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Abstract—It is the purpose of this paper to consider a selection of
adapted numerical methods for the solution of evolutionary problems
showing a periodic behaviour in their dynamics. The treatise will
cover both evolutionary problems in time and space (i.e. reaction-
diffusion problems generating a periodic wavefront in time and space)
and problems with memory (i.e. Volterra integral equations with pe-
riodic solutions), also underlining the necessity to introduce suitable
quadrature rules adapted to the problems under investigation. The
approach is mainly problem-oriented, in order to match qualitative
properties of the problem with the numerical methods, in order to
get better accuracy, efficiency and stability properties with respect to
existing numerical schemes.
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I. INTRODUCTION

Evolutionary problems arising from applications can be
modelled by various kinds of mathematical operators, in agree-
ment with the observed dynamics of the phenomenon under
investigation. Time discretization of such operators, oriented
to provide an accurate and efficient numerical solution, can
be led in many different ways that can be ideally divided
into two main classed: general and special purpose numerical
methods. Classically, a general purpose method is constructed
in order to be exact (within round-off error) on polynomial
solutions up to a certain degree. However, when other a priori
known characters are advisable in the exact solution of the
problem (e.g. periodicity, oscillations, exponential decay), the
computational effort of classical methods could be quite heavy,
due to the necessary employ of very small stepsizes needed to
accurately reproduce the qualitative behaviour of the solution.
In these situations, it may be convenient to use special purpose
formulae, i.e. numerical methods adapted to the problem,
that are exact on functions other than polynomials (see [49],
[52] and references therein). The basis functions are chosen
according to the information known a priori about the exact
solution and belong to a finite-dimensional space called fitting
space.

Normally, the chosen basis functions also depend on a
parameter connected to the solution, whose value is clearly
unknown. As a consequence, non-polynomially fitted formulae
have variable coefficients relying on this parameter instead of
classical formulae that are characterized by constant coeffi-
cients.

In summary, an accurate and efficient numerical method
based on exponential fitting has to rely on a suitable fitting
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space and on a cheap - but accurate - procedure for the
estimate of the unknown parameters. We show examples of
special purpose strategies to solve two families of evolutionary
problems exhibiting periodic solutions, i.e. partial differential
equations, in Section 2, and Volterra integral equations, in
Section 3.

II. PERIODIC SOLUTIONS IN REACTION-DIFFUSION
PROBLEMS

Let us consider the following λ-ω reaction-diffusion prob-
lem [47], [55]

ut = uxx + λ(r)u− ω(r), v

vt = vxx + ω(r)u+ λ(r)v,
(1)

where u, v : [0,∞)× [0, T ] −→ R, r =
√
u2 + v2, ω(0) > 0,

λ(0) > 0.
It is well known (compare [2], [37], [38], [56]–[61] and

references therein) that such problem generate travelling waves
as fundamental solutions [47], that can be parametrized as
follows [47],

u(x, t) = r̂ cos(ω(r̂)t±
√
λ(r̂)x),

v(x, t) = r̂ sin(ω(r̂)t±
√
λ(r̂)x),

(2)

where the unknown parameter r̂ ∈ R is such that λ(r̂) >
0. Of course, although the presence of the unknown value
of r̂ makes (2) incomputable, the expression (2) clarifies the
nature of the solution, i.e. the periodic character in time and
space with constant shape and speed: such an information can
be profitably used to design an accurate and cheap numerical
integrator adapted to the problem.

This goal can be achieved, as introduced in Section 1, by
means of a special purpose numerical solver more tuned to
follow the periodic behavior, in the spirit of the so-called
exponential fitting technique (compare the review paper on the
topic [52] and references therein and the classical monograph
[49]; in the case of differential equations, we specifically
refer to [30]–[32], [35], [40], [41], [44], [51], [63], [64] and
references therein).

