
 

 

  
Abstract— In many cases solution for stability of plate 

resting on elastic foundation problems have been available for limited 
regular geometries, but where irregular boundaries or partial contact 
are encountered difficulties arise because it will be necessary to 
describe the governing equation of motion in a general mathematical 
form. The intention of this study is to extend analytical solutions of 
the discrete one-dimensional beam elements resting on elastic 
foundation for solution of plate buckling problems. The solution can 
be stated as an extension of the so-called discrete parameter approach 
where the physical domain is broken down into discrete sub-domains. 
The derivations of the governing differential equations and geometric 
stiffness terms obtained to observe the influences of foundation 
parameters. Analytical solution of the discrete one-dimensional 
elements extended for solution of complex plate problems.  
 
 

Keywords— Geometric stiffness matrices, elastic foundation, 
stability, grillage of beams, FEM.  

I. INTRODUCTION 
LATES on elastic foundations have received considerable 
attention due to their wide applicability in many 

engineering disciplines. Since the interaction between 
structural foundations and supporting soil has a great 
importance in many engineering applications, a considerable 
amount of research has been conducted on plates on elastic 
foundations. Many studies have been done to find a convenient 
representation of physical behaviour of a real structural 
component supported on a foundation[1-5]. The usual 
approach in formulating problems of beams, plates, and shells 
continuously supported by elastic media is based on the 
inclusion of the foundation reaction in the corresponding 
differential equation of the beam, plate, or shell.  
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This simplest simulation of an elastic foundation is 
considered to provide vertical reaction by a composition of 
closely spaced independent vertical linearly elastic springs. 
Thus the relation between the pressure and deflection of the 
foundation can be written as; 

p(x,y)=k1 w(x,y) 
 where p(x,y) is distributed reaction from the foundation due 

to applied  load and  k1 is Winkler parameter with the unit of 
force per unit area/per unit length (force/length3). 

Then the governing differential equation or Lagrange’s 
equation of a plate on Winkler foundation subjected to 
combined action of transverse load and biaxial in-plane 
loading can be derived as; 
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where, w is  vertical deflection, D is flexural rigidity of the 
plate q( x,y ) is the external load on the plate and Nx and Ny 
are in-plane loads in x and y directions respectively, 

This equation is applicable to all types of plates resting on 
one-parameter elastic foundation problems.  If there are no any 
loads other than the in-plane loads the equation will define an 
eigenvalue problem which lets us to find out the critical 
buckling loads. That is the governing differential equation of 
the plates under static buckling of plates is 
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Currently, there exist approximate and numerical methods 
to solve the governing differential equations of plates resting 
on one-parameter elastic foundation. Many studies have been 
done related to such problems. Before embarking on a review 
of these results, it is useful to examine where we stand in 
relation to one-dimensional elements supported by such 
foundations. Wang, et al. [6] presented relationships between 
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the buckling loads determined using classical Kirchhoff plate 
theory and shear deformable plate theories on Pasternak 
foundation. Using the relationships buckling solutions of the 
Reissner-Mindlin and Reddy plate theories can be readily 
obtained from known buckling solutions of the Kirchhoff plate 
theory without the Pastemak foundation. It is also noted that 
the relationships are also applicable for the Winkler 
foundation as a special case of the Pasternak foundation. Saha, 
et al. [7] studied the dynamic stability of a rectangular plate on 
non-homogeneous foundation, subjected to uniform 
compressive in-plane bi-axial dynamic loads and supported on 
completely elastically restrained boundaries. They derived the 
equation governing the small amplitude motion of the system 
by a variational method. They also studied the effects of 
stiffness and geometry of the foundation, boundary conditions, 
static load factor, in-plane load ratio and aspect ratio on the 
stability boundaries of the plate for first- and second-order 
simple and combination resonances.  

