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Abstract — Determination of soil parameters (in funda-
mental flow characteristics) is investigated under new scenario
in laboratory experiments with 3D samples. Infiltration into a
sample is realized under the gravitation and centrifugal driven
forces. Mathematical model for the flow in an unsatureted-
saturated porous media is expressed in terms of Richard’s
equation based on the van Genuchten/Mualem experimental
capillary-pressure model. Soil parameters characterize the spe-
cific porous material and are used as input data in this capillary-
pressure flow model. Objective of this paper is threefold. The
first is to present a direct and inverse efficient solver for gov-
erning mathematical model. The second is to apply the in-
verse solver for parameter estimation using only noninvasive in-
flow/outflow transient measurements. The third is to avoid resp.
significantly reduce the creation of preferred streamlines which
shadow reliability in solution of inverse problem. In our set-
up, a sample of cylindrical shape is submerged in water cham-
ber and the water infiltrates into it. The top of the cylinder is
isolated and from its bottom water flows out to the collection
chamber. Both chambers except of the sample bottom (resp. its
part) are mutually isolated. The flux from lateral boundary into
the sample is orthogonal to the driving forces in gravitation and
centrifugation mode. This unlike in 1D samples (in the form
of thin tubes) the creation of preferred stream lines arising due
to small inhomogenities is decreased significantly. Addition-
ally, the isolation of the 1D tube, especially in centrifugation
mode, is difficult task. In centrifugation mode we can obtain
additional informations from transient monitoring of centrifu-
gal force which is also noninvasive. In our 3D experiments we
are able to create more infiltration scenarios by suitable change
of boundary conditions and rotational speed. Two different nu-
merical methods have been developed. One is based on finite
volume space discretization and flexible time stepping. The ob-
tained nonlinear algebraic system is solved by an quasinewton
linearization method. The second one is based only on space
discretization and the original problem is reduced to the solu-
tion of stiff, nonlinear system of ordinary differential equations
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which is rather large. The first method is quicker and therefore
is used in solving inverse problems. In our numerical exper-
iments we demonstrate applicability of our method. The ac-
curacy and effectiveness of our numerical method and exper-
imental scenario are able to compensate the absence of mea-
surements of pressure/saturation distribution inside the sample.

Keywords — water transport, unsaturated porous media, soil
parameters, scaling of mathematical model, gravitation and cen-
trifugal forces

I. INTRODUCTION

H EAT and water transport models for unsaturated-saturated
porous media consist of a couplet system of elliptic-

parabolic partial differential equations expressing conservation
of mass and energy. The fundamental part is represented by the
water flow which enables the energy-mass transport. In order to
predict the flow in soils, the soil hydraulic properties expressed
in terms of soil parameters have to be known. These parame-
ters are input data in the governing mathematical model for the
flow. Very complex mathematical models for the flow and mass
transport in unsaturated-saturated porous media are well known
and analyzed in many monographs, e.g. in [1], with a vast list
of quotations.

The water flow model is expressed in terms of saturation and
pressure head in Richard’s equation (see (1) below), which is
a nonlinear and degenerate elliptic-parabolic equation with free
boundaries between fully saturated and partially saturated zones
and between dry and partially saturated zones. The soil reten-
tion and hydraulic permeability functions linking the saturation
and pressure head are expressed by means of soil parameters
using the van Genuchten-Mualem ansatz.

Determination of soil parameters (via solution of inverse
problem) requires very precise solution of direct problem (when
all model parameters are known) and additional measurements
of inflow/outflow of water. In the case of centrifugation, the
measurements of the inflow/outflow can be extended by the
measurement of the centrifugal force in the prescribed time mo-
ments.

