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Crack Identification in Beams Using Haar Wavelets
and Machine Learning Methods

Ljubov Jaanuska, Helle Hein

Abstract—This article addresses a numerical identification of
some characteristic parameters of cracks in a vibrating beam.
The beam rests on Pasternak elastic foundation. The depth or
location of crack(s) is predicted using the feedforward artificial
neural networks or the random forest method. The machine
learning methods are trained twice using two independent
datasets based on the natural frequencies or the Haar wavelet
transform of the first or third mode shapes. The approaches
are compared to each other. The significance of the Haar
wavelet transform and the random forest lies in their ability to
make relatively fast parameter predictions; however, the complex
approach of Haar wavelets and neural networks provides more
precise results.

Index Terms—open crack, elastic foundation, Haar wavelets,
neural networks, random forest

I. INTRODUCTION

THE soil-structure interaction problems play an important
role in civil engineering (e.g. construction of pipelines,

road surfaces, building foundations, etc.). Some of the prob-
lems (e.g. contact pressure distribution, buckling, cracks in the
medium, etc.) can be idealized and solved by modeling a beam
on an elastic foundation.

There are various models of beams on an elastic founda-
tion described in literature, e.g. Winkler, Pasternak, Vlasov,
Filonenko-Borodich, Leontiev models, etc; however, the first
two models are widely used in engineering for the static and
dynamic analysis of the beams resting on an elastic foundation
for their simplicity. In Winkler one parameter model, the
foundation is composed of infinitely close elastic springs
which are independent of each other; the vertical surface
displacement of the beam is assumed to be proportional to the
contact pressure at any point [1]. Pasternak improved Winkler
model by adding shear interactions. Pasternak two parameter
model represents a system of closely placed elastic springs
coupled to each other with elements which transmit the shear
force proportional to the slope of the foundation surface [2].

The characteristic functions of the beam on an elastic foun-
dation can be calculated using various numerical solutions. For
instance, Providakis and Beskos studied the problem using
the boundary element method [3]. Sheinman et al. obtained
the axial displacements of the isotropic simply supported
beams on an elastic foundation by the aid of the Rayleigh-
Ritz procedure [4]. Chen applied the differential quadrature
element method [5] . Yan et al. studied the dynamic response
of functionally graded beams with an open crack resting on an
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elastic foundation using Hamilton’s principle and Galerkin’s
method [6].

A large number of the numerical solutions are based on
mesh methods, such as the finite element method [7], [8], the
finite difference method [9], the spectral finite element method
[10], etc. Such methods have some deficiencies related to the
mesh definition, calculation and computer storage.

The aim of this paper is to focus on more time-efficient
and less computationally intensive multidimensional mesh-
free methods for predicting the characteristic parameters of
cracks occurring in isotropic beams resting on an elastic
foundation. For this reason, the machine learning approach
has been chosen. Two the most outstanding methods are the
back propagation artificial neural networks (ANNs) and the
random forest (RF). Due to the flexibility and accuracy, the
back propagation ANNs have been widely used in manifold
areas of research since the determination of the ANN by
Werbos in 1974 and rediscovery by Parker in 1985 and by
Rumelhart and McClelland in 1986 [11]. In the field of struc-
tural mechanics and materials, Waszczyszyn and Ziemiański
applied the ANNs to the following problem sets: simulation of
physical relationship in case of bending of elastoplastic beams,
neural simulation of return mapping algorithm for analysis of
elastoplastic plane stress, estimation of fundamental vibration
periods of real buildings, detection of damage in a steel
beam and identification of loads applied to an elastoplastic
beam. The ANNs produced robust and trustworthy results
[12]. Chojaczyk provided an approbative review of ANNs and
their applications in the structural reliability analysis of steel
structures for the period 1989 and 2012; according to the
author, the ANNs can be efficient alternatives to the traditional
reliability methods for the analysis of complex structures [13].
Zhang and Subbarayan evaluated the ANNs for the optimal
design of structural systems and confirmed that the advantage
of the ANNs lies in the obviating the need for the exact
function evaluations during the optimization, which is the main
source of the computational expense during the optimal design
of engineering systems [14]. Fang, et al. successfully applied
the ANNs to the free vibration analysis and the structural
damage detection (location and severity of crack damage) in
the cantilever [15]. Unfortunately, no application of the back
propagation ANNs to the cracked homogeneous beam resting
on Pasternak foundation has been found in literature.

