
 

 

  
Abstract—Nowadays photogrammetric techniques have known 

important developments and are widely employed for 3D acquisitions 
in different fields of application. The paper analyzes the effects of 
different parameters (texturization, ambient light and water turbidity) 
on the quality of the 3D reconstruction in underwater 
photogrammetry. Several experimental tests were performed on a 
wind turbine blade using a common action camera, the GoPro 4 black 
edition and a commercial software, Photoscan by ©Agisoft. By 
means of a DoE (Design of Experiments) approach, 3D models were 
reconstructed varying the chosen parameters. Each of them was 
compared with a CAD model, used as reference, obtained by more 
accurate laser scans VI-9i by Konica Minolta. The results showed 
that blade texturization, ambient light and water turbidity 
significantly impact on the quality of the 3D reconstruction. Optimal 
results were obtained with textured blade, morning ambient light 
(exposure 1/60, f/2.8 and ISO sensitivity 100) and clear water. 
Moreover, in order to calculate confidence intervals for regression 
coefficients, even with few acquisitions, a computer-intensive 
bootstrap procedure was applied to the regression model. Finally, 
further confirmation experiments carried out in a deeper swimming 
pool and with poor conditions (e.g., very low ambient light and no 
blade texturization) in order to reproduce the real submarine 
environment. In such situations, an additional source of light and one 
or more grids, which allow a pattern to be created on the edges of the 
wind turbine blade, may help reconstructions. 
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I. INTRODUCTION 
owadays Reverse Engineering (RE) techniques allows for 
digital 3D reconstruction of objects, even of complex 

shape, using principles codified in complete sets of 
procedures, specific to different fields of application. 

In particular non-contact active and passive systems are 
today widely used in several industrial applications. Even if 
the best results have been reached using active techniques (e.g. 
in quality control measurements) [1], passive techniques allow 
us, through simple and low-cost hardware and software, to get 
fast and accurate 3D acquisitions. Among passive techniques, 
the photogrammetry has known an important development 
during the last decade [2] due mainly to the increase of the 
quality of low-cost digital cameras and the significant 
development of photogrammetric software [3, 4]. 

Photogrammetric methods are as old as photography and 
can be dated to the Mid-nineteenth century. 

The French officer Aimé Laussedat is considered the 
“Father of Photogrammetry”. He developed in 1849 the first 
photogrammetric devices and methods, using terrestrial 
photographs for topographic map compilation. The process 
was called iconometry from the Greek words icon and metry, 
which mean image and measurement, respectively [5]. 

Digital Photogrammetry instead was born in the 80’s, 
having as a great innovation the use of digital images as a 
primary data source.  

Digital photogrammetry is characterized by the following 
main phases: 

• analysis of the shape of the object and planning of the 
photos to be taken; 

• calibration of the camera; 
• processing the photos with specific software to 

generate a point cloud; 
• transfer the point cloud to CAD software to create a 3D 

CAD model. 

The extraction of 3D information from digital images is a 
complex task requiring a mathematical formulation between 
the images, at least two, and the object. It uses methods from 
many disciplines, including optics and projective geometry. In 
particular, the fundamental principle is that of triangulation. 

Due to the fact that the 3D reconstruction is performed 
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through the identification of common natural features in the 
image set, the accuracy of the reconstruction depends on the 
quality of images and textures. Algorithms for 
photogrammetry typically express the problem as that of 
minimizing the sum of the squares of a set of errors, known as 
bundle adjustment [6]. 

Structure from Motion (SfM) algorithms [7] is able to find a 
set of 3D points P, a rotation R and position t of the cameras, 
given a set of images of a static scene with 2D points in 
correspondence, as shown in Fig. 1 by color-coded points.  

 

  
Fig. 1 Structure from Motion algorithm 

 
This problem can be formulated as an optimization problem 

where rotations R, positions T, and 3D point locations P that 
minimize sum of squared reprojection errors (equation 1) have 
to be found by minimizing the following function  

                   (1) 

The function g is called bundle adjustment and can be 
solved with algorithms such as that of Levenberg-Marquart. 