In Fig. 1 we sketch the experimental scenario in gravita-
tion mode. In the mode of centrifugation we turn the model
from vertical to horizontal position so that all components are
positioned along the centrifuge arm. In that case we neglect
the gravitational force since the centrifugal force is significantly
larger.
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Fig. 1 Sample

In our set-up, the sample is of cylindrical shape and is sub-
merged in the injection chamber. The water infiltrates into the
sample across the lateral boundary. The top of the cylinder is
isolated and water flows out to the collection chamber from its
bottom. Both chambers are mutually isolated except of the sam-
ple bottom (resp. its part). Thus, the area of the inflow into the
sample is much larger then in the 1D case where water inflows
only at the sample top. Moreover, the isolation of the tube man-
tel in the 1D is technically difficult, especially in the case of
centrifugation. In our 3D case the direction of the inflow flux is
perpendicular to the direction of the driving force. This signifi-
cantly reduces the creation of preferred stream lines.

In centrifugation mode, data collection can be accelerated.
Moreover, additional measurement can be achieved by moni-
toring centrifugal force. The dynamics in the measured char-
acteristics can be amplified by increase of the centrifugation
speed. The measurements of the centrifugal force can be rel-
atively simply realized keeping in ballance the centrifugal force
on the opaque centrifuge arm.

Determination of soil parameters have been investigated
more then two decades in both gravitation and centrifugation
mode. First experiments have been explored in saturated sam-
ples to determine hydraulic permeability in Darcy’s linear equa-
tion. Then, also unsaturated samples under steady state condi-
tion have been investigated, e.g.. in [3], [2]. Dynamic unsatu-
rated flow with equilibria measurements have been investigated,
e.g., in [4], [2]. In [6] and [11] transient measurements from

sample inside have been used. We have investigated the de-
termination of soil parameters under centrifugation using only
noninvasive measurements in [8], [10], [14], [13] and [15].

In [11] (see also citations there) the equilibrium analysis for a
set of rotational speeds has been used to determine soil param-
eters. The distribution of saturation in equilibria (linked with
the corresponding rotational speeds) was measured via electri-
cal signals from electrodes installed in the sample. Transient
measurements have been also applied there. At the beginning
the sample was fully saturated and the outflow from the sample
was controlled. The column experiments in determination of
soil parameters have been applied in [7].

Determination of soil parameters under the pres-
sure/saturation informations from sample inside is more
reliable, but technically difficult, especially in transient mea-
surements. The presence of only inflow/outflow informations
leads to very ill-posed problem and this must be compensated
by very accurate numerical solution of direct problem and
suitable experiment scenario.

In our papers [10], [14], [15] we discussed another 1D cen-
trifugation scenario, where non-invasive measurements of flow
characteristics have been used and their sufficiency in deter-
mining procedure have been demonstrated. The used numerical
method was original and based on the interface modeling. This
we do not know in more then one dimensional case.

In the present contribution we focus on both: gravitation
driving force and the centrifugal driving force. Unlike in previ-
ous papers, we consider more realistic 3D rotationally symmet-
ric sample.

In Section II we introduce the mathematical model and in
Section III we present our numerical method. Solution of in-
verse problem will be presented in Section IV. In Section V we
discuss numerical experiments. Finally, conclusions are pre-
sented in Section VI.

II. MATHEMATICAL MODEL

Our sample is a cylinder with radius R ([cm]) and height Z
([cm]). We transform the mathematical model using cylindri-
cal coordinates (r, z). Then the governing PDE for infiltration
reads as follows

∂tθ(h) =
1

r
∂r(rK(h)∂rh) + ∂z(K(h)(∂zh− β)) (1)

where the saturation θ, depending on pressure head h ([cm]), is
of the form

θ(h) = θr + (θs − θr)θef (h), (2)

with irreducible saturation θr, porosity θs and effective satu-
ration θef (h). We consider the fundamental saturation-pressure
law in terms of van Genuchten-Mualem empirical ansatz (h ≤ 0
in unsaturated zone, in saturated zone θef = 1, h > 0)

θef (h) =
1

(1 + (αh)n)
1
m

, (3)
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where α ([cm−1]) and n, m = 1 − 1
n are soil parameters.

