
 

 

  

Abstract — The identification of early evidences on monitored 

parameters allows preventing incoming faults. Early alerts can avoid 

rate of the failures and trigger proper out-of-schedule maintenance 

activities. For this purpose, there are many prognostic approaches. 

This paper takes into account a primary flight command 

electromechanical actuator (EMA) with multiple failures originating 

from progressive wear and proposes a fault detection approach that 

identifies symptoms of EMA degradation through a simulated 

annealing (SA) optimization algorithm; in particular, the present 

work analyses the functioning of this prognostic tool in three 

different fault configurations and it focuses on the consequences of 

multiple failures. For this purpose, we developed a test bench and 

obtained experimental data necessary to validate the results 

originated from the model. Such comparison demonstrates that this 

method is affordable and able to detect failures before they occur, 

thus reducing the occurrence of false alarms or unexpected failures. 

 

Keywords—Electromechanical actuator, multiple fault detection  

and evaluation, numerical modeling, prognostics. 

I. INTRODUCTION 

CTUATORS are devices conceived to convert power 

from various sources (mechanical, electrical, hydraulic, 

or pneumatic) into motion. Such conversion is commonly used 

on aircraft systems to operate flight control surfaces and 

several utility systems. Reliability of the primary flight 

controls plays a key role for the safety of the aircraft system 

and are designed with a conservative safe-life approach which 

imposes to replace the related components subsequently to a 

certain number of flight hours (or operating cycles); they are 

required to be highly reliable (e.g. to exhibit less than one 

catastrophic failure per 105 flight hours for F-18 and one per 

18x10
6
 flight hours for F-35AB [1]).  
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A defined program of scheduled maintenance should 

guarantee that the system operates always in safety conditions. 

Nevertheless, the system could be unexpectedly exposed to 

extreme operative scenarios, with consequent damage and 

unscheduled maintenance, increased risk and costs, and 

possibly impact on mission. The monitoring of functional 

parameters of the considered system permits to determine if an 

anomalous behavior is starting to occur at an early stage. This 

also enables to determine the source of the anomalous 

behavior. A high level of reliability can guarantee the 

prediction of this kind of failures. The discipline aimed to do 

so is called Prognosis and Health Management system 

(commonly abbreviated with the acronym PHM) [2] or 

Prognostics; the application of the PHM strategies typically 

requires monitoring a set of system parameters in the form of 

electric signals. As a consequence, the application of PHM is 

favored on electrical systems, where no additional sensor is 

required, as the same sensors used to the control scheme and 

system monitors can be used also for PHM [2]. Prognostics are 

usually applied to mechatronic systems having a complex non-

linear multidisciplinary behavior. Literature proposes a wide 

range of failure detection and identification strategies, among 

these: (as reviewed in [3]) model-based techniques based on 

the direct comparison between real and monitoring system [4], 

on spectral analysis of well-defined system behaviors 

(typically performed by Fast Fourier Transform FFT) [5], on 

appropriate combinations of these methods [6] or Artificial 

Neural Networks [7]. The study presented in this paper 

considers electro-mechanical actuation systems, which follow 

the “More-” [8] and the “All-electric-aircraft” [9] paradigms. 

It must be noted that the concepts and the results reported in 

this paper are part of a wider research activity focused on the 

diagnosis model-based approach and, in particular, on the 

parametric estimation task. The main goal of the research is 

the design of a modern and fast damage estimator routine for a 

simple (but real) electromechanical actuation system, in order 

to prove its accuracy and reliability. In [3] is described a 

similar approach that aims to obtain a prediction of faults 

linked to increased friction torque. To this purpose, authors 

realized and modeled a test-bench electromechanical actuator 

(EMA) to compare its real behavior with the predicted values 

at the aim to optimize and validate a prognostic algorithm 

based on the simulated annealing method [10]. 
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II. AIMS OF WORK 

This paper is aimed to extend the prognostic application of 

the simulated annealing approach proposed in [3] to a system 

with combined progressive faults. Different combinations of 

the considered faults (seizure and backlash) have been 

examined to evaluate the accuracy of the predictions at the 

different conditions and to assess the field of validity of the 

proposed prognostic method. 

In particular, three faults combinations cases have been 

considered: 

1) moderate seizure and low backlash,  

2) low seizure and high backlash,  

3) very low seizure and very low backlash. 