Features in each photo are detected through feature-
detection algorithms (Scale Invariant Feature Transform - 
SIFT [8], Speeded-Up Robust Features - SURF [9]). 

The principle of underwater photogrammetry does not differ 
from those of terrestrial or aerial photogrammetry, but certain 
elements that may cause disturbance have to be necessarily 
considered. 

In the paper, underwater photogrammetry was taken into 
account with the aim of analyzing the effects of different 
parameters on 3D reconstruction accuracy, such as 
texturization, water turbidity and ambient light. 

II. MATERIALS AND METHODS 
The test geometry chosen for this study is a wind turbine 

blade (Fig. 2).  
A common action camera (GoPro 4 camera black edition) 

and a commercial software Photoscan (©Agisoft) were used 
for 3D acquisition and reconstruction of the blade. 

 
  

 
Fig. 2 Wind turbine blade 

 
Table 1 reports the main characteristics of the used camera. 

 
Tab. 1 – Main characteristics of GoPro Hero 4 camera 

Image Sensor CMOS 1/2.3" 
Resolution 12 MP  

4000x3000 pixels 
Focal Length Wide FOV - 14mm 

Medium FOV - 21mm 
Narrow FOV - 28mm 

Zoom 1x 
Opening Maximum F2.8 fixed focal - wide angle 

lens 170° 
Operating Environment -40 m 
Dimension 41x59x21/30 mm 
Weight 88-152g 

 
Photoscan software is based on the Structure for Motion 

(SfM) approach and bundle adjustment. 
The acquisitions were performed in an above ground pool 

using an equipment properly realized to fix the camera (Fig. 3) 
 

  
Fig. 3 - Above Ground pool and equipment used to fix the camera 

A. Parameters and conditions set 
All parameters and conditions set for the experimental 
tests are listed in Table 2 and described below. 

Underwater imaging is influenced by the turbidity of the 
medium, which decreases image contrast and attenuates light 
intensity. In order to worsen the transparency of water 
(turbidity) and create a scattering media, different quantities of 
clay have been suspended in the pool (4x0,85x2 m3). As 
shown in Table 2, 8 mg/l of clay was released in acquisitions 
with turbidity set at level 1 (Yes) whereas no clay was released 
in acquisitions with turbidity set at level 0 (No). The quantity 
of 8 mg/l has been properly chosen due to the fact that 
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predesign tests [10] showed that no useful photos would be 
obtained with larger amounts of clay.  

 
Tab. 2 – List of conditions and parameter sets  

Parameters Levels 
-1 0 1 

Texturization 
(Tx) None Matting 

only Yes 

Turbidity (T)  None 
(clear water) 

Yes 
(8mg/l of clay) 

Ambient light 
(Exposure (E)) 

Night 
(1/60) 

Afternoon 
(1/30) 

Morning 
(1/15) 

 
In order to study the influence of lightning conditions on 

underwater photogrammetry, additional parameters have been 
introduced. In particular, the turbine blade has been studied 
through three different conditions: clean, matted and textured 
blade (Fig. 4); and in different phases of the day: morning, 
afternoon and night. 

 

   
Fig. 4 Turbine blade in three considered conditions:                             

clean, matted, textured 

A DoE study with the full factorial experimental plan of 12 
acquisitions was carried out (Table 3). 

Tab. 3 – Experimental plan of the acquisition tests 
Acquisition Texturization 

(Tx) 
Ambient 

light 
Turbidity 

(T) 
RMSE 

1 -1 -1 0 2.727 
2 -1 0 0 2.141 
3 -1 1 0 1.853 
4 0 -1 0 0.996 
5 0 0 0 0.968 
6 0 1 0 0.863 
7 1 -1 0 1.169 
8 1 0 0 0.698 
9 1 1 0 0.673 

10 -1 -1 1 1.911 
11 1 0 1 1.822 
12 1 1 1 1.866 
13 -1 0 1 (∞) 
14 -1 1 1 (∞) 
15 0 -1 1 (∞) 
16 0 0 1 (∞) 
17 0 1 1 (∞) 
18 1 -1 1 (∞) 

B. Experimental tests  
A series of measurements was performed inside an above 

ground pool at the University of Naples, Department of 
Industrial Engineering. 