The hydraulic permeability K = K(h) ([cm/s]) is in van
Genuchten-Mualem ansatz

K(h) = Ks (θef (h))
1
2 .
(

1− (1− (θef (h))
m

)
1
m

)2

, (4)

where Ks ([cm/s]) is a hydraulic permeability for saturated
porous media (also soil parameter), i.e., Ks = K(0). In the
gravitational mode β = 1 and in the centrifugation mode (coor-
dinate −z is in the direction of centrifuge arm) we have

β =
ω2

g
(L− z)

where L ([cm]) is the distance of sample bottom from the
centrifugation axis, ω ([s−1]) is the rotational speed and g
([cm/s2]) is the gravitational acceleration. Denote by D ([cm])
the distacnce between the sample and the collection chamber
bottoms.

The flux q ([cm/s]) in cylindrical coordinates is of the form

q = −(qr, qz)T , (5)

qr = K(h)∂rh, qz = K(h)(∂zh− β).

We note that our model includes both saturated (elliptic PDE)
and unsaturated (parabolic PDE) zones. We consider initially
(at t = 0) the dry sample h = −∞), but in the numerical
experiments we use h = −300. The top of our sample Γtop =
{r ∈ (0, R), z = Z} is isolated, i.e., we consider qz = 0 and the
same condition we consider on the part {r ∈ (R1, R), z = 0} of
the bottom. Through the part Γout = {r ∈ (0, R1), z = 0} the
infiltrated water can outflow to the collection chamber, i.e. we
consider h∂zh = 0 on Γout. This condition has to be interpreted
in the following way. In the points from Γout where h < 0
the boundary conditiuon is ∂zh = 0 (see qz in (5)), otherwise
h = 0.

The boundary condition on the sample mantel Γmant =
{r = R, z ∈ (0, Z)} reflects the hydrostatic pressure gener-
ated by the water level H(t) ≥ 0 ( H ([cm]) measured from
the top of the sample) at the coordinate 0 ≤ z ≤ Z. Then our
boundary condition on Γmant in gravitation mode is

h(t, R, z) = H(t) + (Z − z) (6)

Due to the mass ballance argument, the change in H(t) re-
flects the infiltration flux through Γmant for t > 0. Thus, our
system is closed by ODE

Ḣ(t) = −Q
∫

Γmant

qr dΓmant (7)

where Q is the ratio of the areas of Γtop and the crossection of
inflow chamber. The amount of outflow water Mout ([cm3/s])
in the collection chamber is given by

Mout(t) =

∫ t

0

∫
Γout

qz dΓoutdt

which could be expressed in terms of water level

Hout(t) = Q1Mout(t),

where Q1 is the ratio of areas Γout of the crossection area and
collection area of the collection chamber.

In the case of centrifugation, the condition (6) is replaced by

h(t, R, z) =

∫ H(t)+Z

z

ω2

g
(L− p)dp.

We note that in centrifugation mode the gravitational force is
neglected.

III. NUMERICAL METHOD

Our accurate and efficient numerical method in 1D substan-
tially used mathematical model (in terms of ODE) describing
the interfaces between fully saturated, partially saturated and
dry zones of the sample. In the more dimensional case we do
not have such model. Therefore, more discretization grid points
have to be used. We apply devised linearization and regular-
ization to manage serious difficulties concerning degeneracy
and strong nonlinearities appearing in a small neighbourhood
of mentioned interfaces. The solution has very sharp, moving
front between partially saturated and dry zones.

We have developed two different approximation schemes. In
the first one we apply space discretizatioin based on a finite vol-
ume method and flexible time stepping in time variable. The
obtained nonlinear system of algebraic equations is linearized
by quasinewton method. We follow the idea in M. A. Celia and
Z. Bouloutas in [12], which was also applied in the well known
software HYDRUS [9]. In the second method, after space dis-
cretization (based on finite volume method) we reduce our sys-
tem to the ODE system. In fact, the obtained ODE system is sin-
gular and some regularization was applied. On the other hand
all nonlinearities are approximated accurately. Both methods
give nearly the same results, but the first one is much quicker
and therefore is more suitable for solving inverse problems.