The RF is a decision-tree-based method, which was con-
ceived as a simple and accurate method of classification and
regression in 2001 [16]. Due to its youthhead, the RF has
been adopted only to the researches connected to data mining,
image analysis and applied statistics. Wu, et al. successfully
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Fig. 1. Euler-Bernoulli beam on Pasternak foundation.

applied the RF to the study on imbalanced text categorization
[17]. Calderoni, et al. developed a complex method for indoor
localization using the RF classifiers [18]. Tüselmann, et al.
described a new method based on the RF for determining
journal rankings [19]. The results produced by the RF in
various researches are trustworthy[20]. In the field of structural
engineering, only a few papers on application of RF can be
found. Sainlez and Heyen conducted performance monitoring
of an industrial boiler in 2010 [21]. Tooke, et al. used the
RF to predict the building ages [22]. Zhou, et al. applied
the RF recursive feature elimination for damage detection
in four-storey steal shear benchmark building model [23].
Nevertheless, a large number of papers address the inverse
problems of structural mechanics by applying the predecessors
of the RF, e.g. CART and C4.5 methods [24], [25], [26].

The main goals of the present paper are to identify the
characteristic parameters of the crack(s) in the homogeneous
beam resting on Pasternak elastic foundation using two dif-
ferent machine learning methods (the conventional ANNs and
the most recent RF) and two different datasets (based on the
natural frequencies and the Haar wavelet transform of the
mode shapes), to compare the methods to each other and to
verify the adaptability of the RF to the structural mechanics.
The integrity and computational efficiency of the methods
are demonstrated through a couple of case studies. Since the
application of the interest falls into the low frequency region,
the Euler-Bernoulli beam theory is chosen.

The present paper is organized in six sections. Section 2
describes the physical model. Section 3 introduces the RF
method. Section 4 is devoted to the Haar wavelet transform. In
Section 5, numerical examples are given. Finally, in Section 6
the conclusions and final remarks are drawn.

II. STATE EQUATIONS AND BOUNDARY CONDITIONS

Consider an Euler-Bernoulli beam of length L with n
cracks. The beam resting on Pasternak foundation has a
rectangular cross-section, constant flexure rigidity EI and
mass density m (Fig. 1).

According to the approach proposed by Rizos et al. [27] and
Shifrin and Ruotolo [28], a beam can be divided into n + 1
sections connected by springs; the springs represent n cracks.
The differential equation of the transverse vibration in each
region is

EI
∂4wi(xi, t)

∂x4i
−G2

∂2wi(xi, t)

∂x2i
+G1wi(xi, t)+

+m
∂2wi(xi, t)

∂t2
= 0, i = 1, ..., n+ 1,

(1)

where G1 is the Winkler foundation modulus, G2 is the shear
modulus of Pasternak foundation, i is the number of the
section and wi(xi, t) is the transverse deflection. The solution
of Eq.1 is sought in the form:

wi(xi, t) =Wi(xi)sin(ωt), (2)

where Wi(xi) is the mode shape of the i-th beam section and
ω is the natural frequency. Substituting Eq.2 into Eq.1, and
introducing a variable:

ξi =
xi
Li

(3)

the transverse vibration takes the form:

d4Wi(ξi)

dξ4i
− µi

d2Wi(ξi)

dξ2i
+ (γi − σi)Wi(ξi) = 0, (4)

where

µi =
G2L

2
i

EI
, γi =

G1L
4
i

EI
, σi =

mω2L4
i

EI
. (5)

The characteristic equation of Eq.4 can be presented as:

λ4 − µiλ2 + (γi − σi) = 0 (6)

and the general solution of Eq.4 is

Wi = C1,ie
λ1ξi + C2,ie

λ2ξi + C3,ie
λ3ξi + C4,ie

λ4ξi , (7)

where λ1, ..., λ4 are the roots of Eq.6 and C1,i, ..., C4,i are
the integration constants to be determined from the continuity
and boundary conditions. The details of the different solutions
are given by Rosa and Maurizi in [29].