Due to the fact that (1) possess a one-parameter family of
periodic wave solutions (2), thus oscillating both in space and
in time, we propose trigonometrically fitted finite differences
for the numerical approximation of the second order space
derivative appearing in (1), derived as follows [28], [29].
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A. A trigonometrically fitted finite difference

We consider a given function u(x, t) defined on the rectan-
gular domain

D = [x0, X]× [t0, T ] ⊂ R2.

The purpose is that of deriving a numerical approximation of
the second derivative with respect to x by the three-point finite
difference formula

∂2u

∂x2
(x, t) ≈ 1

h2
(a0u(x+ h, t) + a1u(x, t) + a2u(x− h, t)) ,

(3)
where h is a given spatial stepsize. The unknown coefficients
a0, a1 and a2 are derived in correspondence of the fitting space

F = {1, sin(µx), cos(µx)}, (4)

with µ ∈ R. Hence, we associate to (3) the linear operator

L[h,a]u(x, t) = ∂2u

∂x2
(x, t)− 1

h2
(
a0u(x+ h, t) + a1u(x, t)

+ a2u(x− h, t)
)

(5)
and impose its exactness on the functional set (4), leading to
the linear system

a0 + a1 + a2 = 0,

−a0 sin(z)− a2 sin(−z) = 0,

−z2 − a0 cos(z)− a1 − a2 cos(−z) = 0,

(6)

with z = µh, whose solution is given by

a0(z) = − z2

2(cos(z)− 1)
, a1(z) =

z2

cos(z)− 1
,

a2(z) = − z2

2(cos(z)− 1)
.

(7)

The chosen fitting space (4), as it normally happens in
function fitting techniques (compare [49], [52] and references
therein), explicitly depend on the parameter µ which can
be interpreted as the frequency of the oscillations occurring
in the solution of (1). As a consequence, the corresponding
numerical method will depend on variable coefficients: this is
visible, for instance, in the expression of the coefficients (7) of
(3). Numerical methods depending on variable-coefficients are
effectively useful when a proper estimation of the unknown
parameters is actually computable, as it has been clarified
in many different situations in the literature (we refer to the
review paper [52] and references therein). In our case, we have
gained a particular benefit from the knowledge of a parametric
representation of the periodic plane wave solutions (2), which
clearly shows that sine and cosine are evaluated in

√
λ(r̂)x.

This suggests us to employ as estimation of the parameter
z = µh in (7) at the mesh point (xi, tj) the value

zij =
√
λ(rij)h,

where
rij =

√
u2ij + v2ij .

with uij ≈ u(xi, tj), vij ≈ v(xi, tj). In this way, we have
gained an approximation of the fitted parameters without

applying optimization techniques or solving nonlinear systems
of equations as in [30], [31], [41] and references therein. Thus,
the overall computational cost is not compromised, in our case,
by the computation of the parameter. This also confirms that,
in designing adapted numerical solvers, it is particularly useful
to acquire as much theoretical information on the problem as
possible.

We observe that the coefficients (7), when z tends to 0, tend
to the classical coefficients

a0 = 1, a1 = −2, a2 = 1, (8)

of the corresponding general purpose finite difference, which
has second order of accuracy as well. Thus, the trigonometrical
fitting adaptation of (3) preserves the order of accuracy of the
corresponding general purpose version with coefficients given
by (8).

B. Spatial discretization of the operator

We now apply the results developed in the previous sections
to the original λ-ω system (1). More precisely, following [55],
we are going to consider the system of PDEs (1) in the
unbounded domain

D = [0,∞)× [0, T ],

equipped by the following boundary conditions

∂u

∂x
(0, t) =

∂v

∂x
(0, t) = 0,

lim
x→+∞

u(x, t) = lim
x→+∞

v(x, t) = 0,
(9)

and the initial conditions
u(x, 0) = f0(x),

v(x, 0) = g0(x).
(10)

This problem is now aimed to be treated by suitably applying
the method of lines (compare [43], [53], [54] and references
therein), i.e. through a semi-discretization of the problem along
the spatial variable. The periodic nature of the solution, de-
scribed in Section 1, suggests us to proceed by employing the
trigonometrically fitted finite differences derived in Section 2.
We now describe in details how the semi-discretized problem
is derived.