A. Approximation of governing equations

Consider the grid points (ri, zl) = (i∆r, l∆z) for i ∈{
0, 1, . . . , R

∆r

}
and l ∈

{
0, 1, . . . , Z

∆z

}
with the fixed space

step (∆r,∆z) and flexible time step ∆tj which will be modified
in the iteration procedure. To construct approximation scheme
linked with the grid point (ri, zl, tj+1), we integrate (1) over the
volume

Vi,l,j = (ri −
∆r

2
, ri +

∆r

2
)×

(zl −
∆z

2
, zl +

∆z

2
)× (tj , tj + ∆tj).

We apply integration by parts in corresponding terms and ap-
proximate

∂xh(ri+1/2, zl, tj) ≈
h(ri + 1, zl, tj)− h(ri, zl, tj)

∆r
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and

h(ri+1/2, zl, tj) ≈
h(ri + 1, zl, tj) + h(ri, zl, tj)

2
.

Similarly we approximate ∂rh(ri−1/2, zl, tj), h(ri−1/2, zl, tj).
In the same way we approximate ∂zh and the values of K(h) in
the middle grid points, where the average of values h in neigh-
bouring grid points is used. Then our approximation scheme
reads as follows

(θj+1
i,l − θ

j
i,l)

∆tj
=

ri+ 1
2

ri
Kj+1

i+ 1
2 ,l

hj+1
i+1,l − h

j+1
i,l

(∆r)2
− (8)

ri− 1
2

ri
Kj+1

i− 1
2 ,l

hj+1
i,l − h

j+1
i−1,l

(∆r)2
+

1

∆z
Kj+1

i,l+ 1
2

(
hj+1
i,l+1 − h

j+1
i,l

∆z
− βl

)
−

1

∆z
Kj+1

i,l− 1
2

(
hj+1
i,l − h

j+1
i,l−1

∆z
− βl

)
,

where βi,l = 1 in the case of gravitation mode and in the cen-
trifugation mode we have

βi,l =
ω2

g
(L− zl) .

This is strongly nonlinear system because of (3). We lin-
earize it by means of quasinewton iterations with iteration pa-
rameter k (see [12]). The left hand part in (8) we linearize by

θj+1,k+1
i,l − θji,l

∆tj
= (9)

Cj+1,k
i,l

hj+1,k+1
i,l − hj+1,k

i,l

∆tj
+
θj+1,k
i,l − θji,l

∆tj
≡

Lj+1,k
i,l

where

Cj+1,k
i,l =

(
dθ

dh

)j+1,k

i,l

.

On the right hand side in (8) we consider the values hj+1,k

(from previous iteration step) in K(h). Our linearization reads
as follows

Lj+1,k
i,l =

ri+ 1
2

ri
Kj+1,k

i+ 1
2 ,l

hj+1,k+1
i+1,l − hj+1,k+1

i,l

(∆r)2
− (10)

ri− 1
2

ri
Kj+1,k

i− 1
2 ,l

hj+1,k+1
i,l − hj+1,k+1

i−1,l

(∆r)2
+

1

∆z
Kj+1,k

i,l+ 1
2

(
hj+1,k+1
i,l+1 − hj+1,k+1

i,l

∆z
− βl

)
−

1

∆z
Kj+1,k

i,l− 1
2

(
hj+1,k+1
i,l − hj+1,k+1

i,l−1

∆z
− βl

)
.

Thus (9),(10) represent a linear algebraic system in terms of
hj+1,k+1
i,l . The iteration will stop for k = k∗ when

||hj+1,k+1 − hj+1,k|| < tollerance.

Then we put θj+1
i,l = θj+1,k∗

i,l corresponding to hj+1,k∗

i,l (see (3)).
The same approximation strategy we use at boundary points
where the control volume Vi,l,j is reduced.

B. Numerical acceleration

The computational process can be significantly accelerated
by a suitable choice of time step and starting value h(k=0).
Starting point can be constructed via interpolation of few (cca
5) values from previous time steps of h.

