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Abstract—In 1805, Young described the so-called Young’s
equation for a liquid drop resting on a planar surface, which since
has been successfully applied for different designs and extended
to cover various physical situations. In this paper, we used the
method developed by Lubarda to derive a Young’s equation
for a liquid drop resting on an axisymmetric concave surface,
which is considered to account for an extended form of non-
planar surfaces. As a result, a new form of Young’s equation
is derived, which can be reduced into the Young’s equation for
either a planar boundary or a vertical tube and accordingly
can be considered as an extended form of Young’s equation for
surfaces of various forms.

Index Terms—Young-Laplace equation, contact angle, Young’s
equation, Boruvka-Neumann equation.

I. INTRODUCTION

THE concept of surface tension was introduced by
Thomas Young and almost simultaneously by Pierre-

Simon Laplace in 1805. In the work of Laplace [1], he
derived an equation to relate the pressure difference between
interior and exterior of the liquid drop with the surface tension.
In Laplace’s essay, he also argued that there shall be an
appropriate contact angle between liquid and solid surface
to reflect the fact that the drop stays stably on the surface.
Later, Young proceeded to discuss Laplace’s formulation and
clarified the result without any formula [2]. Since then, the
equation in terms of contact angles has been called Young’s
equation and has been employed to investigate resting drops
in various situations for more than 150 years. Later, Gibbs [3]
introduced the line tension along the triple contact line and
then by others [4], [5], [6] obtaining the Young’s equation
in a more general form, which can predict the contact angle
more precisely. Afterwards, Young’s equation has been applied
successfully in various problems such as coating [7] and
electowetting [8], [9], [10]. In the works stated above, the
liquid drop was considered to rest on a planar solid substrate.
Recently, a liquid drop resting on an inclined plane [11], [12]
have also been considered.

In this paper, we consider that the liquid drop is placed on a
non-planar surface, which is accounted for by an axisymmetric
concave surface, as shown in Fig. 1. For such a configuration,
we follow the method developed by Lubarda [13] to recover
Young’s law and then the new equations. The results show
that, firstly, not only the liquid-vapor interface but also the
solid-liquid interface satisfies Young-Laplace equation when
adhesion is neglected, and secondly, a new equation is derived
to describe the relation between the tensions and the contact
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angles if the adhesive force at the contact line is considered.
Also shown by the new equation, as obtained by Lubarda [13],
is that the contact angle is independent of gravity as the line
tension is ignored. This equation can also be reduced into
those applying for the cases involving a planar surface and a
vertical tube. The details of the derivation are shown in the
following.

II. FRAMEWORK

We consider that a uniform liquid rests on an axisymmetric
concave surface and is exposed to a uniform vapor atmosphere
above. As shown in Fig. 1, the surface is symmetric with
respect to the z-axis, the cylindrical coordinate system (ρ, θ, z)
is employed. z = B(ρ) accounts for the solid-liquid interface
and z = H(ρ) for the liquid-vapor interface. For convenience,
we denote the liquid by sub-index l, the vapor atmosphere by
v, and the solid surface by s. Without loss of generality, we
suppose H(ρ) is a convex surface. For a concave H(ρ), the
present derivation can be done by a similar way. The liquid is
partitioned into two regions by a horizontal surface, I for the
upper part and II for the lower part.

Fig. 1. The free-body diagram of the force balance of the liquid resting on
a concave surface. The indicated lengths r and h satisfy h = B(r), ψ is the
angle between the concave surface and the horizontal surface at the height h.