In the practice, as also suggested in [55], we are going to
solve the problem on a domain [0, X] × [0, T ] where X is a
large real number. In correspondence of this large value of X ,
we actually consider as boundary conditions in the right limit
X

u(X, t) = v(X, t) = 0.

More precisely, X is chosen in such a way that further increase
on it have negligible effects on the solution, making above
zero boundary conditions realistic. In summary, we consider
the following boundary conditions in [0, X]

∂u

∂x
(0, t) =

∂v

∂x
(0, t) = 0,

u(X, t) = v(X, t) = 0.
(11)

We next consider N equidistant points in the spatial interval
[0, X] and denote by h the distance between two consecutive
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points. The semi-discretized domain, denoted by Dx, results
to be

Dx =

{
(xj , t) : xj = jh, j = 0, . . . , N − 1, h =

X

N − 1

}
.

We next denote by uj(t) = u(xj , t), 0 ≤ j ≤ N − 1.
As a consequence, the original problem (1) with boundary
conditions (11) and initial conditions (10) is transformed in
a system of 2N first order ordinary differential equations
equipped of the initial conditions

uj(0) = f0(xj), vj(0) = g0(xj), 0 ≤ j ≤ N − 1.

C. Numerical experiments

We now present some numerical results obtained by solving
the system of PDEs (1) with λ(r) and ω(r) of the form

λ(r) = λ0 − rp, (12)
ω(r) = ω0 − rp, (13)

with λ0, ω0, p ∈ R+.
We employ the semi-discretization introduced in Section 3,

with initial conditions (10) given by

uj(0) = vj(0) = A exp(−ξxj), 0 ≤ j ≤ N − 1. (14)

In the experiments, as in [55], we will always consider the
following values of the above parameters

λ0 = 1, ω0 = 2, p = 1.8, A = 0.1, ξ = 0.8. (15)

We proceed in two different directions: indeed, we consider
the spatially semi-discretized version of the problem, by
approximating the spatial derivative both with the standard and
the trigonometrically fitted finite differences; we next solve the
obtained semi-discretized problem by employing a proper time
solver.

Figures 1 shows the profile of the solutions originated by
applying the trigonometrically fitted spatial semi-discretization
with 3 points, i.e through finite differences (3) with coefficients
(7), and solving in time with the ode15s Matlab routine.
Analogously, the solutions of the semi-discretized problem by
standard finite differences are depicted in Figure 2; also in
this case, the ode15s time solver is applied. In both cases,
we have considered the spatial variable in [0, 150], while the
time integration interval is [0, 60], as in [55], [56]. The space
interval is large enough in order to make realistic the use of
the boundary conditions (11) instead of (9), as highlighted
in [55]. We have involved 50 subinterval in the spatial semi-
discretization: hence, the spatial stepsize is h = 3. As it is
visible from Figure 1, the profile of the obtained solutions is
coherent with the expected dynamics and, in particular, with
that described in [55], [56]. Such a situation is not visible in
Figure 2, since an unstable behavior is visible in the results.
Thus, in the comparison between the employ a standard finite
difference or a trigonometrically fitted one for the λ-ω problem
(1), one can recognize a much more stable behavior of the
latter, that is what typically happens in many situations when
trigonometrically fitted methods are applied (and this is true in
many different situations extensively described, for instance,
in [49], [52]).

Fig. 1. Numerical solution of (1), with initial conditions (10), boundary
conditions (11), with parameters given by (15). The left figure is the plot of
u(x, t), the one on the right is v(x, t). The solution is computed by solving
the semi-discretized problem obtained by the three-point trigonometrically
fitted finite difference (3), with coefficients (7).