The pool-based trial was designed to determine about 80 
photos for each test. All acquisitions have been made at a 
distance range of about 500 mm from the subject. 

The 3D reconstruction process of the wind turbine blade by 
Photoscan software (Fig. 5) can be divided in two phases. The 
first phase consists on the alignment of the acquired images. 
The position of the image feature points and of the camera, in 
a local reference system, are detected by means of the SfM 
algorithm. Starting from the aligned dataset, the second phase 
consists on the pixel-based reconstruction.  

 
Fig. 5 - 3D reconstruction process of the wind turbine blade by 

Photoscan software 

C. Reference CAD model and comparison 
From the acquisitions in the different test conditions, 12 (out 

of the planned 18) reconstructions were correctly obtained (the 
first 12 acquisitions reported in Table 3). The last 6 
reconstructions suffer from specific combination of condition 
and parameter set. The 3D reconstructions obtained were then 
compared with the reference CAD model obtained by means 
of a high resolution Laser Scanner, VI-9i by Konica Minolta 
(Fig. 6). In particular, the deviation di (i.e. the shortest 
distance from the i-th point of the cloud to the CAD nominal 
model) are recorded over n point of the cloud. Then, the 
accuracy of the 3D reconstruction is defined as the Root Mean 
Square Error (RMSE): 

2
1

1 n
ii

RMSE d
n =

= ∑                           (2) 

over the n points. The accuracy of this non-contact Reverse 
Engineering system is ±50µm. Data processing was performed 
in Geomagic Studio software, using an iterative closest point 
algorithm [11, 12] to minimize the distance between the cloud 
points and the nominal CAD model. 

    
Fig. 6 – Comparison between some of the 3D reconstructions and the 

reference model 
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The choice of alignment between point cloud and nominal 
CAD model should be a noise factor. In this exploration study, 
it has been considered as a held-constant factor because all 
parts were aligned using the same procedure and the point 
clouds were validated by the same expert operator. 

III. ANALYSIS OF 3D RECONSTRUCTION VIA DESIGNED 
EXPERIMENTS FOR REGRESSION 

As is known, when missing or faulty data acquisition occur 
[13] in a design experiment [14], regression methods are 
extremely useful to correct and still perform adequate analysis. 
Moreover, many properties of the regression model depend on 
the levels of the predictor variables. Consequently, in the 
experimental tests performed in this paper to study 3D 
reconstruction accuracy (equation (2)), where the levels can be 
adequately selected, the problem of the Design of Experiments 
(DoE) [15] naturally arises. The DoE effort in data collection 
is summarized in Table 3. It resulted very useful to assess the 
significance of the factors reported in Table 2 even with 
relatively few acquisitions. However, the influence of the 
ambient light has not been modeled by the categorical variable 
reported in Table 3 but through the quantitative parameter 
exposure (E) which is automatically set by the internal light 
meter of the GoPro camera. Note that the ISO sensitivity was 
held constant (100) as well as the aperture (f/2.8) parameter of 
the camera. The following multiple regression equation with 2 
categorical variables Tx and T (Table 3) and the quantitative 
variable E estimated from the DoE-based acquisitions is 
reported in Table 4. 