III. YOUNG-LAPLACE EQUATION FOR THE SOLID-LIQUID
INTERFACE

We first consider the force balance for the liquid below a
given height h accounted for by h = B(r), where r is the
radius of the circular surface on the top of the liquid. As a
result, the force balance in z-direction is obtained to be∫ r

0

(ps(B(ρ))− pl(h)) 2πρdρ+ 2πrσsl sinψ

−γl
∫ r

0

(h−B(ρ)) 2πρdρ = 0,

(1)
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where ψ is the angle between the concave surface and the
horizontal surface at the height h. In (1), the first term accounts
for the net force acted along the concave surface, which is
resulted from the difference between the pressure of liquid pl
and the pressure of solid ps. The second term is the force
due to the surface tension σsl along the circumference of the
circular surface on the top. The last term is the gravitational
force in which γl is the specific weights of the liquid. Here
no adhesive force is considered.

Since the liquid rests steadily on the surface, the hydrostatic
pressure within the liquid is given as

pl(h) + γl (h−B(ρ)) = pl(B(ρ)). (2)

By using (2), (1) can be reduced into∫ r

0

(ps(B(ρ))− pl(B(ρ))) 2πρdρ+ 2πrσsl sinψ = 0. (3)

We then take the derivative d/dr on both sides of (3) and yield

r (ps(h)− pl(h)) + σsl

(
sinψ + r cosψ

dψ

dr

)
= 0. (4)

By denoting r′ = dr/dh, the slope of B(ρ) can be expressed
by tanψ = dh/dr = 1/r′. By considering trigonometric
identities cosψ = r′/

√
1 + r′2 and sinψ = 1/

√
1 + r′2 and

the differentiation relation dψ/dr = −r′′/
(
1 + r′2

)
r′, (4) can

be rewritten into

pl(h)− ps(h) = σsl

(
1

r
√

1 + r′2
− r′′

(1 + r′2)
3/2

)
. (5)

In (5), the two terms in the bracket are exactly the two
principal curvatures of the surface z = B(ρ) at the level h.
Accordingly, (5) can be expressed as

pl − ps = ∆p = 2σslκsl, (6)

where κsl is the mean curvature of the solid-liquid interface.
Equation (6) is in a similar form to the Young-Laplace
equation, which applies well on the non-planar surface.

Equation (6) shows that, for a non-planar surface, there is a
pressure difference between liquid and solid. More precisely,
the pressure difference at the solid-liquid interface is propor-
tional to the mean curvature of the non-planar surface. If the
surface is planar, the radius of curvature is infinite so that the
right hand side of (6) vanishes, implying that the pressures of
liquid and solid are exactly the same. If the surface is a sphere
of radius R, that is, r =

√
R2 − (h−R)2 =

√
−h2 + 2Rh,

the pressure difference on the solid-liquid interface is a con-
stant no matter what height is considered, namely,

pl(h)− ps(h) = σsl ·
2

R
. (7)

IV. DERIVATION OF THE CONTACT ANGLE

Now we consider the force balance of the liquid below
the liquid-vapor interface, and the free-body diagram of the
forces acting on the left half of liquid drop is shown in
Fig. 2. Because of the presence of the liquid-vapor interface,
the pressure from vapor atmosphere and the line tension τ
along the circumference of the liquid-vapor interface shall

Fig. 2. The free-body diagram of the half portion of liquid in the container
with line tension τ and adhesive force f . h0 is the height of the contact line.
L1 and L2 are the arc lengths of the upper part and the lower part of the
middle cross-section respectively.

be considered, and the contact angle between the liquid and
the surface shall be involved. The mathematical method of
Lubarda [13] is employed again. Since the liquid is considered
resting on the concave surface, the net force acting on the
liquid in the horizontal direction shall be zero. Because the
solid-liquid interface may not be horizontal, the adhesive force
between liquid and solid shall be concerned. By using f to
account for the adhesive force per unit length at the contact
line, we obtain the force balance equation of the liquid of Fig.
2 as follows

σslL2 + σlvL1 − σsv cos θ2 · 2r0 + 2τ − f · 2r0 sin θ2

+

∫
I

(pv − pl) dA+

∫
II

(ps − pl) dA = 0,
(8)

where σlv and σsv are the surface tensions of the liquid-vapor
and the solid-vapor interface, respectively. The lengths L1, L2,
r0, h0 and the angles θ1, θ2 are shown in Fig. 2.