These three cases have been numerically simulated through 

the modification of the original EMA model. 

III. ELECTROMECHANICAL ACTUATOR MODEL 

Primary flight controls are typically proportional 

servomechanisms with continuous activation: they must return 

a force feedback related to command intensity and a high 

frequency response. Their purpose is to control the dynamic of 

the aircraft by generating, by means of a proper rotation of the 

corresponding aerodynamic surfaces, unbalanced forces and 

couples acting on the aircraft itself.  

These controls are usually conceived to obtain the aircraft 

rotation around one of the three body axis when one control 

surface is activated, possibly minimizing the coupling effects. 

Until a few years ago, the actuators mainly used in 

aeronautical applications were generally hydraulic and 

precisely hydromechanical or, more recently, electrohydraulic.  

This kind of actuator, because of its great accuracy, high 

specific power and very high reliability, is often equipped on 

current aircrafts, even if on more modern airliners electro-

hydrostatic actuators (EHA) or electro-mechanical actuators 

(EMA) are installed. 

As shown in Fig. 1, a typical EMA used in a primary flight 

control is composed of: 

1) an actuator control electronics (ACE) that closes the 

feedback loop, by comparing the commanded position 

(FBW) with the actual one, elaborates the corrective 

actions and generates the reference current Iref; 

2) a Power Drive Electronics (PDE) that regulates the three-

phase electrical power; 

3) an electrical motor, often BLDC (Brush-Less Direct 

Current) type; 

4) a gear reducer having the function to decrease the motor 

angular speed (RPM) and increase its torque to desired 

values; 

5) a system that transforms rotary motion into linear motion: 

ball screws or roller screws are usually preferred to acme 

screws because, having a higher efficiency, they can 

perform the conversion with lower friction; 

6) a network of sensors used to close the feedback rings 

(current, angular speed and position) that control the 

whole actuation system. 

 

 

Fig. 1 electromechanical actuator scheme 

The proposed numerical model, as reported in [11], is 

composed of six blocks representing the different physical or 

functional components of the real onboard EMA (Fig. 1). 

The corresponding Simulink model (Fig. 2), is composed of 

the following six functional blocks: 

1) PID Control Logic (modelling a Proportional-Integrative-

Derivative controller with saturated output and anti-

windup device); 

2) Controller (simulating the EMA controller behaviors); 

3) Motor (simplified electro-magneto-mechanical model of 

the considered BLDC motor); 

4) Gear box; 

5) Ball screw; 

6) Encoder. 

As shown in [7], every block has been modeled starting 

from its basic electromechanical equations, but since the 

objective is to achieve a model capable to recognize defined 

actuator progressive faults (e.g. dry friction or mechanical 

backlash), it was decided to model in a suitably simplified way 

the electromagnetic aspects and focus instead on mechanical 

ones. In particular, the considered numerical model is 

developed from the monitoring model conceived by the 

authors for an EMA model-based prognostic application [12].  

The electro-magneto-mechanical dynamics of the BLDC 

motor is simulated by means of a classic resistive-inductive 

(RL) numerical model. In particular, it is a 1
st
 order linear 

model capable of calculating the moving torque TM as a 

function of the motor torque gain GM, of its power supply 

voltage (Vdcm·I_ref), of the counter-electromotive forces 

(back-emf), of the dynamic characteristics of the RL circuit 

and of the saturation of magnetic induction flux. 

The dynamics of the mechanical actuation system (rotor of 

BCD motor, gear box and ball screw) is represented by a 

simplified 1 degree-of-freedom system (obtained assuming an 

ideal rigid transmission without elastic deformations or 

backlashes). According to [7], it is modelled by means of a 2
nd

 

order non-linear numerical model able to simulate the EMA 

behavior taking into account the global effects due to inertia, 

viscous damping, ball screw ends-of-travel and dry frictions. 

As shown in Fig. 3, the global value of the dry friction torques 

acting on the actuation system is simulated by a simplified 

numerical algorithm which implements the classical Coulomb's 

model. 
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Fig. 2 conceptual model scheme 

  

Fig. 3 block Diagram of EMA numerical model: the blocks that implement the nonlinearities considered (saturation of the motor torque, 

friction phenomena and ends-of-travels acting on the final ballscrew actuator) are highlighted in the diagram by bold border 

In particular, the proposed algorithm has been developed by 

means of a lumped parameter model based on the Karnopp 

friction model [13] and suitably modified as shown in [14]. 

