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Abstract—The high school physics curriculum mostly targets the 

time dependent physical quantities of the harmonic oscillator e.g. 
velocity, acceleration and energies, because harmonic oscillations 
are defined as “periodic time dependent changes of physical 
quantities”. 

The focus of our interest in this paper is indeed the spatial 
dependence of the physical quantities, especially the spatial 
distribution of the three energies, which  continuously change their 

amount in a harmonic oscillator system: kinetic energy ( kinE ), 

potential energy ( potE ) and elastic potential energy ( epeE ). The 

idea for this has been given by some students of the 11’th grade 
from the German high school of Istanbul (Özel İstanbul Alman 
Lisesi) in 1May 2015. 

We found out that the golden section plays an important role in 
the spatial energy distribution, especially between potential energy 
and elastic potential energy. Until today the role of the golden 
section has not been mentioned in such a simple system like the 
harmonic oscillator, but in more complicated systems. We cited the 
role of the golden section in the KAM- theorem and in Burgers-
turbulence and found parallelisms to our results. 

 

Keywords—golden section, stability, spring 
pendulum, gravitational force 

 

I. INTRODUCTION 

The occurrence of the golden section is well known in 
many areas of nature. In this paper we investigated its role 
in the harmonic oscillator. 
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We consider a simple system of a spring pendulum with 
the spring  constant D , by which the mass can be neglected, 
a mass point with mass m , hanging at the end of the spring, 
where the spring is in a relaxed position at the beginning, 

meaning the elastic potential energy ( epeE ) equals zero. 

(The mass is then released to oscillate vertically to the 
ground, so the mass only moves one dimensionally in y 
direction). In this case the oscillation length equals to ŷ2 , 

where ŷ is the amplitude with 
D

gmy ⋅
=ˆ

 
as the maximal 

distance from the equilibrium point. All other effects such as 
air resistance, spatial extension of the mass point etc. will 
not be taken into account. 

In a second step we enhanced our considerations to an 
infinitely expanded harmonic oscillator where we found an 
interesting trace for a possible explanation in context to the 
investigations of the double pendulum. 

The mathematical origin of the golden section can be 
shown by finding the following quadratic equation: If the 
ratio between the length x  (the major part) and x−1  (the 
minor part), which give 1 when added up and the ratio 
between the major part and the whole can be equated, the 
solution of this equation with the quadratic formula is the 
length of the major part also called the golden section Φ. 
Therefore the minor part equals. 1-Φ. 
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(major part)  and the minor part equals 

...382,011 1 =Φ−=− x  

Note that there are many other ways to getΦ , e.g. by the 
Fibonacci-sequence, chain fractions etc.  

In the recent years the Binet-Fibonacci Formula for 
Fibonacci numbers is treated as a q-number (and q-operator) 
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with Golden ratio bases ϕ=q  and 
ϕ
1

−=Q by 

PASHAEV and NALCI, where ϕ is the positive root of 

equation .012 =−− xx  Quantum harmonic oscillator for 
this golden calculus is derived so that its spectrum is given 
just by Fibonacci numbers [11]. 

Indeed our considerations are restricted to the mechanical 
harmonic oscillator. In section II and III it will be derived 
and shown, that the place, where potential energy ( potE ) 

and elastic potential energy ( epeE ) equal themselves, 

divides the total oscillation length exactly in the golden 
section ratio. In section IV and V the occurrence and the 
meaning of the golden section in other areas e.g. planetary 
systems, double pendulum and shockwaves [1]-[6] with the 
intention of finding parallelisms and explanations to our 
subject will be shown. In section VI and VII the oscillation 
length of the spring pendulum will be expensed from zero to 
infinity. Especially in the case of infinite oscillation length 
there is an interesting trace of explanation related to the 
work of RICHTER [1].  

 
II. ENERGY BALANCE OF THE SYSTEM 

 

For getting an appropriate comparison of   the three 

energies potE , epeE  and kinetic energy ( kinE ), it needs a 

coordinate-system, in which the deepest point of the 
oscillation has zero potential energy.  If the mass point 
oscillates between yy ˆ20 ≤≤  we set at its highest 

position 0=y , so in the equilibrium point y equals ŷ  and 

at the deepest point  y  equals ŷ2 . Under this presumption 
the potential energy is written as

ygmygmEpot ⋅⋅−⋅⋅= ˆ2 , we get 0=potE  at the 

deepest point yy ˆ2=  and its maximum at the highest point

0=y . Indeed the elastic potential energy 2

2
1 yDEepe ⋅=  

has its minimum at 0=y (relaxed spring) and its maximum 

at yy ˆ2= (maximal extension of the spring). We can set 

2

2
1 vmEkin ⋅= where v  is the velocity of the mass point. 

