We deal with numerical analysis of inverse problems
for orthotropic solids when measured data are given only on the
boundary of the domain. In this paper we have elaborated an iterative
procedure to the solution of inverse problems for orthotropic solids
when input data measured from suitable states are sufficient for
determination of unknown material parameters. We deal with
numerical experiments.
Keywords—Inverse finite
difference method.
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NVERSE problems are very important from a practical

point of view and interesting from a theoretical point of
view as they are improperly posed problems. An important
class of inverse problems is a class of identification problems.
These problems are important, for example, in the non-
destructive testing of materials, the identification of material
parameters, the study of aquifer problems as well as for
electrical impedance tomography, etc.

We deal with analysis of inverse problems for orthotropic
solids when measured data are given only on the boundary of
the domain. The inverse problems for orthotropic solids have
special features in comparison with those for isotropic solids.
In order to solve orthotropic problems, more unknown
material parameters of governing differential equations than
the total number of equations must be determined and
therefore, in order to determine them, we need input data
measured from more than one field state. These input states as
we show cannot be chosen arbitrarily. This fact leads to new
theoretical problems in the analysis of inverse problems for
orthotropic solids and also complicates numerical analysis.

For numerical analysis of such problems we apply discrete
methods. These are very convenient because in the case of
practical problems we have to measure input states in discrete
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points. In [1] and [2] we elaborated an iterative procedure to
the numerical solution of plane orthotropic and plane
anisotropic boundary inverse problems using governing
equations and equations of Hooke's law. In this paper, we
have elaborated an iterative procedure to the numerical
solution of boundary inverse problems for orthotropic plates
when the input data measured from suitable states are
sufficient to determine the unknown material parameters using
generalization of so called Sophie Germain's equation for
orthotropic plates. We derive the number of measured input
states and conditions for these measured input states which
secure determinability of the numerical solution. We also deal
with numerical experiments from mathematical point of view.
Another approach is derived in [3] and [4].

Il. FORMULATION OF THE PROBLEM
At first we derive convenient form of the problem. We

consider Hooke’s law

i, j.k1=12 (1)

T =

i Cijki €x1

where 1t is stress tensor, are elastic coefficients and

G jkl
& is strain tensor. We apply the summation and differentiation
rule with respect to indices. The elastic coefficients are
symmetric. It holds ¢;;,, =Cy,;; =Cji\; =C;j; - Hooke’s law
can be written for plane non-homogeneous anisotropic
problem in the following forms
= 01111()(' Y)Ux,x + ClllZ(X' y)
'(ux,y+uy,x)+01122(xly)uy,y !
Tyy = szn(xv y)ux,x + C2212(X, y)
)
'(ux,y+uy,x)+02222(xly)uy,y 1
xy — C1211(X~ y)ux,x +C1212(X, y)

'(ux,y+ uy,x)+ C1222()(’y)uy,y !

where u, and u, are displacements in x and y-direction.
Using Kirchhoff assumption we can obtain
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u = —-7IZW

X, X

XX ! uy.y = _ZW’YY !

Upyy tUyy = —2ZW,,

where w is displacement in z-direction. Now we can rewrite
equations (2) of Hooke’s law in the following forms

Tyx =— 1L |_C1111 Wiy +2Cpppp Wiyy T Crp Woyy J )
Tyy = -1 |_CZle W’xx +2 C2212 W'xy + C2222 W’yy J' (3)
Tyy = —12 lC1211 Wiy +2Ciapp Wiy T Crop W,y J

Next we integrate with respect to z
introduce moment intensity functions

equations (3) and

%
M, = J.Z 7, 0z =
-%
% @
=~ J. z? [c1111 Wosx + 2 Ciagp Wiy + Cypp W,y ]dZ =
-%
= - (ha/lz) [Cllll W'xx +2 C1112 W'xy + C1122 W!yy] ’
where h is athickness of the plate. Similarly we have
%
M, = j z7,, dz =
-%
- = (h3/12) [02211 Wi + 2 Ca212 Wiy + Crz22 Wiy ] ’
()
%
M,, = I zZz7,,dz =
-%

= _(h3/12) [C1211 W'xx +2 C1212 W'xy + C1222 WYyy] = Myx .