A broad range of the engineering problems has been solved 
by computer-based methods some numerical and approximate 
methods, such as finite element, finite difference, boundary 
element and framework methods in applied mechanics [8-12] 
have been developed to overcome such problems..Owing to its 
convenience in solution of plate problems as a numerical 
method the finite strip method  have attracted much attention 
from many authors as [13-16]. It is suggested a procedure 
incorporating the finite strip method together with spring 
systems proposed for treating plates on elastic supports. In the 
studies the spring systems simulates different elastic supports, 
such as elastic foundation, line and point elastic supports for 
mixed boundary conditions.  

In order to simplify the problem it is possible to use a grid 
of beam elements to model plates. For the elastic foundation 
soil model underneath plate problems the solution will be too 
much complex and there is no analytical solution other than for 
elementary cases.  

There are many researches concerning analysis of beam 
element resting on elastic foundation Among the references, 
Eisenberger and Clastornik [17] developed the formulations 
based on interpolation (shape) functions for of solution beams 
by finite element method with the exact stiffness matrices. This 
derivations extended to an analytical solution for the shape 
functions of a beam segment on a generalized elastic 
foundation given in [18-19], leading to element-level matrices. 
Conceptually, the matrices obtained in a similar way of the 
finite element method, except that each discrete element 
utilized is equipped with an exact solution. In this study it is 
proposed to investigate an improved finite grid solution for 
stability problems of plates on a one-parameter elastic 
foundation.  The solution can be stated as an extension of the 
so-called discrete parameter approach where the physical 
continuous domain is broken down into discrete sub-domains, 
each endowed with a response suitable for the purpose of 
mimicking problem at hand..  

II. THEORY AND PROBLEM DEFINITION 
In engineering practice, beside static case often one or both 

of the stability and dynamic effects have to be taken into 
consideration to the plate design problems. It will be necessary 
to describe the governing equation of motion of plates in a 
general mathematical form for such cases. This can be 
achieved by inserting both of the inertia force due to the lateral 
translation and in-plane loading simultaneously, in an 
appropriate way, into the governing differential equation for 
static case.  

 

 
Fig. 1. The Representation of a Modal Plates Resting on 
Winkler Foundation Under the Combined Action of 

Transverse Load and Biaxial In-Plane Loads. 
 

Bazant [20] stated that buckling of plates is analogous to 
buckling of columns and frames. The similarities are 
bifurcation type of buckling with similar near the critical load 
and the possibility of solving the critical loads from linear 
eigenvalue problem. Dynamic problems of the plates with 
arbitrary contours and arbitrary boundary condition are very 
difficult or often impossible to solve by the classical methods 
based on the plate governing equations. In some respects 
dynamic behaviour of plates resembles to that of beams. 
Therefore the plates can be modeled as an assemblage of 
individual beam elements interconnected at their neighboring 
joints as represented in Fig. (1). By representing the plate with 
assemblage of individual beam elements interconnected at 
their neighboring joints, the system cannot truly be equal to the 
continuous structure, however sufficient accuracy can be 
obtained similar to the static case shown in Fig. (2).  
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Fig. 2. The Representation of a Modal Plates by  

Parallel sets of one-dimensional elements replaced by the 
continuous surface under the action of biaxial in-plane loads. 

 
By representing the plate shown in Fig. (2) with individual 

beam elements the problem can be reduced to one-
dimensional. Then the governing equation of plate resting on 
Winkler foundation can be reduced in the form one 
dimensional beam element as; 
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The main advantage of the reduction is that the exact 
geometric stiffness matrix can be determined for the beam 
elements. These matrices will be used as a basis of assembling 
the plate problems in a proper way [19]. Then dynamic 
problems of the plates resting on Winkler foundation with 
arbitrary loading and boundary conditions could be solved 
approximately.. 

III. DERIVATIONS AND FORMULATIONS 

With most elements developed to date, there exists no 
rigorous solution for plates except in the form of infinite 
Fourier series for a Levy-type solution. The series solutions 
are valid for very limited cases such as when the second 
parameter has been eliminated, and simple loading and 
boundary conditions exist. Networks of beam elements that 
have no such limitations can represent the plates. The 
properties of beam elements resting on elastic foundations will 
be a very useful tool to solve such complicate problems.  