The following equation shows the summation of the three 
energies.  

totalEvmyDygmygm =⋅+⋅+⋅⋅−⋅⋅ 22

2
1

2
1ˆ2

(1)
                    

Note
 

2ˆ2ˆ2 yDygmEtotal ⋅=⋅⋅=
                                (1a)

   

III. WHERE DO potepe EE =
 
EQUAL 

THEMSELVES? 

To find the place of the y , where the potential energy and 
the elastic potential energy have the same amount, we set 

2

2
1ˆ2 yDygmygmEE epepot ⋅=⋅⋅−⋅⋅⇒=  (1b) 

(1b) is a quadratic equation with the variable y  and its 
solution (with the quadratic formula) is: 







 +

⋅
⋅

⋅
±

⋅
−= y

D
gm

D
gm

D
gmy ˆ42/1         (2) 

In the equilibrium point there is a balance between 

gravitation force ( gmFG ⋅= ) and the tension force 

( yDFtension ˆ⋅= ), so the following equation applies 

D
gmy ⋅

=ˆ             (3) 

 (3) is inserted in (2): 

2
2/1 ˆ5ˆ yyy ±−=                                                         (2a) 

The solution 2y  has no physical meaning, because it is 

outside of the oscillation interval yy ˆ20 ≤≤ . Indeed the 

other solution can be rewritten as ( )15ˆ1 −⋅= yy  . This is 
the place, where the amount of elastic potential energy and 
potential energy are equal. The result of the comparison 

between 1y  and the total oscillation length ŷ2  is the 
following equation:  

2
15

ˆ2
1 −
=

y
y

.           (4)  

This is exactly the division length

...618,0
2

15
=

−
=Φ  of the golden section. 
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Fig. 1 The system with 0.2ˆ =y  . The relation of each energy with the total 

energy is squares or cubes of the golden section. 

In the following section the relation of the three energies 

with the total energy at this special point 1y  are compared. 

According to (1) and (1a) the total energy equals ygm ˆ2⋅⋅ .  

If 1y  is inserted into the equation of potE  the relation of it 

to the sum of all three energies totalE   turns out as the 

following equation. 

( ) ...382,0
2

151
ˆ2

15ˆˆ2 2 =Φ=
−

−=
⋅⋅

−⋅⋅⋅−⋅⋅
=

ygm
ygmygm

E
E

total

pot

(5) 

Due to the presumption of potential energy being equal 

with the elastic potential energy at 1y  the relation of the 
elastic potential energy with the total energy gives the same 
result: 

2Φ=
total

epe

E
E

                       (6) 

Consequently the relation of the kinetic energy to the total 

energy amounts 3221 Φ=Φ−=
total

kin

E
E

, (7) suggesting 

that the relation of each energy with the total energy is 
squares or cubes of the golden section. These results are 
shown in Fig. 1. 

 

IV. THE GOLDEN SECTION IN COUPLED 
OSCILLATIONS AND THE KAM-THEOREM 

 

PETER H. RICHTER performs an elaborated 
consideration about planetary movements and coupled 
oscillations. A computer simulation containing an artificial 
planetary system, in which the sun is the biggest mass, 
Jupiter’s mass is only 1/1000 of the sun’s and a test planet 
with a very small mass are located, can demonstrate that 
such systems are not stable, in a case of casually chosen 
distances between the planets. If the test planet is too close 

to Jupiter and if such approaches are repeated in a regulation 
the test planet will be ejected from the system. This incident 
brings up the question whether our planetary system is 
stable. The answer is that there is self-evidently stability, in 
the opposite case the mankind would not stay alive. The 
distance relation between two planers is roughly the golden 
section. If this relation was to be expressed through an 
equation, the distance between the n -th planet and the sun 
should have been )(nd , which would cause the distance 

between the sun and the subsequent planet to be )1( +nd , 
so that the equation would be the following ([8] 
LANDSCHEIDT, 1995):  

Φ≈
+ )1(
)(

nd
nd

 

It should be noted that this is an arithmetical 
consideration. Φ  is the most irrational number and causing 
the approaches and disturbances between the planets to be 
extremely irregular. ([7] SCHOLZ, 1987) Therefore the 
resonance effects cannot occur followed by stability as a 
result.  

A scientific and detailed explanation about the stability-
problems has been given 1962 by KOLMOGOROV und 
ARNOLD [2] at Moscow and independently by MOSER 
([3] MOSER, 1962) at Göttingen (KAM-theorem).In recent 
time it is explained e.g. by KÖNIG, K. and RÜSSELER, K. 
[10]. In our paper these problems are demonstrated 
experimentally by a planar coupled oscillator, the so called 
double pendulum. The configuration of the double 

pendulum is described by two angles 1ϕ und 2ϕ . 

