
 

 

  
Abstract— The simulation of numerical methods is accompanied 

by problems caused by false dependencies arising from the 
mathematical basis of such methods. The use of the Smoothed 
Particle Hydrodynamics (SPH) method removes the problems caused 
by the presence of a physical mesh that occur, e.g. when the Finite 
Element Method (FEM) is used. Although meshfree methods are 
generally less likely to produce false numerical dependencies, in 
some cases certain measures must be taken in order to avoid 
obtaining unexpected results. In the case of the SPH this necessarily 
involved the regular distribution of particles in discretized domains. 
This contribution describes a fracture mechanics experiment in which 
L-shaped concrete specimens undergo dynamic fracture. The 
experiment is simulated via the SPH method, during which clusters 
of particles are artificially created so that the resulting distribution in 
the discretized domain (or a zone within it) is irregular. The 
consequences of this irregularity and its effect on the form of failure 
are studied along with possible ways in which false (dependent) 
behaviour can be prevented. The results from the SPH method are 
also compared to FEM results. 
 

Keywords—Concrete, dynamic fracture, nonlinear constitutive 
model, smoothed particle hydrodynamics, support domain.  

I. INTRODUCTION 
ANY structures of high importance to society are 
designed using the principle of a skeleton, which is the 

main load-bearing part of the structure. The skeleton can be 
created as a series of spatially connected frames. Most 
frequently, structural steel or reinforced concrete is used as the 
building material for the primary load-bearing system. Each of 
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these construction materials has its advantages and 
disadvantages – mainly during dynamic loading. Thanks to the 
high strength of steel, structures can be designed very 
economically. This can result in structures within which thin 
profiles are predominant. Despite their possible high load-
bearing capacity, such profiles are very prone to stability loss 
[1]–[3]. Indeed, whole frames can lose stability due to 
imperfections arising during production [4].  

In the case of concrete structures, loss of stability is not 
necessarily a problem. This is frequently thanks to their 
robustness, which stems from the lower load-bearing capacity 
of concrete in contrast with structural steel – the profiles used 
in structures must be more massive. However, negative aspects 
of the robustness of concrete start to appear when dynamic 
loading (e.g. seismicity) takes place. The occurrence of cracks 
is very frequent in the area of rigid frame joints. Of course, 
problems involving damage as a result of seismic activity also 
affect steel structures [5]. Loading does not necessarily have to 
be only of a natural character – quite the opposite. The 
question arises more and more frequently as to whether a 
structure should also be built to withstand intentional loading 
(e.g. plane crashes or explosions); see also [6]–[8]. It is 
obvious that deciding which specific material to choose is not 
a simple matter. Concrete (and its reinforced variants) is often 
chosen for its wide variability. 

With regard to the frequent complexity of structures, 
concrete as a construction material and the type of loading 
itself, it is not possible to design a structure without the 
execution of a simulation or numerical analysis. One of the 
most widely used numerical methods for the solution of 
complex issues is the Finite Element Method (FEM). In cases 
when the calculation also includes the aforementioned rigid 
frame joints, the FEM does not lead to correct results, 
particularly in cases of high-speed stress. Despite the 
availability of various material models of concrete [9], [10], 
which can be used to improve initial parameter optimization 
processes when needed [11], the acquisition of correct results 
can be very difficult when using the FEM method [12], or 
impossible in certain cases [13]. 

The answer to the question of how to successfully simulate a 
concrete frame joint exposed to high-speed stress can be found 
using the Smoothed Particle Hydrodynamics (SPH) method. 
This meshfree method differs from the FEM in that it operates 
without a physical mesh (or the physical connection of 
individual particles). It can deal with problems involving large 
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deformations, including the resultant fragmentation of matter, 
without any major problems [14]. However, in cases when the 
distribution of SPH particles of the original geometry is not 
regular, the results do not correspond with those from 
experiments. The size of this problem is also influenced by the 
density of the discretization of the continuum. 

In order to evaluate these dependencies, the contribution 
focuses on dynamic loading issues concerning concrete L-
specimens which are simulated using the SPH method. In the 
executed simulations, the regularity of the distribution of SPH 
particles and its influence on the type of failure are primarily 
examined. Results from FEM simulations and experiments are 
used for comparison.  