Fig. 2. Numerical solution of (1), with initial conditions (10), boundary
conditions (11), with parameters given by (15). The left figure is the plot of
u(x, t), the one on the right is v(x, t). The solution is computed by solving
the semi-discretized problem obtained by the standard version of the finite
difference (3).

III. VOLTERRA INTEGRAL EQUATIONS WITH PERIODIC
SOLUTIONS

We consider the Volterra integral equation

y(x) = f(x) +

∫ x

−∞
k(x− s)y(s)ds, x ∈ [0, xend]

y(x) = ψ(x), −∞ < x ≤ 0,
(16)

with k ∈ L1(IR+), f continuous and T -periodic on [0, xend],
ψ continuous and bounded on IR−. Under suitable hypotheses,
(16) has a unique T -periodic solution [5]. Some applications
which yield to VIEs with periodic solution may be found
in [10], [13]. Although an expression of the solution is
known, it is of no practical use, since it has not closed
form. Therefore a numerical approximation is necessary. As
introduced in Section 1, standard numerical procedures are
not efficient, especially for high frequency values, thus we
propose a specially tuned direct quadrature (DQ) method based
on exponential fitting (compare also [9], [12]–[14]).

Following the exponential fitting theory, we formulate a DQ
method which is exact whenever the solution y(x) belongs to
the fitting space

B1 := {1, x, sin(ωx), cos(ωx)}, (17)

and k(x) = exp(αx), α, ω ∈ R.
The DQ method we propose is based on the quadrature rule
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Q, with∫ X+h

X−h
g(x)dx ≈ Q[g](X) := h

1∑
k=0

akg(X + ξkh) (18)

where X > 0 and h > 0. We impose that such rule is exact
on the fitting space

B := {eαx, xeαx, e(α±iω)x}, (19)

coming to a nonlinear system of equations in the unknowns
weights and nodes. This yields to ak = ak(u, z), and ξk =
ξk(u, z), with u =: αh, z := ωh. Then it is an easy task
to derive the composite quadrature rule based on the formula
(18):

I[g](X) =

∫ b

a

g(x)dx ≈ Qm[g] := h

m−1∑
j=0

1∑
k=0

ãkg(tj+ξ̃kh), (20)

where tj = a+hj, j = 0, . . . ,m, h = (b−a)/m, ãk = ak/2,
ξ̃k = (1 + ξk)/2. By following the exponential fitting theory
and suitably adapting its techniques, it is possible to prove that
the error Em[g] := |I[g]−Qm[g]| of the formula (20) satisfies

Em[g] ≤ C(b− a)h4, (21)

whenever g ∈ C4([a, b]). Here the constant C > 0 depends
on max

[a,b]
|(D− α)2((D− α)2 + ω2)g(x)|, where D stands for

the derivative operator..
Given a uniform mesh on [0, xend], Ih := {xn = nh, n =

0, . . . , N}, with h = xend/N , the DQ method based on the
exponentially fitted formula (20) reads

y(xn) ≈ f(xn) + (Iψ)(xn)+

h

n−1∑
j=0

2∑
i=1

ãik(xn−j − ξ̃ih)y(xj + ξ̃ih), (22)

n = 1, ..., N , where

(Iψ)(xn) =

∫ 0

−∞
k(xn − s)ψ(s)ds,

or is a suitable approximation of such integral, as it will
be clarified later. To obtain a fully discretization of (16), an
approximation of y(xj+ξ̃ih) is needed. Therefore, similarly to
[11], we introduce an approximation by interpolation function
P , on the points

(xj+l, yj+l), l = −r−, . . . , r+.