 

Fig. 2 The configuration of the double pendulum is described by two angles

1ϕ  und 2ϕ  

To simplify the system the masses of the points are 
considered equal and the air resistance is neglected. The 
movement of the double pendulum can only be described 
when the angles, velocity and torque values of both 
pendulums are known. The dynamics take place in a four 
dimensional space. It is considered that every movement of 
the double pendulum is a trace in the phase space, which is 

INTERNATIONAL JOURNAL OF MECHANICS Volume 10, 2016

ISSN: 1998-4448 138 255



in fluent movement. When the properties of this “fluid” are 
observed, that regular and chaotic behavior occur together, 
which is similar to the partial laminar and partial turbulent 
stream in an incompressible ideal fluid. If the double 
pendulum was to be pushed, eight types of movement could 
be observed. Nevertheless it is important to mention that in a 
case, where the gravitational  force is involved, meaning that 
the double pendulum is not horizontally positioned, 
transitions between all the types of movements from one to 
eight shall be found. Sometimes one of the pendulum finds 
itself in an instable position, where it has to “decide” 
whether to oscillate back or jump over, which consequently 
leads to a chaotic movement. The gravitational force gives a 
torque to the system and the total angular momentum is no 
more a conservation quantity. 

Another observation on RICHTER’s work is the fact, that 
the double pendulum system is stable if the energies are 
very high, then the influence of the gravitational force can 
be neglected. So in a system with low energy, in which the 
gravitational force is playing a role, a transition from 
stability into chaos can be observed.  

A resonance situation could occur if 

02211 =⋅+⋅ ωω kk with Zkk ∈21, and the ratio of 

frequencies
2

1

ω
ω

 rational number. 

Indeed the greatest stability that can be found is the case of 
the so called „KAM-Torus“. ([4] ARNOLD, 1978)  This 

applies Φ=
2

1

ω
ω

. This is a typical example showing the 

stabilizing function ofΦ . The role of the golden section has 
also been mentioned in other types of oscillating system, 
e.g. in the turning points of the spherical pendulum ([9] 
ESSÉN, H., APAZIDIS, N., 2009) 

 

V. THE GOLDEN SECTION IN SHOCK WAVES 
AS A RESULT OF THE BURGERS-EQUATION 

The previous researches on turbulence have shown that the 
quality of diverse turbulence-models can be tested easier: 
not with the full governing equations of fluid mechanics 
(Navier-Stokes equations), but only the one dimensional 
analogy, in which the Burgers-equation is also involved. 

2

2

y
v

y
vv

t
v

∂
∂
⋅=

∂
∂
⋅+

∂
∂ ν           (8) 

ν stands for „kinematic viscosity“ and v  the velocity of the 
fluid in y -direction. 

This equation derives from a mathematical model, which 
BURGERS ([5] BURGERS, 1948) developed for the 
illustration of the turbulence theory. (8) has to be interpreted 
in this sense, that the velocity v  is a deviation of the fluid 
particle in y - direction, whereas the fundamental streaming 
is two dimensional, but has no movement in x - direction. 

The numeric solution of (11) gives a time dependent 
“shock wave”, whilst the amplitudes are decreasing. If the 
amplitudes should not decrease a periodic force-term is 
added e.g. )2sin( yA ⋅⋅ π with RA∈ . If the elongations at 

a certain point in the area 10 ≤≤ y  were to be fixed („stop“ 
the travelling wave), a Galilei-transformation could be 
inserted, this results into the following equation: 

( ) )2sin(11
2

2

yAv
y
v

y
v

Rt
v

⋅⋅−−⋅
∂
∂

−
∂
∂
⋅=

∂
∂ π        (9) 

R = Reynolds-Number    

It shows that in the quasi stationary solution 





 =
∂
∂ 0

t
v

one of the two zero points ( 0=v  is exactly the shock-
region (the midpoint of the swirl)) and is located at

2
1+Φ

=y . The other zero point is found at 2Φ=y . ([6] 

MÜLLER, B., 2005). 

It should be noted that the “elongations” of the shock-
waves are the y -velocities of the fluid particles, so the zero 
point means a change from “up” to “down” in y - direction 
and in addition at this point there is the maximal spatial 
gradient of the velocity. 