Additional speed increase can be reached by damping tech-
nique and appropriate choice of time step depending on the
number of iterations in previous iteration procedure. We have
to note (and it is very surprising) that by suitable choice of pre-
vious atributes in iteration procedure it is possible to reach sig-
nificant reduction in the computational time. Without damping
the iteration process can even fail.

The tunning of damping parameters should be appropriately
updated with the change of the driving force.

C. Approximation by ODE system

We construct the governing ODE linked with the grid point
(ri, zl) (similarly as before) integrating (1) over control volume

Vi,l = (ri −
∆r

2
, ri +

∆r

2
)×

(zl −
∆z

2
, zl +

∆z

2
).

The left hand side of (1) we approximate (in (ri, zl)) by

∂θi,l(t)

∂hi,l(t)
∂thi,l(t)∆r∆z. (11)

The right hand side in (1) we approximate using integration by
parts similarly as before. Then we obtain

ri+ 1
2

ri
Kj+1,k

i+ 1
2 ,l

hi+1,l(t)− hi,l(t)
(∆r)2

− (12)

ri− 1
2

ri
Kj+1,k

i− 1
2 ,l

hi,l(t)− hi−1,l(t)

(∆r)2
+

1

∆z
Kj+1,k

i,l+ 1
2

(
hi,l+1(t)− hi,l(t)

∆z
− βl

)
−

1

∆z
Kj+1,k

i,l− 1
2

(
hi,l(t)− hi,l−1(t)

∆z
− βl

)
.

Thus, (11) and (12) represents a nonlinear ODE system of the
form

M(t,h)
dh

dt
= F(t,h)
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Fig. 2 Pressure at T = 20s, gravitation

which can be solved by (professional) solver for stiff ODE. In
fact, matrixM should be regularized, because it degenerates (in
saturated zone where θ(t) = θs). In numerical realization we
replace the zero values on diagonal by a small value ε = 10−5.
The numerical solutions with

ε = 10−6, ε = 10−7

differ from previous one only on 5 -th decimal place. Because of
the degeneracy the computing time significantly increases with
decrease of ε. Moreover, the ODE system is too large consider-
ing relatively small space discretization.

The numerical solutions obtained by both numerical meth-
ods coincide on 5 decimal digits. However, the first method
is much more quicker even when smaller space step is used.
Therefore, the first method is more suitable for solving inverse
problems, where many iterations with direct solutions are ex-
pected.

D. Numerical experiments

The standard model data used in numerical experiments are:

Z = 10, R = 2, H(0) = 5, R1 = 1,

α = −0.0189, n = 2.81, m = 1− 1

n
,

Ks = 2.4× 10−4, θr = 0.02, θs = 0.38, ω = 20,

L = 40, D = 5, Qtop = πR2, Q =
1

4
.

In numerical solutions we use the space discretization using
∆z = Z

30 ∆r = R
30 which seems to be satisfactory for accu-

rate solution for our purposes for inverse problems. The same
discretization we have used in following figures.

In case of the gravitational force, Fig. 2 express pressure h
graphically at a time moment T = 20s. More detailed infor-
mation about the solution can be seen in Fig. 3, where the con-
tour lines are drawn. This figure represents the solution at time

Fig. 3 Pressure contour lines at T = 40s, gravitation

T = 40s, where the influence of the water outflow can be no-
ticed and regions of dry, partially saturated and fully saturated
zones can be recognized.

The water level H(t) and outflow 50000Mout(t) are drawn
in Fig. 3 (full lines).

In case of centrifugation, Fig. 5 express pressure graphically
at a time moment T = 20s. The corresponding contour lines
are plotted in the Fig. 6. Contour lines are very useful for the
comparison of gravitational (at T = 40s) and centrifugal (at
T = 20s) infiltration scenarios.