Two choices are available: the first one is the Lagrange
polynomial interpolation, easy but unnatural since we are
assuming that the solution is a periodic function. The second
one is a mixed-trigonometric interpolation, which is exact on
the fitting space (17) by design. In both cases the interpolating
function P can be written as follows

P(xj + sh) =

r+∑
l=−r−

pl(s)yj+l,

where pl(s) do not depend on xj but only on r−, r+. In
particular, in the case of polynomial interpolation pl(s) are

the fundamental Lagrange polynomials. In the case of mixed-
trigonometric interpolation, if r− + r+ = 3, it results pl(s) =
bl+r−(s), where bl(s) are the solution of the linear system

b0(s) + b1(s) + b2(s) + b3(s) = 1,

b1(s) + 2b2(s) + 3b3(s) = s+ r,

b0(s) + cos(z)b1(s) + cos(2z)b2(s) + cos(3z)b3(s) =

cos(z(s+ r)),

sin(z)b1(s) + sin(2z)b2(s) + sin(3z)b3(s) = sin(z(s+ r))
(23)

Therefore bl(s) are oscillatory functions depending on z.
Once we have approximated the values of the solution

y(xj + ξ̃ih) in (22) by the interpolation technique, the fully-
discrete method is the following

yn = f(xn) + (Iψ)(xn)+

h

n−1∑
j=0

2∑
i=1

ãik(xn−j − ξ̃ih)

r+∑
l=−r−

pl(ξ̃ih)yj+l, (24)

n = 1, ..., N . We set r+ ≤ 1 to avoid the use of values of the
solution in future mesh points. The method (24) is explicit for
r+ = 0, and implicit for r+ = 1.

The error of the DQ method (24) depend on the interpolation
error and on the error of the quadrature rule (20). In particular,
the following theorem analyzes the error and the convergence
of the DQ method

Theorem 3.1: Assume that VIE (16) has a unique periodic
solution y(x) ∈ C5([0, xend]). Let apply the exponentially
fitted DQ method (24), where the functions pl(s) are the
Lagrange fundamental polynomials with r := r+ + r ≥ 3,
or pl(s) = bl+r−(s), where bl(s) are solution of the sys-
tem (23). Then, if (Iψ)(x) is discretized by (Īψ)(x), with
|(Iψ)(x)− (Īψ)(x)| ≤ Cψh

4, x ∈ [0, xend], it results

max
1≤n≤N

|y(xn)yn| ≤ Ch4, as h→ 0.

We underline that the proposed method has the same order
of a DQ method based on standard 2-nodes Gauss quadrature
rule. The advantage of the exponentially fitted DQ method
with mixed-trigonometric interpolation, is that the error is
smaller when periodic problems are treated and the gain is
more relevant for high frequency values.

IV. NUMERICAL INTEGRATION OF HIGH OSCILLATING
FUNCTIONS

In this section we consider the numerical computation of
integrals of oscillatory functions over unbounded intervals

I =

∫ ∞

0

e−xf(x)dx, (25)

where the integrand f(x) is of the form

f(x) = f1(x) sin(ωx) + f2(x) cos(ωx). (26)

The coefficients f1(x) and f2(x) are assumed smooth enough
to be well approximated by polynomials. The accurate com-
putation of integrals of the form (25) is needed in various
applications, see e.g. [4], [36], [39], [42].
As in the previous sections we make use of the exponential
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fitting strategy in order to derive quadrature formulae of the
form

I ≃ IN =

N∑
k=1

wkf(xk), (27)

where the unknown weights wk and nodes xk depend on the
frequency ω, and are derived in correspondence of the fitting
space

F = {xn−1e±µx, n = 1, 2, ..., N, }, (28)

as described in [17], [21], [22] for unbounded integration
interval, and [45] for bounded integration interval. Hence we
associate to the quadrature formula (27) the functional

L[f(x),a] =
∫ ∞

0

e−xf(x)dx−
N∑
k=1

, wkf(xk),

where a = [w1,w2, ..., wN , x1, x2, ..., xN ] is a vector with 2N
components which collects the weights and the nodes, and
impose its exactness on the fitting space (28). We then obtain
the nonlinear system
N∑
k=1

wkx
n−1
k

η⌊n−2
2 ⌋(x

2
kZ)

η⌊n−2
2 ⌋(0)

=Mn−1(Z), n = 1, . . . , 2N,

(29)
where

Mn(Z) =
n!