The equation of equilibrium between moments and load
applied normal to the midplane of the plane p is

M +2M +M

X, XX XYy, Xy Y.y

,+pxy)=0in Q, (6)

where Q is a two dimensional Lipschitz domain. Then
replacing M,, M,  and M using equations (4) and
(5) the equation (6) can be written in the following form

Cllll W'xxxx + 2 C]_‘lll,x W’xxx + Cl]_’ll,xx W’xx + 2 C1122 W'xxyy

+ 2 CllZZ,x W’xyy + 2 CllZZ,y W'xxy +C1122,><>< W’yy +
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+ C1122,yy W’xx + 4C1112 W’xxxy+ 6C1112,>< W’xxy +

+2 C1112,y W'xxx +2 C1112,><>< W'xy +2 Clllz,xy W'xx +
+4c w +2cC w,,,,+6¢C w + (7
1222 IXYYy 1222,x ryyy 1222,y IXYy
+ 2C1222,yy W'xy + 201222,xy W'yy + 4(:1212 W'xxyy +
+ 4C1212,x W’xyy +4C1212,y W’xxy +4C'1212,><y W’xy +
Copap W +2¢ W,,,, +C w,,, =12 p/h?
2222 Yyyy 2222,y Tyyy 2222,yy 'yy

in Q.

For simplicity we are going to deal with orthotropic solids.
In the plane orthotropic case ¢ has only 4 nonzero
components and (7) can be written in the following form

Cll W’xxxx + 2 Cll’x W’xxx + Cll’xx W’xx + 2 Clz W'xxyy +

+ 2 C12'>< W*xyy + 2 012 1y W'xxy + ClZ’xx W'yy + C12'yy W'xx + (8)

+ 4 Cgq W,y + 4 Cgg1x W,y + 4 Copry Wixxy + 4066,xy W,y

+CH W +2Cyy,y Wy +Chpryy W,y = 12 p/h®

Tyyyy 'yyy yy

in Q, where we use following notations

C222 =Cgz v Cuzp =Cpp s

In the case of the inverse problems we have to determine the
elastic coefficients we need for their determination following
boundary conditions

C111 =Cyg

Ci212 = Cgg -

Cu(s) = an(s) ) sz(s) = azz(s) )
(9)
Cip(S) =a,(S), Cee(S) =age(s) , s € 02
In the case of the boundary inverse problems we have also
to determine the displacement w using measured values of the

displacement w on the boundary 0. We consider for the
displacement w following boundary conditions

W(s) =g,(8) » W, () =0,(s) , s €0Q , (10)

where (), denotes the differentiation in direction of the

outer normal.
In the case of plane orthotropic problem moments have the
following forms

"M, —(h3/12) [Cn Wi + G W’W] ’

"M (11)

y = _(h3/12) [C12 Wiyx + Cop W,y ] ,
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M

yX

M xy _(h3/6) Ces W'xy

and equation (6)

M +2"M ™M+ p = 0 inQ (12)
with following boundary conditions
"M (s) =" (s), "M (s) ="Tp(9),

(13)
WM xy(S) = Wja(s) ’ S e aQ
and
"ML (6)="1(8), "My (8) = "Ts(9),

(14)

WM XY, X (S) = st(s) ! WM xy,y(s) = Wj7(s)

on corresponding parts of the boundary 0Q.

The convenient formulation of our boundary inverse
problems for orthotropic plates represents equation for
displacements (8) with corresponding boundary conditions (9),
(10), relations for moments (11), equation of equilibrium (12)
with corresponding boundary conditions (13), (14).

However, in the case of boundary inverse problems for
orthotropic plates, the system (8) — (14) does not form a
complete system of equations and is not sufficient for
determination of the unknown elastic coefficients. We show
that for determination of the unknown elastic coefficients, it is
necessary to add input data measured from next state of the
displacement v . For this next state of input data we consider
the equations and boundary conditions analogical to (8) and
(10)

Cll vaxxx +2C11'x V'xxx +C11'><x V'xx +2C12V +

TXXYyy

+ 2 012 X V'xyy + 2 C12 'y V*xxy + C12 I XX V'yy + C12 ryy V'xx +

(15)

+4Cyq Vv +4066,xv,xyy+4066,yv,xxy+4cs6,xyv,

IXXYY Xy

3
+Coz Viyyyy +2Conuy Viyyy + Cazvyy Vayy = 120/h

in Q,

V() =95(S) » V,(8)=04(s) , s € 0Q (16)

corresponding equations for moments

‘M, = —h3[cnv,xx+clzv,yy]/12 ,
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‘M, = —h3[clzv,xx+czzv,yy]/12 , (17)
M,, = —hcgv,, /6 = M,
corresponding equation to (12)
M, t2My+™M L +q = 0 in Q (18)
with corresponding boundary conditions
M, () ="ix(5), "M ,(5)="},(5).

(19)
VM xy(s) = vjs(s) ’ S e aQ
and
VM x,x(S) = Vj4(s) ! VM y,y(s) = VjS(S) ’

(20)

VM xy,x(s) = VjG(S) ' VM xy,y(s) = Vj7(s)

on corresponding parts of the boundary 0Q.