Due to the localized crack effect, the beam with a crack of
depth aj at point yj can be presented as two uniform beams
joined together by massless linear spring at the crack. The
bending constant of the spring is cj [30]:

cj = 5.346
h

EI
J(ηj), ηj =

aj
h
, j = 1, ..., n, (8)

where h is the height of the beam and J(ηj) is the dimen-
sionless local compliance function [30]:

J(ηj) = 1.8624(ηj)
2 − 3.95(ηj)

3 + 16.375(ηj)
4−

− 37.226(ηj)
5 + 76.81(ηj)

6 − 126.9(ηj)
7+

+ 172(ηj)
8 − 143.97(ηj)

9 + 66.56(ηj)
10. (9)

The continuity conditions at the crack yj are expressed as
following:

Wj(yj) =Wj+1(yj)

W
′′

j (yj) =W
′′

j+1(yj)

W
′′′

j (yj) =W
′′′

j+1(yj)

W
′

j (yj) + cjW
′′

j (yj) =W
′′

j+1(yj), j = 1, 2, ..., n,

(10)

where Wj and Wj+1 are the mode shapes of the left and right
beam sections, respectively.
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In the present paper, a beam with clamped ends is investi-
gated. The boundary conditions are as following:

W1(0) =W
′

1(0) = 0,

Wn+1(1) =W
′

n+1(1) = 0.

(11)

Inserting Eq.7 into Eq.10 and Eq.11, the matrix equations are
obtained. The natural frequencies are calculated by imposing
zero value on the determinant of the coefficient matrix.

III. RANDOM FOREST

The random forest (RF) is a classifier defined by Breiman
for the classification and regression problems. The statistical
method is based on a large set of unpruned decision trees,
which are known as classifiers. An unpruned tree, or a full
tree, is a tree with many terminal nodes; each terminal node
has minimal impurity and usually contains observations of
one class only. A collection of the unpruned trees form an
ensemble, or a forest.

The idea of combining multiple decision trees originated
with Williams in 1988 [31]. Ho developed it further: for
constructing each tree, he used a fixed portion of randomly
selected features, or a subspace. The method is known as
Random Decision Forest [32]. A bit later, Dietterich proposed
the same idea of the random subspaces for constructing each
node of the tree; in other words, to use a fixed portion of
randomly selected features at each split of the node [33].
Finally, in 2001 Breiman formulated the whole RF algorithm
as following [16]:

1) Generate n random sets of the observations (the boot-
strap replicate sets) from the original set of the observa-
tions, where n is the number of trees in the ensemble.
The size of each random set is the same as the size of the
original set of the observations; however, in the bootstrap
replicate set, the elements of the observation (predictor
variables) are random: some variables are chosen several
times from the original set, some are not at all. Each
random set does not contain approximately 36 per cent
of the original observation; these are called the ”out-of-
bag” observations.

2) Grow the forest of the unpruned classification or regres-
sion trees with minimum observations at each terminal
node. For each tree, use the corresponding bootstrap
set and recursively apply the following subalgorithm to
construct a tree:

a) choose random p predictor variables out of the
original set (if p is equal to the size of the original
set, the case is called bagging);

b) choose a variable out of p which will produce the
best split;

c) split the set into two subsets at the node.
Importantly, no pruning procedure can be applied after
the tree has been fully built [34].

3) Evaluate each observation using all of the trees for which
that observation is in the out-of-bag set. This produces
an independent estimate of the classification error rate.

The approach is similar to the use of separate training
and test sets, or to N-fold cross validation [35].

4) Predict new observations by aggregating the predictions
of each tree of the forest (i.e., majority votes for classi-
fication, average for regression).

Eventually, only a few parameters can be optimized in the
RF: n - the number of trees (this parameter can be adjusted
according to the evaluation based on out-of-bag sets); p - the
number of the predictors used at each node (the smaller is p,
the more reduced correlation is); the number of observations
that the terminal nodes may contain (the default value can be
one, which means the termimal nodes contain only observa-
tions of one class). The other parameters (the variables in the
bootstrap sets and nodes) are random. The detailed guidance
on adjusting these parameters can be found in [36].

The double randomness (at the generation of the bootsrap
sets via bagging and the random subspaces at the nodes) decor-
relates the trees in the ensamble allowing highly correlated
variables to play almost equivalent roles. The decision based
on the decisions from all of the classifiers increases the accu-
racy of the prediction made by one tree-structured classifier.
This explains the efficiency and popularity of the RF in relation
with other classification algorithms. The other advantages of
the method are the impossibility of the overfitting and high
computational efficiency due to the irrelevance of pruning,
which is methodically and algorithmically laboriuos task.

In the present paper, in order to decorrelate the trees and
increase the number of predictor variables in the sets from
five to 32 without increase in the computational time, the Haar
wavelet transform has been applied.