Tab. 4 – Multiple regression equations for accuracy of 3D 
reconstruction (RMSE) 

Tx T Regression Equation 

-1 0 RMSE = 0.577 +7.97 E 

-1 1 
1.546 7.97 E if  1 / 30

elsewhere
E

RMSE
+ <

= ∞
 

0 0 RMSE = 1.930 +7.97 E 
0 1 RMSE = ∞ 
1 0 RMSE = 0.592 +7.97 E 

1 1 
1.562 7.97 E if  1 / 60

elsewhere
E

RMSE
+ >

= ∞
 

 
The corresponding ANalisys Of VAriance (ANOVA) is 
reported in Table 5. For each term, the P-Value related to the 
F-test is smaller than 0.05 and confirms the significance of the 
factors technologically selected (Table 2) for the quality 
assessment of the 3D reconstruction. 

Tab. 5 – ANOVA table for accuracy of 3D reconstruction (RMSE) 
Term DF Adj SS Adj MS F-Value P-Value 

E 1 0.3067 0.30674 8.36 0.023 
Tx 2 3.6236 1.81178 49.38 0.000 
T 1 1.8295 1.82947 49.86 0.000 
Error 7 0.2568 0.03669   
Total 11 4.8194    

IV. MODEL ADEQUACY CHECKING  
The adequacy of the statistical assumptions is tested through 
the Normal Probability plot (Fig. 7) and the Residual plot (Fig. 
8) performed once having estimated the model. In particular, 
such plots are reported in order to detect anomalous 
acquisitions and to check that the errors are uncorrelated and 
normal distributed with the same variance. Fig. 7 shows an 
acceptable deviation from the straight line [15] of the normal 
probability plot of the residuals and therefore, it is likely that 
the errors are normally distributed with no outliers. In Fig. 8, 
the plot of the residuals against the fitted values shows that the 
residuals can be contained in a horizontal band and therefore, 
there are no obvious model inadequacies. The residuals are 
plotted versus the fitted values and not versus the actual 
RMSE values, because they are usually correlated with the 
latter. 
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Fig. 7 – Normal probability Plot of Residuals 
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Fig. 8 – Residual Plot (versus Fitted values) 

 

Finally, the main effect plot reported in Fig. 9 can be 
correctly utilized to characterize the optimal settings of the 
considered parameters for 3D reconstruction in Underwater 
Photogrammetry. 

Fig. 9 shows that both kinds of texturization are 
advantageous as well as a morning ambient light. Otherwise, 
even a moderate quantity of clay (8 mg/l) suspended in the 
water worsens the reconstruction. 
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A. Bootstrap confidence intervals of regression coefficients  
The equation estimated in Table 4 for the accuracy of 3D 

reconstructions through RMSE, defined in equation (2) are 
obtained via the least-squares method. Such equations can be 
also expressed in terms of regression coefficients (RCs) as 
reported in Table 5. 

In order to give a measure of the uncertainties involved in the 
such estimation [16] method, standard errors (SEs) and 
confidence intervals (CIs) of RCs are needed. However, 
standard techniques to estimate SEs and CIs are usually based 
on large-sample or asymptotic theory. In other words, there is 
no standard procedure available when data are few as in our 
case. 
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Fig. 9 – Main Effect Plot for RMSE 

 
In these situations, reliable estimates of SEs and CIs can be 

obtained by bootstrapping [17], which is a computer-intensive 
approach originally developed by [18].  

In particular, the bootstrap sampling procedure, which is 
utilized in this paper, resamples with replacement from the 
original data reported in Table 2, n=12 times, yielding a 
bootstrap sample. Then the regression equation is fitted to this 
bootstrap sample, resulting in the first least-squares bootstrap 
estimate of the RCs. This bootstrap sampling procedure has 
been then repeated m=1000 times.  
For each RC, the 5th and the 95th percentiles of the vector of 
m=1000 bootstrap estimates can be then utilized to calculate 
the Upper (UBCLs) and Lower (LBCLs) Bootstrap 95%-
Confidence Limits. Similarly, for each RC, the corresponding 
sample standard regression represents the Bootstrap Standard 
Errors (BSE) reported in Table 6. 