Now the question of whether the states of displacements w
and v can be chosen arbitrarily arises. We show that these
states of displacements cannot be chosen arbitrarily.

For solving boundary inverse problems for orthotropic
plates (8) — (20) we have elaborated the following iterative
procedure:
determination of an initial approximation of the elastic

coefficients ¢ ,c’, ,cd,,cl, as the linear interpolation
of the boundary conditions (9);
determination of the displacements w° from the equation

SOLUTION OF THE PROBLEM

(8)and v° from the equation (15);
WM 0

determination of the moments "M}, "M/, Xy "

from the equation (12) rewritten in the following forms

M 2,xx =—-p+ h3 [sz Worxx +C22 WO'yy ]’yy /12+ (21)
+ 0% (c% WPy )y /3

"M 3,yy =-p+ h’ [Clol W, + G Wo'yy ]’xx /12+ (22)
+ h3 (CgG Wolxy )U(y /3

M SY:XY = plo = +h [Clol Worxx + sz Wo'yy ]'xx /24 (23)

-p/2+h® [Cloz WO+ Cop Wy, ]'yy /24
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We can consider equations (21), (22) as ordinary
differential equations of the second order. The equation
(23) can be written for example in the following form

(Wng,y)x = pl0 : (24)

The equation (24) we can solve at first as ordinary
differential equation of the first order according variable x

and after it as ordinary differential equation of the first
order according variable y. We also determine ‘M,

VMS , VMfy using similar approach;

e determination of new state of the elastic coefficients
Cy,Cl,,Cyy,Cos from the system of six equations of (11)
and (17) using following formulas

as (v, ) |/x
¢, = klaj’ (wo,xx)z— ad (VU,XX)ZJ/AO ,

1 w 0 1 0 0
c, =—[k Mx+cﬂw,xx]/w,w ,

C111 =k [a(lJ (Wo'yy)z -
(25)

Cos = —k M}, / (ZVO,XY) '

where

0 \ 0,,0 v 0,,0

a, = Myv,yy— M, Vi
0 w 0 0 w 0 0

a, = Myw, - "M w,

k = 12/h*,
2= (W v f = (v,

e we can continue with determination of w',v*, "M},
w 1 wppl v 1 vpp 1 VRS
My l M Xy ! M X ! My 1 M Xy !

etc.

From Egs. (25) we can see that the iterative procedure can
be used only if

2 2 .2 2
Cia»Cip 1 Cpp s Cgg  @Nd

2

(W'yy V'XX)Z - (W!xx V’yy) #0,

w,,,#0, v, ,#0 in Q

'yy T Xy

It means that the input states of displacements cannot be
chosen arbitrarily.
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IV. NUMERICAL EXPERIMENTS

For numerical analysis we can apply discrete methods. They
are very convenient because in the case of practical problems
we have to measure input states in discrete points. We assume
that the domain Q is rectangular. We consider on this domain
uniform grid. Using central differences we can rewrite the
iterative procedure from previous part to discrete form.

We deal with numerical experiments from mathematical
point of view. It means that we construct the problem with the
exact solution, afterwards we compute the numerical solution
of this problem using discrete form of the iterative procedure
and in the end we compare the computed solution with the
exact one.

We use discrete form of the iterative procedure with
stopping condition that the difference of two computed
consecutive states of the material parameters is less than 107

We consider the following plate Q=(0,2)x(0,1),
h=0.06. For example for the following constant elastic
coefficients

Cu=7, C,=5, ¢c,=1, cu=2 (26)
the displacements

w=005y(1-y), v= 001x’y (27)
and corresponding moments and loads

"M, =1810"°, "M ,=910"°, "M, =0,

‘M, =-25210"°y, ‘M, =-3610"y, (28)
‘M, =-1.44 10" x ;

p =0, q =20 (29)

using loads given by the equation (29) and the boundary
conditions constructed from the equations (26) - (28), using
discrete form of the iterative procedure we obtain on all
meshes results at once with the error of computation about
10° %. Similar situation is also for the linear elastic
coefficients. For example for the following elastic coefficients

Cu=X+1, C,=y+1 ,

(30)
Ci :(X+l)+(y+1) » Cee :(X+1)(y+1)

displacements given by (27) and corresponding moments and
loads

"M, =18 10°[(x +1)+(y+1)], "M, =1.8 10 ° (y +1),
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"M, =0, "M, =-36 10" y(x+1),

Xy

(31)
‘M, =-36 107 y[(x+1)+(y+1)],
"M, =-72 107 x(x+1)(y +1) ;
p=0, q=7210"(4x+3) (32)

using discrete form of the iterative procedure we also obtain
on all meshes results at once with the error of computation
about 10°% .