The effects of the backlashes affecting the mechanical 

transmission, evaluated according to [15], have been 

simulated, using a simplified approach, by the "Backlash" 

Simulink block [16]. 

IV. OPTIMIZATION ALGORITHM 

Several optimization techniques are commonly used also for 

model parameter estimation tasks, which can be classified into 

two main categories: deterministic (direct or indirect) and 

probabilistic (stochastic, as Monte Carlo method, simulated 

annealing and genetic algorithms). A large part of these 

methods are local minima search algorithms and often do not 

find the global solution [5]. They are therefore highly 

dependent on a good initial setting. This is a viable solution in 

an off-line scenario, where initial guesses can be reiterated; on 

the other hand, these approaches are not suitable for an on-line 

automated identification process, because a good initial guess 

for one data set may not be such for the next identification. 

Local-minima approaches would not be robust and may 

provide a false indication of parameter changes in an on-line 

system. Alternatively, global search methods, such as genetic 

algorithms and simulated annealing, provide more promising 

options for on-line model identification. However, as they are 

similar to simplex methods, genetic algorithms do not always 

find the global minima [17]. Simulated annealing methods are 

more effective at finding the global minima, but at the cost of a 

larger amount of iterations [2]. 

The simulated annealing method originates, as the name 

suggests, from the study of thermal properties of solids. 

Indeed, this procedure, as described in [18], was then an exact 

copy of the physical process which could be used to simulate a 

collection of atoms in thermodynamic equilibrium at a given 

temperature. In fact, the abstraction of this method in order to 

allow arbitrary problem spaces is straightforward.  

There is a significant correlation between the terminology of 

thermodynamic annealing process (the behavior of systems 

with many degrees of freedom in thermal equilibrium at a 

finite temperature) and combinatorial optimization (finding 

global minimum of a given function based on many 

parameters). A detailed analogy of annealing in solids provides 

frame work for optimization. As described in [19], the Table 1 

summarizes the key terms which are related with the real 

thermodynamic annealing procedure, showing its association 

with the aforesaid optimization process. 

Table 1: Association between thermodynamic simulation and 

combinatorial optimization 

Thermodynamic Annealing Combinatorial Optimization 

System State Feasible Solutions 

Energy of a State Cost of Solution 

Change of state Neighbor solution 

Temperature Control parameter 

Minimum Energy Minimum Cost 
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In order to explain more clearly the association between 

thermodynamic simulation and combinatorial optimization 

reported in Table 1, it should be noted that the cost of a 

solution represents the corresponding objective function value 

(i.e. the function that the optimization algorithm attempts to 

minimize in order to identify the optimal solution), the 

neighbor solution is a new system solution calculated by the 

optimization algorithm and evaluated, with respect to the 

previous one, using the said cost functions, and the control 

parameter is the system parameter iteratively modified by the 

optimization process so as to minimize its objective function. 

Figure 4 shows the operating logic of the method. 

V. PROPOSED PROGNOSTIC ALGORITHM 

The EMA nonlinear numerical model is able to simulate the 

system response [11], considering both Coulomb friction and 

backlash, being then potentially able to reproduce seizure due 

to the ball return jamming or bearing binding/sticking as well 

as the appearance of backlash in case of balls excessive wear. 

As a consequence, its execution speed has been tested in 

order to verify its suitability for optimization purposes. It must 

be noted that, despite being a relatively simplified numerical 

model, it shows a good accuracy, guaranteeing a satisfying 

correspondence with the experimental data (as reported in the 

following sections). The method performs the failure detection 

and identification using an optimization process implemented 

by a simulated annealing (SA) algorithm that aims to minimize 

the value of appropriate objective functions (typically related 

to the magnitude of the error Eint calculated comparing 

together experimental and numerical data) by acting on well-

defined parameters of the numerical model. 

In particular, by means of a simulated annealing algorithm, 

the optimization process modifies the parameters CSJ and 

BKL, the former representative of the dry frictions, the latter 

of the mechanical backlashes globally acting on the EMA 

numerical model, in order to identify their values that 

minimize the above mentioned objective functions. 