The time evolution of the water level H(t) (t ∈ (0, 20)) and
the time evolution of the amount of outflow water Mout(t) (t ∈
(0, 11)) is ploted in Fig. 7. The time evolution of centrifugal
force is drawn in Fig. 8.

Very similar picture as in Fig. 2 and 5 can be obtained by
plotting effective saturation θ instead of the pressure h (see (3)).
We can see the sharp front of infiltrated water. This moving
front causes numerical difficulties. We can observe the accele-
ration of the infiltration procedure, especially at the outflow.
Pressure contour lines in Fig. 3 are obtained at T = 40s,
while water level H(t) and outflow Mout (with same model
data) are obtained at T = 25s. The corresponding water flow
front reaches the otflow position at the sample bottom after
15s. Consequently, the amount of outflow Mout is very small.
The outflow at centrifugation mode (see Fig. 7) is significantly
larger, because the water flow front reaches the outflow position
at T = 5s and the centrifugal driving force is there 20 times
bigger as the gravitation force.

IV. SOLUTION OF THE INVERSE PROBLEM

In the solution of the inverse problem we minimize the dis-
crepancy between the measured and computed data. Minimiza-
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Fig. 4 Inflow-outflow, gravitation

Fig. 5 Pressure at T = 20s, centrifugation

Fig. 6 Pressure contour lines at T = 20s, centrifugation

Fig. 7 Input-output water, centrifugation

Fig. 8 Centrifugal force F (t)
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Table 1 Optimal parameters with 3 different noises

α n Ks × 104

−0.015359 2.7636 2.168
−0.018427 2.7077

−0.018163 2.9865 2.310
−0.019119 2.8467

−0.019417 2.7421 2.446
−0.018907 2.8037

tion problem is solved in an iterative way using well known
solver fminsearch from the MATLAB toolbox. At solving in-
verse problems determining soil parameters (α, n, Ks) we con-
sider starting points different from standard data.

In the experiment below we demonstrate applicability of our
method in determining soil parameters. Firstly, we prepare stan-
dard data H(t), Mout(t) and F (t) in 50 uniformly distributed
time sections in the observation interval [0.5, 25]. Then using
random function we add 5% noise to our data. Then the noised
data are sorted, because the nature of the experiment dictates
that data are monotonous. This will represent measuring data.

Secondly, we forget standard soil parameters and use differ-
ent starting points for them. As a result of the inverse procedure
(by minimization of discrepancy between measured and com-
puted data) we obtain ”optimal” solution. Our starting points
consist of all combinations of parameters

α ∈ {−0.017, −0.02},

n ∈ {2.6, 3},

Ks ∈ {2× 10−4, 2.8× 10−4}.

A. Experiments with gravitational force

Fig. 4 shows standard data (full line) and noised data (dott
dash line) obtained in gravitation mode. The optimal parameters
of inverse problems using this measured data are in the first pair
of rows in table 1.

The parameter Ks can be determined distinctively by sim-
ple experiment with fully saturated sample. Therefore we also
solved inverse problems for only 2 parameters α, n assuming
Ks = 2.4× 10−4.

In both cases the optimal solution does not depend on the
choice of a starting point (the relative differences are less then
10−5). However, the small dependance on noise generation is
observed. The table 1 shows optimal parameters for different
noises. The pairs of succesive rows correspond to the standard
data with the same noise. In each pair, the second row repre-
sents a solution of inverse problem with only 2 parameters.

B. Experiments with centrifugal force

Aditionally to the measurements of H(t) and Mout(t) we
can measure the centrifugal force ω2

g F (t) linked with the move-

Table 2 Optimal parameters in gravitation mode

α n Ks × 104

−0.02 3. 2.
−0.01841 2.834 2.402

−0.02 3. 2.8
−0.02256 2.857 2.511

−0.02 2.6 2.
−0.01886 2.789 2.418

−0.02 2.6 2.8
−0.02051 2.795 2.455

−0.017 3. 2.
−0.01823 2.823 2.404

−0.017 3. 2.8
−0.02231 2.772 2.444

−0.017 2.6 2.
−0.01880 2.799 2.398

−0.017 2.6 2.8
−0.01867 2.761 2.412

ment of water along the centrifuge arm. Here,

F (t) = Finj(t) + Fs(t) + Fout,

where

Finj(t) =
Qtop

2

(
(H(t) + L)2 −H(t)2)