IV. HAAR WAVELETS

In the recent years, the wavelet transform has occasionally
been implemented in structural health monitoring due to the
fact that the wavelet transform does not require the analysis
of the complete structure and has the ability to reveal some
hidden parts of data that other signal analysis techniques fail
to detect. Lepik [37] demonstrated that the Haar wavelets can
be applied for the numerical solving of differential equations.

The Haar wavelet family is a group of square waves [37]:

hi(x) =

 1 for x ∈
[
k
m ,

2k+1
2m

]
,

−1 for x ∈
[
2k+1
2m , k+1

m

]
,

0 elsewhere,
(12)

where m is the index of dilatation and it is equal to 2j ; j =
0,1,...,J indicates the level of the wavelet; k = 0,1,...,m-1 is the
translation parameter. Integer J determines the maximal level
of resolution. Index i is calculated according to the formula
i = m+ k + 1.

Proceeding from the definition above (Eq. 12), any function
y(x), which is square integrable in the interval [0,1], can be
expanded into a Haar series with an infinite number of terms:

y(x) =
∞∑
i=0

cihi(x), (13)
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where the Haar coefficients are determined such that the
integral square error ε is minimized

ε =

∫ 1

0

[y(x)−
m∑
i=1

cihi(x)]
2dx. (14)

Any Haar function hi(x) can be calculated in the collocation
points: xl = (l − 0.5)/2M , where l = 1, 2, . . . , 2M . The
matrix H(i, l) = hi(xl), which is associated with the Haar
wavelets, is obtained as follows:

H(i, l) =

∣∣∣∣∣∣
h1(x1) . . . h1(x2M )
. . . . . . . . .

h2M (x1) . . . h2M (x2M )

∣∣∣∣∣∣ = H.

If the function y(x) is a piece-wise constant or it can be
approximated as a piece-wise constant, the sum is terminated
as:

y(xl) =
2M∑
i=1

cihi(x) = ct2Mh2M , (15)

where the coefficient vector is

ct2M = y∗2MH
−1
2M×2M (16)

and

y∗2M = [y(1/4M)y(3/4M)...y((4M − 1)/4M). (17)

Both matrices H and H−1 are calculated once and contain
zeros; therefore, the Haar transform works faster than Fourier
transform.

V. NUMERICAL RESULTS

In the present paper, the depth or location of the crack(s) in
the homogeneous beam resting on Pasternak elastic foundation
were predicted using two different machine learning methods:
the ANNs and the RF. For the training, three different datasets
were calculated numerically: one was based on five natural
frequencies and other two datasets were based on the Haar
wavelet transform of the first or third mode shapes into 16
coefficients. Importantly, the test patters had not been shown
to the systems in advance. In the tables, the average result of
100 runs and the relative error of the predictions are shown.

Example 1. In this case study, the depth of an open crack
located in the middle of the vibrating clamped beam resting on
Pasternak foundation (G1 = 100, G2 = 50) was investigated.
The ratio of the height of the beam to the length was equal to
1/10. The depth of the crack was predicted by two approaches.
In both methods, there were 106 training patterns and 10 test
patterns in the dataset.

In Table I, the results are based on the feedforward back
propagation ANN with one input, one output and one hidden
layer with 20 neurons on it. The ANN was trained by
Levenberg-Marquardt method; the elliot sigmoid was used as
a transfer function. In Table I, the first column shows the
numerically computed depth of the crack; column two present
the results of the ANN trained by five natural frequencies;
in the rest columns, the results which are based on the Haar
wavelet transform into 16 coefficients. Importantly, in the last

four columns, the Haar wavelet transform was based on the
first and third mode shapes amplitude comparison [38]:

MSACq =
k∑
i=1

|Wu
q,i −W d

q,i|, (18)

where Wu
q,i is the modal displacement for the i-th mode shape

at coordinate q; u is the structure without any crack; d is
the structure with a crack. In the present paper, the first and
the third mode shapes were used because these contain more
informative data [39].

The accuracy of predictions were estimated by calculating
the relative error and the mean square error (MSE):

Relative−error =

√
(P1−E1)2+(P2−E2)2√

(P 2
1 +P

2
2 )

MSE = 1
n

∑
(P − E)2,

(19)

where P , P1, P2 are the predicted values, E, E1, E2 are the
expected values and n is the number of test patterns.