 

In this case, the objective function of the optimization 

problem is the error generated, by a well-defined command 

input (Cmd pos), between the experimental data and the 

corresponding model output. Before verifying the actual 

ability of the proposed prognostic method to identify and 

evaluate failure precursors, the calibration of the numerical 

model parameters has been performed. As shown in [3], the 

ideal values of these parameters have been identified by 

comparing the dynamic response of the real system in nominal 

conditions (NC: e.g. nominal dry friction and mechanical 

backlash levels and no other failures) with that generated by 

the numerical model, then, identifying the corresponding 

objective function (Eint) and, at last, applying the proposed 

optimization process to the above parameters. 

The aforesaid model, properly calibrated in NC, was then 

used to estimate the global amount of the dry friction and 

mechanical backlash acting on the real EMA; the dynamic 

response of the real EMA (subjected to a well-defined system 

of backlashes affecting the mechanical transmission) is 

compared with that produced by the simulation model and, by 

the optimization method, the values of the fault parameters 

CSJ and BLK
1
 that minimize the error between real and 

simulated is calculated. The SA method used by the proposed 

prognostic routine to perform the aforesaid fault estimation is 

implemented by the Matlab Optimization Tool. It must be 

noted that these optimizations have been carried out in 

condition of unloaded actuator since, within an operational 

scenario, these kinds of tests could be performed on the 

ground, without any aerodynamic loads, but rather just with 

the control surface weight, which is usually negligible 

compared to the actuator's capabilities.  

The problem of what type of signal should have been used 

to test the optimization algorithm has not a precise solution 

and depends strongly by the system's application. In the case 

here examined, a sinusoidal linear frequency sweep wave has 

been chosen as a standard input position signal for the 

parameter estimation process because it allows testing, at one 

time, a wide range of system response frequencies
2
. For 

instance, in the low frequency range the stick-slip motion 

could be highlighted, enabling the optimization algorithm to 

finely tune the friction and backlash coefficients of the model 

and, at the same time, adapt the other parameters according 

also to the high frequency range, representing more 

significantly the system dynamic response. A simple step or 

ramp response could not comply with this necessity. 

 
1  The parameter BLK takes into account the global effects of the backlashes 

affecting the EMA mechanical transmission by means of a very simplified 

model; in fact, the dynamic interactions between the different elements 

interested to the above mentioned backlashes are neglected. Dimensionally 

speaking, BLK is expressed in millimetres and it is representing the 

equivalent mechanical backlash (that is calculated as a sum of the backlash 

affecting the components of the transmission) acting on the whole EMA. 

2  For instance, in the low frequency range the stick-slip motion could be 

highlighted, enabling the optimization algorithm to finely tune the friction 

and backlash coefficients of the model and, at the same time, adapt the 

other parameters according also to the high frequency range, representing 

more significantly the system dynamic response. 

 
Fig. 4 Operating Logic of Simulated Annealing Method 
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In order to obtain accurate results and assure a suitable 

speed of convergence of the algorithm, the variation range of 

the parameters representative of the considered progressive 

failures CSJ and BKL (which vary during the optimization 

process to minimize the error between experimental data and 

corresponding numerical simulations) have been limited 

between properly defined lower and upper bounds.  

In particular, CSJ can assume values from 0.01 Nm to 1.5 

Nm which represent a quite large band given that its initial 

value is assumed equal to 0.12 Nm (NC dry frictional torque 

provided by motor datasheet) and the corresponding peak 

torque provided by the DC motor is worth 1.48 Nm.  

In a similar manner, it is also necessary identify some 

meaningful value regarding the backlash phenomenon:  

by reading the MecVel ALI-2 maintenance handbook [12], it 

is possible to gain knowledge of the maximum acceptable 

backlash value of the ballscrew: 

 

 
where p is the ballscrew pitch (5 mm). For higher values of 

∆b, the ballscrew should be replaced. Therefore the afore 

calculated backlash value can be considered as limit value and 

clearly it is very far from the healthy value related to the actual 

system. In this case, BLK can assume values from 0 [mm] 

(LB) to 0.1 [mm] (UB), which represent a quite large band 

given that the authors’ goal is the proposal of a prognostic 

method (able to perform an early identification of the 

considered progressive faults) and the actual value of the 

mechanical backlash (in healthy conditions) is worth about 

0.033 [mm]. Hence, in order to test the algorithm's resolution 

and accuracy, it would be meaningful to increase the latter 

value by different percentage, considering mechanical 

transmissions characterized to different fault magnitude (e.g. 

gears or screw suitably damaged) or modifying the 

experimental results in order to simulate the backlash effects.  