Different situation is for the nonlinear elastic coefficients.
For example for

Cy = (X"‘l)zv G = (y+1)2,
(33)
C, = (x+1)+(y+1), Cos = (X+1)(y+l)

the displacements given by (27) and corresponding moments
and loads

"M, =18 10°[(x +1)+ (y +1)],"M, =1.8 10" (y +1)*,

"M,, =0, ‘M, =-3610"y(x+1)?,

Xy

(34)
"M, =-36 107 y[(x+1)+(y+1)],
"M, ==7.2 107 x(x+1)(y +1) ;
P=-3610"°, q=72107 (4x+y+3) (35)

in the Table 1 we are able to see the percentage of errors in the
computed solutions in the second column with respect to the
exact solutions of the meshes given in the first column. In the
third column we report the numbers of iterations after which
we obtain the numerical solution with the specific stopping
condition on the given mesh. We can see from the results that
we obtain small errors for a course mesh and when the number
of grid points increases, errors also increase slightly but are
still small.

Table 1 numerical results for the problem (27), (33) — (35)

Mesh Percent error l\_lumbg rof
Iterations
8 x 4 3.710° 157
12 x 6 8.110° 330
16 x 8 1.510" 573
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For the following elastic coefficients

Cn :(X+1)2 (y+1) v Gy =(X+l)(y+1)2,
(36)

Ci :(X+1)+(y+l) Y, :(X+1)(y+1)

the displacements given by (27) and corresponding moments
and loads

"M, =1.8 10" [(x +1)+(y +1)] ,

"M, =1.8 10~ (x +1)(y +1)%,
(37)
"M,, =0, "M, =-36 10"y (x+1)*(y+1),

Xy

"M, =-36 107 y[(x+1)+(y+1)],
"M, =-7.2 107 x(x+1)(y +1) ;

p=-3610"°(x+1), q=7210"[4x+y(y+1)+3]
(38)
we obtain similar results as it is shown in the Table 2.

Table 2 numerical results for the problem (27), (36) — (38)

Mesh Percent error l\_lumb.e rof
iterations
8 x 4 4.010° 259
12 x 6 7.410° 578
16 x 8 1.310* 1032
If we change the displacements
w = 005y* , v = 001lx?y (39)

for corresponding moments and loads
"M, =-18 10° [(x +1)+ (y +1)],

WMy:_

1.8 10° (x +1)(y +1)%,

"M,, =0, "M, =-36 10"y (x+1)? (y +1),

Xy

(40)
"M, =-36 107 y[(x+1)+(y +1)],

"M, =-7210" x(x+1)(y +1) ;
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p=3610"°(x+1), q=7210"[4x+y(y+1)+3]
(41)
we obtain the same results for the same elastic coefficients as it
is shown in the Table 3.

Table 3 numerical results for the problem (36), (39), (40), (41)

Mesh Percent error l\_lumb_er of
iterations

8 x 4 4.010° 259

12 x 6 7.410° 578

16 x 8 1.310™ 1032

For the following elastic coefficients
Cy = EXPX, C,, = EXPY,
(42)

Cp, =1, Cg = (X+1)(y+1)

the displacements given by (27) and corresponding moments
and loads

w -6 w -6 w
M,=1810"°, "M, =1810"expy, “M,, =0,

Xy

"M, =-3610"y expx, ‘M, =-3610"y, (43
"M, =-7210" x(x+1)(y +1) ;

p=-1810"°expy ,
(44)
q=144 10°(2x+1)+3.6 107" y expx

as it is obvious from the Table 4 that the accuracy of
computation is not so good as in the previous cases. This fact
is caused by the discretization error, which is in this case
rather greater than in the previous cases. If we want to obtain
better results we have to use better discretization scheme.

Table 4 numerical results for the problem (27), (42) — (44)

Mesh Percent error l\_lumb.e r of
iterations
8 x 4 15 118
12 x 6 2.4 238
16 x 8 4.2 978

In this paper we have elaborated iterative procedure to the
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numerical solution of plane orthotropic boundary inverse
problems when the input data measured from two suitable
states are sufficient for determination of four unknown elastic
coefficients despite of the fact that we have only two
governing differential equations for their determination.

We derive conditions for measured input states which
secure determinability of the numerical solution.

From computed examples we can see that the errors of
computed solutions depend on the discretization errors. If we
want to obtain better results we have to use better
discretization scheme.

This approach is possible to generalize also to plane
anisotropic boundary inverse problems.

This approach is possible to use for identification of
unknown elastic properties for new materials.
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