(1− Z)⌈
n+1
2 ⌉ (30)

with Z = µ2 = −ω2 and the set of functions ηm(Z), m =
−1, 0, 1, 2, ... are defined as follows (see for instance [16],
[49]).

η−1(Z) =


cos(|Z|1/2) if Z ≤ 0

cosh(Z1/2) if Z > 0

, (31)

η0(Z) =


sin(|Z|1/2)/|Z|1/2 if Z < 0

1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0

(32)

and those with m > 0 are further generated by recurrence

ηm(Z) =
1

Z
[ηm−2(Z)− (2m− 1)ηm−1(Z)], m ≥ 1 (33)

if Z ̸= 0, and by following values at Z = 0:

ηm(0) =
1

(2m+ 1)!!
, m ≥ 1. (34)

Then the Exponentially Fitted (EF) Gauss-Laguerre quadrature
formula is of the form (27), with weights and nodes deter-
mined as solutions of the nonlinear system (29). Such formula
reduces to classical Gauss-Laguerre quadrature formula as the
frequency ω tends to zero. Moreover the error of such formula
has the asymptotic decay

|I − IN | = O(ω−N−1), ω → ∞. (35)

Then the EF Gauss-Laguerre quadrature rules have the same
optimal asymptotic order of steepest descent methods in [50]
and complex Gaussian quadrature rules in [1], also maintaining
a good accuracy for small values of ω, as they naturally tend

to the corresponding classical Gauss-Laguerre formulae for
ω → 0. As proved in [17] the nonlinear system (29) can be
solved by splitting it into the following linear system for the
weights w = (w1, . . . , wN )T

A(Z, x)w = b(Z), (36)

and the following nonlinear system for the nodes x =
(x1, . . . , xN )T

F (Z,w, x) = D(Z, x)w − d(Z) = 0, (37)

where

Aij(Z, x) =


x
2(i+r−1)
j ηi+r−2(x

2
jZ), i = 1, . . . , s,

x2i−1
j ηi−1(x

2
jZ), i = s+ 1, . . . , N,

for j = 1, . . . , N,

bi(Z) =



2i+r−1(i+ r − 1)!

(1− Z)i+r
, i = 1, . . . , s,

2i−1(i− 1)!

(1− Z)i
, i = s+ 1, . . . , N,

,

Dik(Z, x) =

 x2i−2
k ηi−2(x

2
kZ), i = 1, . . . , r,

x
2(i−r)−1
k ηi−r−1(x

2
kZ), i = r + 1, . . . , N,

for k = 1, . . . , N, and

di(Z) =


2i−1(i− 1)!

(1− Z)i
, i = 1, . . . , r,

2i−r−1(i− r − 1)!

(1− Z)i−r
, i = r + 1, . . . , N.

Also the Jacobian matrix of the Newton iterative method
applied to the nonlinear system (37) has been computed in [17]
by using the differentiation properties of the ηm(Z) functions
[16], [49]. The systems (36) and (37) can be affected by ill-
conditioning as as N and/or ω increase, and the choice of
the initial approximation for Newton’s iterative method is a
quite delicate task, in order to guarantee the convergence of
the iterative process, as discussed in [17], [22]. As a matter of
fact in the paper [17], in order to determine the formulae up
to N = 6, an appropriate choice of the initial approximation
for Newton’s iterative process has been provided. In order to
overcome this problem Modified EF (MEF) Gauss-Laguerre
formulae have been proposed in [21], which share the property
of optimal behaviour for both small and large ω values with the
standard EF rules, while reducing the computation of the nodes
to the solution of a single nonlinear equation, independently
of the number N of quadrature nodes, and also reducing the
ill conditioning issues related to the standard EF procedure as
N and ω increase.