TABLE I
PREDICTION OF THE DEPTH OF THE CRACK IN THE BEAM RESTING ON

PASTERNAK FOUNDATION (G1 = 100, G2 = 50) USING ANN.

Exact depth Prediction based
on five

frequencies

Prediction based
on the first mode
shape and Haar

transform into 16
coefficients

Exact depth Depth Rel. err. Depth Rel. err.
0.0720 0.0720 0.0003 0.0721 0.0013
0.1160 0.1160 0.0002 0.1161 0.0008
0.1680 0.1678 0.0011 0.1682 0.0009
0.2040 0.2041 0.0004 0.2040 0.0001
0.2680 0.2680 0.0000 0.2682 0.0007
0.2960 0.2960 0.0001 0.2958 0.0007
0.3400 0.3406 0.0016 0.3404 0.0010
0.3840 0.3840 0.0000 0.3841 0.0004
0.4000 0.4000 0.0001 0.4000 0.0001
0.4680 0.4680 0.0001 0.4682 0.0004
MSE 4.10E-08 3.50E-08

Exact depth Prediction based
on the third

mode shape and
Haar transform

into 16
coefficients

Prediction based
on the first and

third mode shape
and Haar

transform into 16
coefficients

Exact depth Depth Rel. err. Depth Rel. err.
0.0720 0.0725 0.0064 0.0715 0.0064
0.1160 0.1160 0.0003 0.1160 0.0004
0.1680 0.1682 0.0012 0.1679 0.0005
0.2040 0.2039 0.0004 0.2035 0.0024
0.2680 0.2674 0.0023 0.2681 0.0003
0.2960 0.2961 0.0004 0.2958 0.0006
0.3400 0.3402 0.0006 0.3395 0.0014
0.3840 0.3840 0.0001 0.3843 0.0009
0.4000 0.4000 0.0000 0.4001 0.0002
0.4680 0.4682 0.0003 0.4630 0.0108
MSE 7.50E-08 2.59E-05

In Table II, the results are based on the RF and the same
dataset as in the previous computation. To find the best values
for n (the number of trees in the ensemble) and p (the number
of the predictors at nodes) that can best predict the depth of the
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crack, the parameters were optimized based on the root mean
square error and the out-of-bag estimation. The n values were
tested from one to 50 with the interval of three, while p was
tested from one to 32 using a single interval. In the case of
the natural frequencies, the best results were obtained when
there were fourteen trees in the ensemble, four predictors at the
nodes and two observations at the terminal nodes (see Fig. 2);
in case of the Haar wavelet transform, the best results were
obtained when there were twelve trees in the ensemble, ten
predictors at the nodes and one observation at the terminal
nodes (see Fig. 3).
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Fig. 2. Out-of-bag estimation for
the RF trained by five frequencies.
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Fig. 3. Out-of-bag estimation for
the RF trained by 16 coefficients.

TABLE II
PREDICTION OF THE DEPTH OF THE CRACK IN THE BEAM RESTING ON

PASTERNAK FOUNDATION (G1 = 100, G2 = 50) USING RF.

Exact depth Prediction based
on five

frequencies

Prediction based
on the first mode
shape and Haar

transform into 16
coefficients

Exact depth Depth Rel. err. Depth Rel. err.
0.0720 0.0699 0.0292 0.0707 0.0183
0.1160 0.1141 0.0164 0.1143 0.0150
0.1680 0.1659 0.0125 0.1671 0.0051
0.2040 0.2018 0.0108 0.2021 0.0092
0.2680 0.2667 0.0049 0.2683 0.0009
0.2960 0.2955 0.0017 0.2964 0.0015
0.3400 0.3395 0.0015 0.3426 0.0076
0.3840 0.3845 0.0013 0.3849 0.0023
0.4000 0.4005 0.0013 0.4008 0.0019
0.4680 0.4685 0.0011 0.4683 0.0007
MSE 2.02E-06 1.76E-06

Exact depth Prediction based
on the third

mode shape and
Haar transform

into 16
coefficients

Prediction based
on the first and

third mode shape
and Haar

transform into 16
coefficients

Exact depth Depth Rel. err. Depth Rel. err.
0.0720 0.0726 0.0081 0.0701 0.0270
0.1160 0.1164 0.0037 0.1138 0.0187
0.1680 0.1682 0.0010 0.1660 0.0122
0.2040 0.2041 0.0006 0.2025 0.0075
0.2680 0.2667 0.0047 0.2678 0.0009
0.2960 0.2938 0.0073 0.2960 0.0001
0.3400 0.3405 0.0014 0.3403 0.0008
0.3840 0.3846 0.0015 0.3849 0.0024
0.4000 0.3992 0.0019 0.4002 0.0005
0.4680 0.4693 0.0028 0.4604 0.0163
MSE 1.00E-06 7.34E-06

TABLE III
PREDICTION OF THE LOCATION OF TWO CRACKS IN THE BEAM RESTING

ON PASTERNAK FOUNDATION (G1 = 10, G2 = 2.5 * π2) USING ANN.