It is possible to calculate geometric stiffness matrix 
coefficients of a structural element with the procedures similar 
to that obtaining the element stiffness matrix [21]. The degrees 
of freedom of the element are the torsional rotation, vertical 
translation and bending rotation at each end. In the interest of 
consistency it can be assumed that the displacements within 
the span are defined again by the same interpolation functions 
as those already derived. This is not strictly correct because 
displacement interpolation functions under nodal 
displacements do not apply when inertia or axial forces are 
involved. Using the principle of virtual displacements the 
element geometric stiffness terms associated with a constant 

axial force can be evaluated, by evaluating the following 
integrals:  

∫
L

0

ji
Gij dx

dx
)x(d

dx
)x(d

Nk
ψψ

=        (4) 

where N is axial force and ψi and ψj are the shape functions 
associated with bending. Recalling the corresponding shape 
functions for both cases and substituting them into Eqn. (4) 
enables us to evaluate the geometric stiffness matrices [19].  
Geometric stiffness matrix  

For one-parameter foundation case as a compressive axial 
force applied to a beam element, it is obvious that its stiffness 
will reduce. The axial force influences can be included to the 
problem by the consistent geometric stiffness terms. It is 
possible to evaluate the terms without introducing any terms 
due to axial force into the governing differential equation.  

 
Fig. 3. The Deformed Shape of a Simply Supported Axially 

Loaded Beam Element. 
Consider a simply supported beam subjected to compressive 

axial load as shown in Fig. 3. Due to the load the element will 
deformed, the change in length of the element can be obtained 
by the difference of the arc length and the horizontal length. 
From the Figure the arc length is; 
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Work done by the axial force N, the strain energy stored in 

the system, is 

∫ 





=

L

0

2

dx
dx
dw

2
1NN∆   

in this equation w can be defined as  

{ } { }wNxw T=)(   

INTERNATIONAL JOURNAL OF MECHANICS Volume 10, 2016

ISSN: 1998-4448 301



 

 

where {w} is the joint displacement vector and {N} is the 
shape functions have already been obtained matrix of the beam 
element resting on one or two-parameter elastic foundation. 
For constant axial load, it can be rewritten as; 
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where  [ ] { } { }dxNNNk
L
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T
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represents consistent geometric stiffness matrix of the beam 
element. Using this equation, each terms of the matrix in 
general form can be evaluated by; 
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By the equation the consistent geometric stiffness using the 

proper shape functions terms for conventional beam or beam 
element resting on one or two parameter elastic foundations 
can be evaluated. After evaluating the necessary integrations, 
the terms will be obtained as; 
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where 4 1 L
EI4
kLp == λ and N is constant axial 

compressive force 
It is noted that as foundation parameter k1 tends to zero (or 

p→0), the terms in the geometric stiffness equation reduce to 
the conventional beam consistent mass terms obtained by 
Hermitian functions. The correctness of the terms is verified 
that the terms reduce to the following conventional terms in 
matrix form. 
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The normalized terms represent the influence of the 

foundation parameter k1 on the geometric stiffness terms given 
of the geometric stiffness to the corresponding terms of the 
conventional terms of the matrix are portrayed in Figs. 4 to 9. 

 
Fig. 4. The normalized consistent geometric stiffness term 

kG22 
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Fig. 5. The normalized consistent geometric stiffness term 

kG23 

 
Fig. 6. The normalized consistent geometric stiffness term 

kG25.  