II. ESSENTIAL FORMULATION OF THE SPH 
The formulation of the SPH method is often divided into 

two key steps. The first step is the integral representation of 
field functions, and the second is particle approximation. The 
concept of the integral representation of a function f (x) used 
in the SPH method starts from the following identity: 

 
( ) ( ) ( )f f dδ

Ω

′ ′ ′= −∫x x x x x  (1) 

 
where f is a function of the three-dimensional position vector 
x, and δ (x – x′) is the Dirac delta function given by 

 

( )
0

δ
′+∞ =′− =  ′≠

   x x
x x

   x x
 (2) 

 
In (1), Ω is the volume of the integral that contains x. Equation 
(1) implies that a function can be represented in an integral 
form. Since the Dirac delta function is used, the integral 
representation in (1) is exact or rigorous as long as f (x) is 
defined and continuous in Ω [15]. If the Delta function δ (x –
 x′) is replaced by a smoothing function W (x – x′, h), the 
integral representation of f (x) is given by 

 
( ) ( ) ( ),f f W h d

Ω

′ ′ ′≈ −∫x x x x x  (3) 

 
where W is the so-called smoothing function and h is the 
smoothing length defining the influence area of the smoothing 
function W. Note that as long as W is not the Dirac delta 
function, the integral representation in (3) can only be an 
approximation [15]. The continuous integral representations 
concerning the SPH integral approximation in (3) can be 
converted into discretized forms of summation over all the 
particles in the support domain shown in Fig. 1. The 
corresponding discretized process of summation over the 
particles is commonly known as particle approximation. If the 
infinitesimal volume dx′ in (3) at the location of particle j is 
replaced by the finite volume of the particle ΔVj that is related 
to the mass of the particles mj by 

 

j j jm V ρ= ∆  (4) 
 
where ρj is the density of particle j (= 1, 2,…, N) in which N is 
the number of particles within the support domain of particle j, 
then the continuous SPH integral representation for f (x) can 
be written in the following form of discretized particle 
approximation [15]: 
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or just 

 

( ) ( ) ( )
1

,
N

j
i j i j

j j

m
f f W h
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≈ −∑x x x x  (6) 

 
Equation (6) states that the value of a function at particle i is 
approximated using the average of those values of the function 
at all the particles in the support domain of particle i weighted 
by the smoothing function shown in Fig. 1. 

Fig. 1. Particle approximations using particles within the support domain of 
the smoothing function W for particle i. 

A. Problem with the support domain 
The extent of the support domain is defined according to 

Fig. 1 as the size of the generally variable parameter h, which 
is called the smoothing length. Parameter h can also be 
multiplied by constant κ. Particles which are inside the support 
domain attributable to particle i are called neighbouring 
particles. If the resultant value of the product κh in each time 
step of the numerical simulation is the same, there can be the 
decrease in the number of neighbouring particles and thus also 
the decrease in the accuracy of the solution due the effect of 
excessive deformations (i.e. during the mutual divergence of 
the SPH particles). It is advisable to change the size of the 
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support domain during the calculation in such a way that the 
number of neighbouring particles is constant.  

There are many ways to dynamically develop h so that the 
number of neighbouring particles remains relatively constant. 
In 1989, Benz [16] suggested a method of developing the 
smoothing length. This method uses the time derivative of the 
smoothing function in terms of the continuity equation 

 
1 1dh h d h

dt d dt d
ρ

ρ
= − = ∇ ⋅v  (7) 

 
where d is the number of dimensions and ∇ ⋅v  is the 
divergence of the flow. This means that the smoothing length 
increases when particles separate from each other and reduces 
when the concentration of particles is significant; see Fig. 2. It 
varies in order to keep the same number of particles in the 
neighbourhood. Equation (7) can be discretized using SPH 
approximations and calculated with other differential 
equations in parallel [15]. 

Fig. 2. Evolution of the support domain during the simulation. Smoothing 
length increases when particles separate from each other. 

III. EXPERIMENT 
In 2015, Ožbolt et al. [17] carried out experiments during 

which he controlled the displacement of L-shaped concrete 
specimens at different speeds. The aim of the experiments and 
subsequent numerical simulations was to discover the 
dependencies between the material strength and the loading 
speed.  

Fig. 3. Geometry and boundary conditions of the L-specimen (units in mm) 
[17]. 

Even though displacement control speeds of 0.25 mms-1-
2400 mms-1 were tested in the experiment, this contribution 
only requires attention to be paid to the highest loading speed, 
i.e. 2400 mms-1. Fig. 3 shows a diagram of the placement of 
concrete specimens from the executed experiment.  

Fig. 4 depicts type of failure at loading speed of 2400  
mms-1. In the experiment the type of failure changed due to the 
effect of loading speed [17]. With the change in loading speed, 
the resistance of the concrete specimen against deformation 
also changed, as did the measured maximum resistance 
strength – peak load. 127.73 kN was measured for a loading 
speed of 2400 mms-1. 

Fig. 4. Failure type for displacement loading speed of 2400 ms-1 [17]. 