The MEF Gauss-Laguerre quadrature rule is defined by

I ≃ IN =
N∑
i=1

(aif1(xi) + bif2(xi)) (38)
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where the functions f1 and f2 are given in (26). The frequency
dependent nodes xi = xi(ω), i = 1, ..., N , are defined as the
smallest N positive solutions of the nonlinear equation

fN (x, ω) = 0, (39)

where

fN (x, ω) =
N∑
n=0

CNn (Z)xn
η⌊n−1

2 ⌋(x
2Z)

η⌊n−1
2 ⌋(0)

, Z = −ω2, (40)

where CN (Z) ≡ 1, and C0(Z), ..., CN−1(Z) are computed as
solution of the linear system

N−1∑
j=0

Mi+j(Z)C
N
j (Z) = −MN+i(Z), (41)

for i = 0, ..., N − 1, with the moments Mn(Z) defined in
(30). Moreover ai(ω), bi(ω) are frequency-dependent weights,
computed as

ai(ω) =

∫ ∞

0

e−xli(x) cos(ωx)dx,

bi(ω) =

∫ ∞

0

e−xli(x) sin(ωx)dx,

where li(x) is the i − th Lagrange fundamental polynomial
with respect to the abscissae xi, i = 1, ..., N. The solvability of
the nonlinear equation (39) has been analyzed in [21], together
with the choice of a suitable initial approximation for the
Newton iterative process, which allows to construct formulae
with a larger number of nodes with respect to EF Gauss-
Laguerre formulae. Moreover the error of the MEF Gauss-
Laguerre quadrature formulae has the same asymptotic decay
as in (35).
In order to show the effectiveness of the proposed exponen-
tially fitted formulae, we report in Figure 3 the results obtained
by classical, EF and MEF Gauss-Laguerre quadrature rules on
the problem∫ ∞

0

e−x cos[(ω + 1)x]dx =
1

1 + (1 + ω)2
. (42)

The integrand f(x) = cos[(ω + 1)x] is of form (26) with
f1(x) = sin(x) and f2(x) = cos(x). We moreover suppose
not to know the frequency exactly, i.e. by considering the exact
frequency given by ω = (1+δ)ω̄, and we derive the MEF and
EF methods in correspondence of the frequency ω̄. We plot
in Figure 3 the error obtained on problem (42) with different
values of δ. We observe as the MEF error is in any case smaller
than the classical error, and behaves in the same way as the
EF error.

V. CONCLUSION

We have presented a selection of adapted numerical methods
for evolutionary problems, by means of the employ of non-
polynomially based finite difference methods or quadrature
rules resulting to be more efficient than the standard ones
based on polynomials.

As regards PDEs, we have considered adapted finite dif-
ference schemes based on trigonometrical fitting for λ-ω
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Fig. 3. The ω̄ dependence of the errors on problem (42) with N = 6
and ω = (1 + δ)ω̄.

problems exhibiting a periodic wavefront with constant speed
in time and space. The resulting scheme results to be more
stable than the classical one based on polynomially fitted finite
differences.

For VIEs with periodic solution, we illustrated an exponen-
tially fitted DQ method, whose error is smaller than standard
methods when periodic problems are treated. Future develop-
ments may concern a further investigation on the collocation
method introduced in [5], possibly improved by multistep
technique, as done for example in [6]–[8], [15], [18]–[20],
[23]–[27].

We moreover described the construction of EF and MEF
Gauss-Laguerre quadrature rules for the numerical computa-
tion of integrals of high oscillating functions over unbounded
domains, providing a massive improvement in accuracy with
respect to classical Gauss-Laguere formulae when the fre-
quency of oscillation increases. The MEF quadrature rules can
be computed for bigger values of N and ω with respect to the
EF ones, and their construction is also less expensive. This
approach can be extended also to the case of integral over a
bounded interval, and then be used to improve the presented
methods for Volterra integral equations.
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