B. Multicollinearity analysis  
In Table 6, the Variance Inflaction Factors (VIFs) [19] are also 
reported for each term of the regression. VIF is a measure of 
correlation among parameters (multicollinearity) which may 
unreasonably inflate the SE of each regression coefficient. In 
Table 6, VIF values always smaller than 10 indicate that in this 
case multicollinearity is not influencing regression results and 
none of the selected parameters (i.e., regressors) should be 
removed from the model. 

A. Further experiments and confirmation tests 
Let us note from the experimental plan reported in Table3 that 
the acquisitions 13÷18 did not allow any 3D reconstruction of 
the blade turbine (Fig.10). 

Tab. 6 –Bootstrap Standard errors (BSEs), Upper (UBCLs), Lower 
(LBCL) 95%-Confidence Limits and Variance Inflaction Factors 

(VIFs) for regression coefficient estimates (RCs) 
Term RC SE  LBCL UBCL VIF 

Constant 1.518 0.126 1,248 1,845  E 7.97 2.59 1,76 14,01 1.00 
Tx      

-1 -0.456 0.0879 -0,6088 -0,1929 1.83 
0 0.897 0.0903 0,6893 1,1052 1.83 

T      
0 -0.510 0.0686 -0,6900 -0,3298 1.50 

 

 
Fig. 10 – Wind turbine blade 

 
Fig. 11 – Underwater lamp and grids utilized to help reconstruction 

However, poor conditions (e.g., very low ambient light and no 
blade texturization) are the real submarine environment where 
object texturization is usually unfeasible. In such situations, an 
additional source of light, e.g., obtained through an underwater 
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lamp, and one or more grids, which allow a pattern to be 
created on the edges of the wind turbine blade, may help 
reconstructionsTherefore, a further experiment is collected in a 
swimming pool 2 meter deep (Fig 12), with no natural lights 
nor blade texturization by means of the underwater lamp and 
grid shown in Fig. 11. 
The achieved RMSE is equal to 0.926. In such experimental 
situation the use of an additional lamp with no grid (to 
eliminate noise shadows) has proven not to be so advantageous 
(RMSE=0.7463). 
Then, a confirmation test has been has made with a different 
waterproof camera: the Nikon diploid aw130. Results of the 
test, for this particular case, confirms the validity of the results 
obtained by means of the underwater lamp and grid 
(RMSE=1.513). 

 
Fig. 12 – Experimental environment 

These results are then comparable with those obtained with 
natural ambient light (Table 3). In order to apply the subject of 
this paper to real conditions, a sea trial was finally performed. 
The comparison between the 3D model obtained by the 
acquisition in sea, on the matting blade and reference model, 
shows a standard deviation of 0.64 mm and a RMS error of  
0.90 mm (Fig. 13). 

  
Fig. 13– Sea trial: comparison between the obtained 3D model 

(matting blade) and reference model 

V. CONCLUSION 
The paper presents an experimental study on the underwater 
photogrammetry. A photogrammetric approach based on 
Structure for Motion algorithms and successive bundle 

adjustment is applied for the 3D reconstructions of a wind 
turbine blade. Different conditions were performed and 
analyzed through designed experiments for regression in order 
to reduce acquisitions needed to achieve reliable conclusions. 
Photos were acquired in an above ground pool. With respect to 
the quality of the 3D reconstruction, the results show that 
blade texturization, ambient light and water turbidity are 
significant parameters. 
In particular, the blade texturization significantly helps the 
quality of the 3D reconstruction and the optimal results are 
obtained with the higher level of the ambient light (exposure 
1/60, f/2.8 and ISO sensitivity 100) and clear water. Some 
parameter combinations (e.g., turbid water, clean blade) do not 
allow any 3D reconstruction. 
However, further tests conducted by means of a waterproof 
lamp and a grid, which allows a pattern to be created on the 
edges of the wind turbine blade, are found suitable in poor 
experimental conditions (e.g., in real submarine environment) 
and comparable with those obtained with natural ambient light. 
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