=

∂
∂ .max
y
v

 This makes the center of the swirl, the 

only stable point in a turbulent system. In this case also the 
stabilizing function of Φ is shown. Another context of the 
Burgers equation to the Golden ratio is given by 
PASHAEV, where the nonlinear complex q-Burgers 
equation has been solved and Fibonacci numbers has been 
described as a special type of q-numbers with matrix Binet 
formula [12]. 

 

VI. THE OSCILLATION OF THE OBJECT  FROM A 
POINT y′  ( yy ˆ20 ≤′≤ )  INSIDE THE 
ORIGINAL OSCILLATION LENGTH 
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If the object is released to oscillate from a deeper point 
than 0=y , here y′  in the same oscillating system applies 

[ ]yy ˆ20 ≤≤  the following energy balance: 

2

22

2
1)ˆ2(

2
1

2
1)()ˆ2(

yDyygm

E

vmyDyygmyygm

total

′⋅+′−⋅⋅=

=

⋅+⋅+′−⋅⋅−′−⋅⋅

             

(10) 

And it follows yy ′≥ . 

(10) displays that the place )15(ˆ1 −⋅= yy , where

epepot EE =
 
does not change dependent from the place y′ , 

from which the object is released to oscillate, because in the 
component potE the terms ygm ′⋅⋅ eliminate themselves.  

 

VII.  THE OBJECT OSCILLATES FROM A 
POINT ε+ŷ2 OUTSIDE OF THE 
ORIGINAL OSCILLATION LENGTH 

In this case the oscillating object would push the spring 

about ε  at the place 0=y , where 0=epeE . Then the 

spring has an elastic potential energy at its “new” highest 
point.  For the investigation of this important case we create 
an extended coordinate-system and we set 0=y  as the 
“new” highest place of the object, so in contrast to the origin 
oscillation length the “new” total oscillation length, where 

the object moves, is in the interval [ ]ε2ˆ20 +≤≤ yy . 

 

In the following we will call it “extended oscillation 
length” 

From now on the following energy balance is acquired: 

( )

( )2

22

ˆ2
2
1

2
1

2
1)ˆ(2

ε

εε

+⋅=

=

⋅+−⋅+⋅⋅−+⋅⋅

yD

E

vmyDygmygm

total  

                          (11) 

In this case, the “new” place 1y , where epepot EE =  is

εε ⋅++−= yyyy ˆ2ˆ5ˆ 2
1        (12) 

Obviously this place is not in the golden section relation to 
the extended oscillation length, but we have in general for

0>ε : 

Φ≠
+ )ˆ(2
1

εy
y

           
  (13)  

      
  

Also considering the relation to the original oscillation 

length applies Φ≠
y

y
ˆ2
1 (13a). The fundamental difference 

to the original length and the inner original length is the 

change in 1y , which depends on ε . Now it shall be 

investigated, if at least one 0>ε exists, where (13a) can be 
set equal toΦ . If (13a) will be plotted as a function ofε , 
we get 

( ) ( )ε
εε

ε
ε

+
⋅++−

=
+

=
y

yyy
y
yf

ˆ2
ˆ2ˆ5ˆ

ˆ2
)(

2
1

     (14) 

)(εf equalsΦ again, if ŷ
2
38 ⋅





 +Φ⋅=ε

 

   

Fig. 3 The fundamental difference to the original length and the inner 

original length is the change in
1y , which depends on ε .

 
It can be seen that the curve of Fig. 3 has a maximum at 

ŷ2=ε  with
3
2)ˆ2( =yf  , then it approaches Φ  at a 
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higherε , and the most interesting fact is that for very high 

ε  there is a convergence with 5,0)(lim =
→∞

ε
ε

f . We are 

aware, that this situation cannot be applied in an experiment, 
but nevertheless this result is very important for our 
theoretical investigations. When these two extreme values (

3
2,

2
1

) are considered, it should be noted that these numbers 

are first “members” of the reciprocal Fibonacci-sequence are 
considered 1,1,2,3,5,8,13, 21… with  

Φ=
+∞→ )1(
)(lim

nf
nf

n  

According to this there are three locations in this function:  

Table 1 f(ε) as a function of ε 

 

 

Fig. 4 the system at the maximum value of Fig. 3 with ŷ2=ε . 

If the three energies in the case ∞→ε  with the energies 
at the origin oscillation length are to be compared, it can be 

seen that kinE and epeE predominate potE  for highε . In 

this case we have a system with very high energies and the 
role of the gravitation force decreases to zero. Now we 
remember to the results of RICHTER ([1] RICHTER, 
1998), where it is shown, that in the case of high energies 
the double pendulum is stable and only if the gravitation 
force is involved and the total energy of the system is lower, 
the system gets chaotic, except the frequencies of the two 

pendulum have the relation Φ=
2

1

ω
ω

. So we can conclude: 

If we have an origin or slower oscillating length, the 
gravitation force plays an important role with a great potE - 

component, then the golden section stabilizes the system 

with Φ==
epe

kin

pot

kin

E
E

E
E

. By extended oscillation length the 

system will be stabilized by high energies and the 
stabilization by Φ seems “not necessary”.  