IV. SPH AND FEM SIMULATIONS 
The aim of carrying out numerical simulations using the 

SPH method was to achieve the values measured in the 
experiment (for a loading speed of 2400 mms-1). It was also 
used to obtain a corresponding failure mode to that which can 
be seen in Fig. 4. Simulations were carried out also using the 
FEM method in order to check the SPH method’s results. The 
initial geometry and placement were always the same (for all 
discretization variants), as can be seen in Fig. 3. Simulations 
were performed in the LS-DYNA program [18]. 

A. Material model of concrete 
In the numerical simulations, only the concrete specimen 

without steel brackets was modelled. This was done to 
minimize possible numerical instabilities (e.g. contacts 
between steel and concrete). In this way, attention could be 
focused exclusively on the behaviour of the SPH method. The 
Continuous Surface Cap Model (CSCM) was chosen as the 
material model of concrete to be used [19], [20]. Table I 
shows the parameters used in the simulations. 

 
TABLE I 

THE MATERIAL PARAMETERS FOR THE CSCM MODEL 
Mass density, ρc (kgm-3) 2210 
Compressive strength, fc (MPa) 46.25 
Tensile strength, ft (MPa) 3.12 
Young’s modulus, Ec (GPa) 32.2 
Poisson’s ratio, vc 0.18 
Fracture energy, GF (Jm-2) 58.56 
Maximum aggregate size, ag (mm) 8 
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B. From FEM to SPH 
So that the results of the simulations of the FEM and SPH 

methods could be compared, FEM mesh was used as the basis 
for the creation of the SPH model. SPH particles were placed 
in the center of gravity of the FEM elements. 

V. SIMULATION RESULTS 
In the first results section, the functionality of the FEM and 

SPH methods is tested for a regular mesh with different 
division densities. In the second results section, an area 
(cluster) with a rougher division is inserted into the original 
mesh (with the finest division). In addition, this area is 
intentionally placed at locations through which the crack is 
supposed to pass; see Fig. 4. 

A. Regular mesh and density of spatial discretization 
Discretization sizes of 16.66 mm, 10 mm and 6.25 mm were 

chosen for the FEM elements. In this way, division into 3, 5 
and 8 elements were achieved along the thickness of the 
concrete specimen. As the SPH particles were created from 
FEM elements, the distances between them were also 
16.66 mm, 10 mm and 6.25 mm. Fig. 5 and Table II show the 
results for a regular FEM mesh and the distribution of SPH 
particles. The results correspond well with the experiments. 

Fig. 5. Regular FEM mesh and SPH particle distribution results. 
 
 

TABLE II 
THE PEAK LOAD FOR REGULAR FEM MESH AND SPH PARTICLE DISTRIBUTION 

Size FEM SPH experiment 

16.66 mm 123.07 kN 121.06 kN 
127.73 kN 10.00 mm 126.78 kN 123.07 kN 

  6.25 mm 130.08 kN 124.18 kN 
 

B. Irregular mesh and κ parameter influence 
In the second case, zones (clusters) were inserted into the 

numerical model with element sizes of 6.25 mm where the size 
of the FEM mesh or the distance between the SPH particles 
was increased to 12.5 mm, i.e. 2x greater. With regard to this, 
an irregular zone of transition from size 6.25 mm to 12.5 mm 
was also created. 

Fig. 6. Irregular FEM mesh and SPH particle distribution results. Distance 
between SPH particles in cluster 12.5 mm. 

 
TABLE III 

THE PEAK LOAD FOR IRREGULAR FEM MESH AND SPH PARTICLE DISTRIBUTION 
DISTANCE BETWEEN SPH PARTICLES IN CLUSTER 12.5 MM 

Parameter κ FEM SPH experiment 

0.6 

129.13 kN 

136.00 kN 

127.73 kN 
0.8 117.39 kN 
1.0 100.03 kN 
1.2 76.38 kN 
1.4 44.68 kN 
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Fig. 6 and Table III show the results for an irregular FEM 
mesh and the distribution of SPH particles. Even though the 
results of the FEM simulation show that the inserted irregular 
area (clusters) does not have a significant influence either on 
the size of the peak load or the shape of the failure, the result 
is strongly dependent on the selected parameter κ in the case of 
the SPH method, i.e. on the size of the support domain. In the 
case κ = 1 it is obvious that the cracks avoid inserted clusters 
with rougher division. Moreover, the measured strength does 
not correspond to the experiment. With increasing values of κ, 
the simulation results are increasingly different from the results 
of the experiment. The value κ < 1 then shows a better corre-
spondence between the simulation and the experiment. The 
optimum value of κ according to Table III appears to be 
κ ≈ 0.7. 