It is known that, again, on the liquid-vapor interface the
force balance in the horizontal direction shall satisfy the
Young-Laplace equation

pl − pv = ∆p = 2σlvκlv, (9)

where κlv is the mean curvature of the liquid-vapor interface.
So that (8) can be rewritten as

σslL2 + σlvL1 − 2r0σsv cos θ2 + 2τ − 2r0f sin θ2

−
∫ H(0)

h0

4σlvκlvrdh−
∫ h0

0

4σslκslrdh = 0,
(10)

where (6) is considered and dA = 2rdh is used. Moreover, in
the integration h = B(r) when h ≤ h0 and h = H(r) when
h ≥ h0. Because, as shown by Lubarda [13], that∫ H(0)

h0

2κlvrdh =
L1

2
− r0 cos θ1. (11)

we similarly can obtain∫ h0

0

2κslrdh =
L2

2
− r0 cos θ2. (12)
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Consequently, by substituting (11) and (12) into (10), we
obtain the Young’s equation for a non-planar concave surface
as

σlv cos θ1 +σsl cos θ2−σsv cos θ2 +
τ

r0
− f sin θ2 = 0. (13)

Please note that, although the liquid-vapor interface in Fig. 2
is concave, the resultant equation (13) shall be the same if the
interface is convex while some terms will turn to be negative in
the process of the calculation. Because r′ = dr/dh is always
well-defined in a local region on the interface, the analysis
above is true no matter what kind of the container is, such as
the surface of a washbasin having θ2 < π/2 or of a jar having
θ2 > π/2. On the other hand, as the liquid rests on a planar
surface, θ2 = 0, leading to the original Young’s equation

σlv cos θ1 + σsl − σsv +
τ

r0
= 0. (14)

This contact angle relation can also be referred as Boruvka-
Neumann equation [4], [5], [6], implying that (13) is an
extension of Young’s equation.

Now we neglect the line tension along the circumference of
the liquid-vapor interface. Namely, only surface tension, adhe-
sion and pressure are concerned. Consequently, (13) becomes

σlv cos θ1 + σsl cos θ2 − σsv cos θ2 − f sin θ2 = 0. (15)

which can be reduced into the original Young’s equation when
θ2 = 0.

V. FOR THE VERTICAL CASE

When θ2 = π/2, the surface becomes a vertical tube, (13)
becomes

σlv cos θ1 +
τ

r0
− f = 0. (16)

Note (16) is the force balance in horizontal direction. The
force balance in vertical direction has been given by Gennes
et al. [14] as

σsv + σlv sin θ1 − σsl = 0. (17)

After combining (16) and (17), we can derive∣∣∣∣f − τ

r0

∣∣∣∣ =

√
σ2
lv − (σsl − σsv)

2
. (18)

In (18), the quantity in the square root must be non-negative,
so the three surface tensions satisfy the inequality

σlv ≥ |σsl − σsv| . (19)

Equation (19) means at the point intersected by vapor, liquid
and solid regions [15], the surface tension on the liquid-vapor
surface is always larger than or equal to the difference between
the surface tensions of the solid-liquid and the solid-vapor
interfaces.

VI. CONCLUSION

In summary, in this paper, by considering the force balance
of a liquid drop resting on a concave surface, we are able to
derive three equations which can be considered as an extension
of Young’s equation to depict a new relation between contact
angles and surface tensions. The first is (6) showing that the
pressure difference at the solid-liquid interface is proportional
to the mean curvature of the non-planar surface. The second
is (13) showing the relation between the contact angle and
surface tension on the free surface of a liquid resting on a non-
planar surface, which can be seen as an extension of Young’s
equation. The third is (19) showing that, at a material element
around a triple contact line, the surface tension on the liquid-
vapor surface is always larger than or equal to the difference
between the surface tensions of the other two interfaces.
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