Exact locations
of two cracks

Prediction based on five
frequencies

Crack 1 Crack 2 Crack 1 Crack 2 Rel. err.
0.1800 0.3700 0.3366 0.6809 0.8460
0.2100 0.4400 0.3886 0.6620 0.5844
0.2400 0.7900 0.2460 0.7546 0.0435
0.2700 0.7000 0.2848 0.7018 0.0199
0.3000 0.8500 0.2402 0.6448 0.2371
0.3300 0.4800 0.4048 0.5786 0.2125
0.3600 0.7100 0.3205 0.6508 0.0894
0.3900 0.6600 0.3590 0.6320 0.0545
0.4200 0.8100 0.3474 0.6373 0.2053
0.4500 0.6800 0.3701 0.5916 0.1461
0.4800 0.7100 0.3657 0.5679 0.2128
0.5100 0.7000 0.3677 0.5597 0.2307
0.5700 0.7200 0.3522 0.6131 0.2642
0.6600 0.8100 0.2897 0.6710 0.3786

MSE 0.0250 0.0255

Exact locations
of two cracks

Prediction based on the
first mode shape and

Haar transform into 16
coefficients

Crack 1 Crack 2 Crack 1 Crack 2 Rel. err.
0.1800 0.3700 0.2487 0.4682 0.2913
0.2100 0.4400 0.3513 0.6091 0.4520
0.2400 0.7900 0.3094 0.7421 0.1021
0.2700 0.7000 0.2519 0.7193 0.0353
0.3000 0.8500 0.3495 0.8611 0.0563
0.3300 0.4800 0.3198 0.5476 0.1174
0.3600 0.7100 0.3342 0.6771 0.0525
0.3900 0.6600 0.3473 0.6492 0.0575
0.4200 0.8100 0.3904 0.7636 0.0603
0.4500 0.6800 0.4220 0.7389 0.0800
0.4800 0.7100 0.4939 0.7444 0.0433
0.5100 0.7000 0.4856 0.7067 0.0292
0.5700 0.7200 0.5379 0.7539 0.0508
0.6600 0.8100 0.4429 0.7343 0.2201

MSE 0.0062 0.0043

Exact locations
of two cracks

Prediction based on the
first and third mode

shape and Haar transform
into 16 coefficients

Crack 1 Crack 2 Crack 1 Crack 2 Rel. err.
0.1800 0.3700 0.1484 0.4822 0.2833
0.2100 0.4400 0.2322 0.4450 0.0467
0.2400 0.7900 0.2417 0.7805 0.0117
0.2700 0.7000 0.2815 0.6911 0.0194
0.3000 0.8500 0.3270 0.8046 0.0586
0.3300 0.4800 0.4199 0.5840 0.2360
0.3600 0.7100 0.3808 0.7040 0.0272
0.3900 0.6600 0.3844 0.6579 0.0078
0.4200 0.8100 0.3904 0.7942 0.0368
0.4500 0.6800 0.4371 0.6826 0.0161
0.4800 0.7100 0.4729 0.7152 0.0103
0.5100 0.7000 0.4756 0.6849 0.0434
0.5700 0.7200 0.5379 0.7036 0.0393
0.6600 0.8100 0.4703 0.8348 0.1831

MSE 0.0036 0.1524
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TABLE IV
PREDICTION OF THE LOCATION OF TWO CRACK IN THE BEAM RESTING ON

PASTERNAK FOUNDATION (G1 = 10, G2 = 2.5 * π2) USING RF.