VI. FINDING THE Κ TREND 
Although the application of linear modification (7) produces 

good results and corresponds with the experiment, this may not 
always happen if irregularity is more significant (i.e. with 
continuously increasing differences in distances between 
particles within a cluster, and outside it). As a result, attempts 
were made to find the κ trend for additional configurations in 
which the intracluster distances between particles changed 
further. 

Fig. 7. Irregular FEM mesh and SPH particle distribution results. Distance 
between SPH particles in cluster 14.44 mm. 

 

A. Highlighting of irregularity 
The highlighting of irregularity (heterogeneity) was carried 

out by increasing the intracluster distances between SPH 
particles. The size of the zone of irregularity was maintained, 
however; see Fig. 4. Fig. 7 shows the results for intracluster 
particle distances of 14.44 mm. Subsequently, Fig. 8 contains 
results for distances of 16.66 mm. In both cases, the same (or 
markedly similar) phenomenon occurs as with the first tested 
case; see Fig. 6. Again, crack development for the values κ = 1 
does not correspond with the experiment results.  

 
TABLE IV 

THE PEAK LOAD FOR IRREGULAR FEM MESH AND SPH PARTICLE DISTRIBUTION 
DISTANCE BETWEEN SPH PARTICLES IN CLUSTER 14.44 MM 

Parameter κ FEM SPH experiment 

0.6 

128.18 kN 

131.79 kN 

127.73 kN 
0.8 112.67 kN 
1.0 89.02 kN 
1.2 57.05 kN 
1.4 32.43 kN 

 
Fig. 8. Irregular FEM mesh and SPH particle distribution results. Distance 
between SPH particles in cluster 16.66 mm. 

 
In addition, at values of κ ≥ 1, higher failure values appear 

in the loaded area. The authors believe this phenomenon is due 
to the size of the transition that appears between the area of 
irregularity and the rest of the model. 
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TABLE V 
THE PEAK LOAD FOR IRREGULAR FEM MESH AND SPH PARTICLE DISTRIBUTION 

DISTANCE BETWEEN SPH PARTICLES IN CLUSTER 16.66 MM 

Parameter κ FEM SPH experiment 

0.6 

126.13 kN 

130.64 kN 

127.73 kN 
0.8 110.74 kN 
1.0 87.58 kN 
1.2 54.58 kN 
1.4 31.88 kN 
 
Table IV and Table V contain numerical values for peak 

load. The optimum values are once again close to 0.7. 
However, because peak load falls with growing intracluster 
distance between SPH particles, the κ value can also continue 
to fall.  

Fig. 9. Irregular FEM mesh and SPH particle distribution results. Distance 
between SPH particles in cluster 10 mm. 

B. Function κ 
In order to determine the beginning of the trend of function 

κ, the intracluster distance between particles is gradually 
lowered to the value at which distribution is regular. With 
regard to the scope of this contribution, Fig. 9 shows failures 
only for intracluster distances between particles of 10 mm. It is 
clear from the measured values in Table VI that for all values 
of κ the peak load values tend to return to the original peak 
load value (both from above and below) determined for 
regular particle distribution; see Table II. 

TABLE VI 
THE PEAK LOAD FOR IRREGULAR FEM MESH AND SPH PARTICLE DISTRIBUTION 

DISTANCE BETWEEN SPH PARTICLES IN CLUSTER 10 MM 

Parameter κ FEM SPH experiment 

0.6 

129.32 kN 

130.66 kN 

127.73 kN 
0.8 125.88 kN 
1.0 112.87 kN 
1.2 96.45 kN 
1.4 71.02 kN 
 
In Fig. 10, function κ is compiled from the discussed results. 

The horizontal axis shows the percentually increasing 
difference in distances between SPH particles within the 
cluster zone and those in the rest of the model. With regard to 
the fact that clusters (irregular regions) were always inserted 
into a discretized body where the distance between SPH 
particles was 6.25 mm, κ = 1 is equal to 0 on the horizontal 
axis. In other words, a 100 % value on the horizontal axis 
means that the intracluster SPH particle distance was 12.5 mm. 

Fig. 10. Function κ. 

VII. CONCLUSION 
The regularity of the distribution of SPH particles plays a 

significant role in simulations which use the SPH method. In 
the cases of poor regularity and the use of quasi-brittle 
materials, unreal types of crack propagation can be expected. 
As a rule, cracks try to avoid areas where particle clusters 
occur. By choosing a suitable support domain size, results 
which correspond to those of experiments can be achieved. 
The size of the support domain can be reduced via parameter 
κ. It is apparent that the choice of κ < 1 helps to reduce the 
size of the impact of poor regularity in the distribution of SPH 
particles. 
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