To this purpose, this research evaluates three cases of 

backlash severity: 

1) High: 0.066 [mm]; 

2) Moderate: 0.0495 [mm]; 

3) Low: 0.04125 [mm]. 

VI. EVALUATION OF THE PROPOSED METHOD 

Several experimental tests have been conducted (with 

different time-history input and different levels of failure) to 

test the performance of the proposed method; the results of 

such tests have then been used as input to the optimization 

process performing the failure analysis. In particular, in order 

to evaluate the accuracy of the predictions and its sensitivity to 

the different fault conditions and to assess the field of validity 

of the proposed prognostic method, three different 

combinations of the progressive faults (seizure CSJ and 

backlash BLK) have been evaluated:  

1) moderate seizure and low backlash,  

2) low seizure and high backlash,  

3) very low backlash and seizure. 

A. Moderate Seizure and Low Backlash 

The following faulty values have been imposed on the 

numerical model: static friction coefficient CSJ equal to 0.3 

[Nm] (+117.4%) and backlash BLK: 0.04125 [mm] (+25%). 

These faulty values correspond to double the static friction 

coefficient and slightly increase the backlash value, in respect 

to the corresponding healthy values.  

After an optimization run, the initial objective function of 

0.655 [mm
2
·s] was reduced by the 99.936% (i.e. 9.39·10

-5
 

[mm
2
·s]). The effects of the optimization process on the 

dynamic response of the simulated system could be evaluated 

(e.g. in terms of EMA rod position and actuation speed) 

comparing the corresponding curves calculated before and 

after the SA optimization process: respectively, Fig. 5 and Fig. 

6 for the position, Fig. 7 and Fig. 8 for the actuation speed. 

In this case, the algorithm yielded a quite satisfying result, 

having found a 115.2% increase for CSJ and a 22.23% 

increase for the backlash value, as shown in Table 2. Thus, the 

accuracy for CSJ was of 1%, while for backlash it was 2.21%.  

Figure 9 shows the corresponding diagnostic scalars  

(i.e. the histogram representing the results performed by the 

proposed method for the considered case of multiple faults). 

The diagnostic scalars compare each other the estimated and 

the actual values of the considered parameters (in this case the 

BKL and CSJ) putting in evidence the corresponding errors; 

these values are expressed as a percentage of the related 

nominal values (NC).  

B. Low Seizure and High Backlash 

The opposite situation has been tested as well by imposing 

in the model the following parameter: CSJ equal to 0.1449 

[Nm] (+5%) and backlash equal to 0.066 [mm] (+100%). 

Compared with the healthy conditions, these faulty values 

correspond to a slightly increase of the friction coefficient and 

a double of the backlash amount. After about 1500 iterations 

(corresponding to around thirty seconds of calculation), the 

damage estimator reduced the objective function value by the 

96.5%, giving the results shown in Table 3. Both the estimated 

shifts have been found by the algorithm with a rather high 

accuracy. Figure 10 depicts the related final diagnostic scalars. 

C. Very Low Seizure and Backlash 

In order to test the algorithm's resolution, a final simulation 

has been carried out with a 1% increase of both seizure and 

backlash parameters: 

• CSJ: 0.13938 [Nm] 

• Backlash: 0.03333 [mm] 

In this case, the optimization process, which lasted around 

thirty seconds (about 1500 iterations), reduced the objective 

function by the 92.6%. Also in this case, the corresponding 

results are shown in Table 4. The friction increase has been 

correctly recognized even though underestimated, while the 

backlash increase resulted significantly wrong and 

overestimated. Nevertheless, from a prognosis point of view, a 

1% increase might not be meaningful. Figure 11 depicts the 

related final diagnostic scalars. 
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Table 2: Shift from healthy parameters in case of combined failure mode (moderate seizure and low backlash) 

Parameter Unit Start Final Shift Actual shift Accuracy 

CSJ [Nm] 0.138 0.297 +115.2% +117.4% 1% 

Backlash [mm] 0.033 0.0403 +22.23% +25% 2.21% 

 

Table 3: Shift from healthy parameters in case of combined failure mode (low seizure and high backlash) 