Exact locations
of two cracks

Prediction based on five
frequencies

Crack 1 Crack 2 Crack 1 Crack 2 Rel. err.
0.1800 0.3700 0.5056 0.7689 1.2514
0.2100 0.4400 0.3516 0.6679 0.5503
0.2400 0.7900 0.2256 0.7602 0.0401
0.2700 0.7000 0.2966 0.7106 0.0382
0.3000 0.8500 0.1814 0.6804 0.2296
0.3300 0.4800 0.4346 0.6025 0.2765
0.3600 0.7100 0.3122 0.6493 0.0971
0.3900 0.6600 0.3472 0.6183 0.0779
0.4200 0.8100 0.2884 0.5705 0.2995
0.4500 0.6800 0.3502 0.5820 0.1715
0.4800 0.7100 0.3324 0.5319 0.2699
0.5100 0.7000 0.3443 0.5237 0.2794
0.5700 0.7200 0.3380 0.5637 0.3046
0.6600 0.8100 0.2344 0.6064 0.4515

MSE 0.0392 0.0378

Exact locations
of two cracks

Prediction based on the
first mode shape and

Haar transform into 16
coefficients

Crack 1 Crack 2 Crack 1 Crack 2 Rel. err.
0.1800 0.3700 0.2368 0.4054 0.1627
0.2100 0.4400 0.3530 0.5498 0.3698
0.2400 0.7900 0.2757 0.7361 0.0783
0.2700 0.7000 0.2640 0.7312 0.0423
0.3000 0.8500 0.2991 0.8132 0.0408
0.3300 0.4800 0.3337 0.6005 0.2070
0.3600 0.7100 0.3289 0.7272 0.0446
0.3900 0.6600 0.3666 0.6574 0.0307
0.4200 0.8100 0.3947 0.7541 0.0672
0.4500 0.6800 0.3588 0.7114 0.1183
0.4800 0.7100 0.4312 0.7057 0.0572
0.5100 0.7000 0.4618 0.6980 0.0557
0.5700 0.7200 0.4722 0.7321 0.1073
0.6600 0.8100 0.5464 0.7667 0.1164

MSE 0.0046 0.0030

Exact locations
of two cracks

Prediction based on the
first and third mode

shape and Haar transform
into 16 coefficients

Crack 1 Crack 2 Crack 1 Crack 2 Rel. err.
0.1800 0.3700 0.1799 0.4680 0.2382
0.2100 0.4400 0.2134 0.4463 0.0147
0.2400 0.7900 0.2732 0.7832 0.0410
0.2700 0.7000 0.2833 0.6644 0.0507
0.3000 0.8500 0.3854 0.8257 0.0985
0.3300 0.4800 0.3727 0.5702 0.1713
0.3600 0.7100 0.3892 0.7156 0.0373
0.3900 0.6600 0.3590 0.6297 0.0565
0.4200 0.8100 0.4072 0.8044 0.0153
0.4500 0.6800 0.4287 0.6374 0.0584
0.4800 0.7100 0.4659 0.6917 0.0270
0.5100 0.7000 0.4514 0.6890 0.0688
0.5700 0.7200 0.4972 0.7330 0.0805
0.6600 0.8100 0.4130 0.8117 0.2364

MSE 0.0057 0.0017

Example 2. In this case study, the locations of two cracks
in the scaled vibrating clamped beam resting on Pasternak
foundation (G1 = 10, G2 = 2.5 * π2 ) were predicted.

The depths of the cracks were equal to 2/10 of the beam
height. The ratio of the height of the beam to the length was
equal to 1/10. There were 130 training patterns and 14 test
patterns in the dataset. For the ANN training, the same ANN
was used as in the previous example. The average results based
on the ANN training are shown in Table III. An attempt to
add four hidden layers and create a five-layer diamond shaped
ANN with 40, 60, 80, 60, 40 neurons on each layer did not
give any good results; the relative error increased.

In case of the RF, the number of trees in the first forest was
increased to 300 to predict the location of the first crack in
the beam. In the second forest, there were 270 trees to predict
the destination from the left end of the beam to the second
crack. Also there were four predictors at the nodes and two
observations at the terminal nodes. The average results of 100
runs are shown in Table IV.

VI. CONCLUSION

A complex approach of the ANN, the RF, the Haar wavelet
transform and the natural frequencies is described in this paper
for the localization of crack(s) in the homogeneous clamped
beam resting on Pasternak elastic foundation. Both machine
learning methods were similarly efficient and showed quite the
same results; however, the RF worked faster and was easier to
adjust. Moreover, the results were more precise if the machine
learning methods were trained by the patterns obtained via the
Haar wavelets transform of the first and third mode shapes; the
second mode shape does not contain any useful information.
Therefore, it is assumed the present research can serve as a
good reference for future numerical research.
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