 
Fig. 7. The normalized consistent geometric stiffness term 

kG26 

 

Fig. 8. The normalized consistent geometric stiffness term 
kG33 

 
Fig. 9. The normalized consistent geometric stiffness term 

kG36 

From the figures the shape functions and stiffness terms 
related to beams on one- parameter elastic foundations are 
very sensitive to variation of foundation parameters after some 
limits. The solution obtained by inserting Hermitian 
polynomials into strain energy functional that has been derived 
[19]. In order to converge to the exact solution, the beam 
needs to be divided into smaller segments. The solution 
method is acceptable from two points of view. One is the 
usage of the same strain energy function and the second point, 
dividing the beam into smaller elements. On the other hand 
shape functions converge towards Hermitian polynomials 
when the parameter λL becomes smaller as portrayed 
graphically in [21].  

IV. VALIDITY OF THE METHOD 

In this method plates through the lattice analogy at which 
the discrete elements are connected at finite nodal points is 
represented by one dimensional beam elements. Because of 
plane rigid intersection, the elements can resist torsion as well 
as bending moment and shear. Then finite element based 
matrix methods is used to determine stiffness and geometric 
stiffness matrices of one-dimensional beam elements resting 
on elastic foundations by exact shape functions. These 
individual element matrices are used to form the system load 
and stiffness matrices for plates. The matrix displacement 
method based on stiffness-matrix approach is suitable to solve 
gridworks with arbitrary load and boundary conditions. By 
using any convenient numbering scheme to collect all 
displacements for each nodal point in a convenient sequence 
the stiffness and geometric stiffness matrices of the system for 
any type of grids can be generated. As Hrennikoff [22] 
indicated the system cannot truly be equal to the continuous 
structure but solutions adequate for engineering purposes can 
be found with greater ease. 

For checking the validity of the finite grid method (FGM), a 
comparison study was carried out for plates resting on Winkler 
foundations. For this reason a parametric study for uniformly 
loaded SSSS (all edges of the plate are simple supported), 
square plates on one-parameter foundation denoted to be 
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accepted as benchmark results [23] refered to check the 
convergence, validity and accuracy of the solution method as a 
numerical solutions. For convenience and generality the 
following parameter have been introduced; 

D
akk

4
1=   

where a is the length of the square plate, k1 is the Winkler 
foundation parameter and D is the flexural rigidity of the plate. 
For the square plate the buckling load parameters (Nc) have 
been compared with the benchmark [23] values. Tables 1 
represents the non-dimensional buckling load parameters due 
to uniaxial and biaxial inplane loads for SSSS square plates on 
one-parameter elastic foundations 
 

a=1,h=.01.D=
1 E=10920000  

ssss (Nc/π2) 

Nx=1,Ny=0  Nx=1,Ny=1  

Case k FG Ref. Error % FG Ref. Error % 

1 0 3.855 4 3.63 1.924 2 3.8 

2 100 4.87 5.027 3.12 2.436 2.513 3.06 
Table 1. Comparison of the finite grid solution with the 

benchmark results[23] for buckling load cases of the ssss 
square plate in foundation parameters 

From the table it can be seen that the maximum relative 
error for both uniaxial and biaxial inplane loads on the square 
foundationless plate (k=0) and plate resting on Winkler 
foundation cases obtained as less than 4 %. This reflects a high 
degree of accuracy with respect to the reference benchmark 
values. The finite grid solution based on the matrices of one- 
dimensional beam properties for plate buckling problems 
verified with a high degree of accuracy.  

V. CONCLUSION 
the solution of buckling problems is usually much too complex 
and there is apparently no analytical solution other than simple 
cases for plates supported by Winkler foundations. The 
solution method of this technique as grid work analogy is 
based on a treatment of view of use the strain energy functions 
to obtain shape functions and stiffness matrices used to 
develop a more general simplified numerical approach for 
such complicated problems. It is noted that the shape functions 
and geometric stiffness terms related to beams on one- 
parameter elastic foundations are very sensitive to variation of 
foundation parameters after some limits. It can be concluded 
that the finite grid solution as a combination of finite element 
method, lattice analogy and matrix displacement analysis of 
grid works is a useful tool to improve the solution of plate 
stability problems. 
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