 

Fig. 5 the system with ŷ200=ε . 

In contrast to the case of original oscillation length from 
now on will be the focus of interest the place, where

epekin EE = . It is known from the original oscillation with

0=ε , that we find equality between kinetic and elastic 
potential energy at 0=y and yy ˆ= . But if 0>ε , the 

graph of the function ( )2
2
1)( ε−⋅= yDyEepe  is a 

parabola, which is moved to the right hand side with 
minimum at ε=y . 

Therefore it is expected, that the graph of the function  

( ) ( )

( ) 















+⋅−

+
−

−
+

⋅
⋅

=

ε

εε

yy
y

y
y

y
gmyEkin

ˆ42
ˆˆ

ˆ2

2
)(

22

overlaps the 

graph of the elastic potential energy at two places, it results 

4
ˆˆ

2
1

2
ˆ 2

2
2/1

yyyy +⋅+±+= εεε       (15)

       

Is there a connection withΦ  to be found? It is seen directly 

that ( ) Φ≠
+ εy

y
ˆ2

2/1 for most of theε . In analogy to the case 

potepe EE =  a function )(εf  can be plotted with (14), the 

following equation is the result: 

ε  0  ŷ2  ∞  

)(εf  Φ  
3
2  

2
1
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( )ε
εεε

ε
ε

+

+⋅+±+
=

+
=

y

yyy

y
yf

ˆ2
4
ˆˆ

2
1

2
ˆ

)ˆ(2
)(

2
2

2/1 (16) 

         

Fig. 6  

In contrast to (14), which is shown in Fig. 3, in Fig. 6 there 
is no local maximum but there are two convergences. 

In the case ∞→ε  the limes 






 ±=
∞→ 2

115,0)(lim ε
ε

f

                      (17)
 

To conclude the three convergences that have been found, 
may play the stabilizing role in the case of high energies. 

VIII. SUMMARY 

We investigated the spatial distribution of energies and 
other physical quantities by a harmonic oscillator with a 
spring pendulum. 

At first we detected that the place where epepot EE =  

divides the oscillation length ŷ2  of the system exactly in 

the golden section relation Φ  and therefore at this place the 
following relation between all three energies applies: 

Φ==
epe

kin

pot

kin

E
E

E
E

. 

It is known that the golden section occurs in all areas of 
natural science and art. We presented three examples of the 
physics area, where it plays an important role (double 
pendulum, KAM theorem and shock-waves). By the double 

pendulum we cited the work of RICHTER, where he shows 
that in the cases of high energies or/and ignorance of 
gravitational forces the system is stable, but if the system 
has lower energies and the gravitation has been taken into 
account, the system gets chaotic except the relation of the 

frequencies of both pendulum is Φ=
2

1

ω
ω

. So the golden 

section can be interpreted as a stabilizing factor. 

Indeed in our investigation the system is stable and we 
cannot choose between two frequencies, but the golden 
section is integrated in the energy relations. 

Then we changed the oscillation length. At first we 
considered a system where the mass point oscillates inside 

the origin oscillation length ŷ2 with
D

gmy ⋅
=ˆ and no 

change of the place, where potepe EE = , has been found.  But 

if the oscillation length is extended [ ])ˆ(20 ε+≤≤ yy  
whereε is the extending-factor, this place changes 
dependent ofε and there is not the relation Φ  to the total 
oscillation length )ˆ(2 ε+y anymore. 

 This phenomenon is expressed as a function )(εf and 

we found out that )(εf has a local maximum at ŷ2=ε  

with
3
2)ˆ2( =yf , and after the maximum this function 

converges 5,0)(lim =
∞→

ε
ε

f
     

The extreme values of this function show an interesting 
similarity to the Fibonacci-sequence. 

We interpret this by finding a parallel to the work of 
RICHTER:  
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If the system has low energies and the gravitational force 
is dominant ( 0=ε  or the mass point oscillates inside

[ ]yy ˆ20 ≤≤ , the occurrence of Φ in the energy relations 
gives the stability. 

If the system has high energies ( ∞→ε ) the gravitational 

force and potE in the energy balance can be neglected, then 

Φ disappears in the energy relations but a high energy 
system is stable by itself like in the case of the double 
pendulum. 
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