)
+

QtopQ

2

(
L2 − (L− Z)2

)
is linked with water in the injection chamber. Contribution of
water in the sample is

Fs(t) =

1

2
(θs − θr)

(∫ R

0

∫ Z

0

2πr(L− z)θ(r, z, t)drdz

)

and

Fout(t) =
1

2

(
(L+D)2 − (L+D −Mout(t))

2
)
.

In Fig. 7 and Fig. 8 we plot the standard data (full line) and
noised data (dott dash line) obtained in centrifugation mode. In
Fig. 8 we plot only scaled value of F and call it as centrifugal
force.

We use the same starting parameters as in gravitation mode
and apply the same optimization procedure. The obtained opti-
mal values are presented in Table 2. There the pairs of starting
and optimal parameters are included for each starting point.
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V. ANALYSIS OF OBTAINED RESULTS IN EXPERIMENTS

Numerical experiments demonstrate efficiency of our numer-
ical method also in more dimensional case using only non-
invasive measurements. The 5% noise in our measurements ef-
fects the 5 − 6% defect in case with two soil parameters α, n.
In the case with 3 soil parameters the defect reaches up to 15%.

We have remarked very low dependance of optimal solution
on starting points in the gravitation mode. Greater dependance
is linked to the type of generated noise. In case of centrifu-
gation we have observed more local minima points, especially
with starting points containing n = 3, Ks = 2.8 10−4. In that
case the defect was up to 13%. In other starting points the de-
fect reaches up to 10%, so the measurement of centrifugal force
stabilize the determination procedure. The dependance on start-
ing points is higher than in gravitation mode and thus Table 2
contains pairs of starting points and optimal ones.

In practical applications we can combine both measurements
from gravitation and centrifugation mode in the same determi-
nation procedure. Moreover, we can change the rotaional speed
during the experiment. The reason is, that the saturation dis-
tribution in the sample and amount of water in the collection
chamber can be changed more dynamically, which could im-
prove parameter determination. This have been implemented in
our previous centrifuge version in 1D (see [10]).

VI. CONCLUSIONS

An accurate and efficient numerical method was devel-
oped for solving the direct infiltration problem in unsatu-
rated/saturated porous media in 3D. This method is a good can-
didate for solving the inverse problem in order to determine soil
parameters in capillary-pressure flow model. The suggested ex-
periment scenario completed by our numerical method seems
to be suitable instrument in determination of soil parameters re-
quiring only noninvasive global inflow/outflow characteristics
(eventually, centrifugal force). Effectiveness (computing time)
of our numerical method is strongly dependent on inner tun-
ning parameters which need updating with stronger change of
model data, e.g., when changing from gravitation to centrifu-
gation mode. When the transient measurements of centrifugal
force are affected by more than 5% of error, then this informa-
tion in determination procedure is contraproductive and we drop
out its measurements.

More local minima appear in centrifugation mode and thus
various starting parameters have to be used and evaluated.

In the next research we aim to increase the reliability of de-
termined soil parameters by combining the measurements of
gravitation and centrifugation experiments using the same sam-
ple and under the same model data.

Our method can be also used in sacenario, when we start
with fully saturated sample and empty injection chamber. We
can also isolate the bottom of the sample and let it reach equilib-
rium. Especially, in case of centrifugation we can create series
of equilibria and from their information obtain soil parameters

as in 1D (see [13]).
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of soil parameters based on mathematical modelling of
centrifugation,” In International Journal of Mathemati-
cal Modelling and Numerical Optimisation, vol. 5, no.3,
pp.153-170,2014.

INTERNATIONAL JOURNAL OF MECHANICS Volume 11, 2017

ISSN: 1998-4448 42