Parameter Unit Start Final Shift Actual shift Accuracy 

CSJ [Nm] 0.138 0.14771 +7.03% +5% 1.94% 

Backlash [mm] 0.033 0.06545 +98.33% +100% 2.21% 

 

Table 4: Shift from healthy parameters in case of combined failure mode (very low seizure and backlash) 

Parameter Unit Start Final Shift Actual shift Accuracy 

CSJ [Nm] 0.138 0.13896 +0.69% +1% 0.3% 

Backlash [mm] 0.033 0.03608 +9.33% +1% 8.25% 

 

 

Fig. 5 Moderate seizure and low backlash case: calculated 

EMA position before SA optimization 

 

Fig. 6 Moderate seizure and low backlash case: calculated 

EMA position after SA optimization 

 

Fig. 7 Moderate seizure and low backlash case: calculated 

EMA actuation speed before SA optimization 

 

Fig. 8 Moderate seizure and low backlash case: calculated 

EMA actuation speed after SA optimization 
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D. Diagnostic Scalars for Multiple Faults 

As mentioned earlier, the diagnostic scalars compare each 

other the estimated and the actual values of the considered 

parameters (in this case the BKL and CSJ) putting in evidence 

the errors; these values are expressed as a percentage of the 

related nominal values (NC). The following figures show all 

the diagnostic scalars diagram achieved in case of combined 

failure modes. 

 

Fig. 9 Diagnostic scalars in case of combined failure modes: 

moderate seizure and low backlash case 

 

Fig. 10 Diagnostic scalars in case of combined failure modes: 

low seizure and high backlash case 

 

Fig. 11 Diagnostic scalars in case of combined failure modes: 

very low seizure and backlash case 

VII. CONCLUSIONS 

The method based on the Simulated Annealing algorithm 

has been used to monitor the sample EMA in different multiple 

failure modes conditions, and has demonstrated to be able to 

identify the increase of parameters correctly; however, it failed 

in the case where a rather low backlash increase percentage 

was involved. This configuration could represent a limit 

situation for the algorithm; it is suggested that some minimum 

shift thresholds are arranged with the aim to avoid false 

indications on the damage progression. Overall, the results are 

less accurate when the failure is less severe. Anyway, the 

algorithm has been able to identify with good approximation a 

value for CSJ even with very low seizure condition and in 

general this parameter seems to be described with a better and 

steadier accuracy than backlash. In fact, the latter resulted to 

be acceptable mostly for high shift values (e.g. +100%).  

The Simulated Annealing proved to be very effective, with 

fairly acceptable execution times (tenth of minutes) for an 

operational scenario. However, this method showed a strong 

dependence of the results on its initialization settings (i.e. 

initial temperature, function tolerance, reannealing interval) 

and also on the variables bounds which have to be chosen 

carefully; this can be achieved making, for example, some 

considerations regarding the physical limits of initialization 

settings. Nevertheless, it is noteworthy that no situations 

caused the algorithm to remain trapped in local minima, even 

when the starting point was far from the faulty experimental 

data. This happened, as a comparison, for other deterministic 

methods like recursive-least-squares, which gave worse results 

compared to Simulated Annealing. It is possible to conclude 

that this kind of damage estimator can be considered a good 

approach for prognostics applications, even for combined 

failures. Broader use on different study cases is envisaged as 

fundamental to assess the validity of this method at all the 

possible different conditions. 

 

Table 5: Summary of the optimization in case of combined failures. 

Parameter Unit A B C 

Time [sec] 75 45 40 

Iterations 
 

2535 1651 1500 

Object Function 
 

-99.94% -96.5% -92.6% 

Estimated CSJ [Nm] 0.297 0.14771 0.13896 

Actual CSJ [Nm] 0.3 0.1449 0.13938 

CSJ accuracy 
 

1% 1.94% 0.3% 

Estimated CSJ shift 
 

+115.2% 7% +0.69% 

Actual CSJ shift 
 

117% 5% 1% 

Estimated backlash [mm] 0.0403 0.06545 0.03608 

Actual backlash [mm] 0.04125 0.066 0.03333 

Backlash accuracy 
 

2.21% 0.83% 8.25% 

Estimated backlash shift 
 

+22.2% +98.3% +9.33% 

Actual backlash shift 
 

25% 100% 1% 
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