
 

 

  
Abstract—Electric and Magnetic Field Integral Equations 

(EFIE&MFIE) on impedance cylinders with smoothly parametrized 
cross section contours under Transverse Magnetic and Electric 
(TM&TE) excitations are considered. It is possible to achieve super-
algebraic convergence with accurate calculation of the kernels of 
integral equations. Unless the impedance value is too small or too 
big, these equations are Fredholm of the second kind and are subject 
to stable discretization procedures. Otherwise numerical stability 
requires Analytical Regularization. Numerical results to show 
evidence for these points are given. 
 

Keywords— Analytical regularization, electromagnetic 
scattering, impedance cylinders, super-algebraic convergence.  

I. INTRODUCTION 
HE surface integral equation formulation of the time 

harmonic electromagnetic scattering problems is 
indispensable for modern computational electromagnetics 
since it enables the investigation of the phenomenon 
throughout the space with data collected from a one-less 
dimensional space, owing it to equivalence principles modeled 
by surface integral transforms via Green’s formulae [1]. 
Impedance type of boundary condition imposed on such 
surfaces can be regarded as the next level of physical 
equivalence as it treats the part of the space that is in or out 
this boundary impenetrable, summarizing the phenomenon in 
or out it with a relation on this boundary ([2]-[4]). On the 
other hand, cylindrical obstacles i.e. uniform along one 
Cartesian direction can be observed quite commonly in many 
modern engineering problems such as transmission lines, 
waveguides, metamaterials, nano-rods, photonics etc. 
involving multilayered multiple objects or lattice structures 
like gratings of one or two dimensions [5]. One can easily 
follow the new attempts for creating instruments to better the 
efficiency of such solvers (e.g.[6]). 

In this study, we present the elements of a high order, super-
algebraically convergent solution of the classical electric and 
magnetic field integral equations (EFIE&MFIE) for arbitrary 
but smoothly parametrized cross sectioned cylinders with 
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impedance boundary conditions under transverse electric and 
magnetic (TE&TM) excitations rigorously with Galerkin 
method supported by features of a fast and scalable algorithm. 
For perfectly electrically conductive (PEC) boundaries which 
can be considered a subset of impedance boundary conditions, 
but open cross-sections, these elements were elaborated in [7]. 
Here we introduce the algorithm for a more general version of 
the boundary condition on a multitude of cylindrical surfaces, 
cross-sections of which are given by infinitely smooth closed 
contours.  

A. On Numerical Stability 
Even on the simplest of such contours, i.e. circular 

impedance cylinders, the classical separation of variables 
based formulation has to be linked to the integral equation 
formulation of the corresponding boundary value problem 
followed with its regularization due to ill conditioning of the 
linear algebraic system [8]. The EFIE&MFIE here are second 
kind Fredholm integral equations when the impedance 
amplitude is neither too big nor too small, thus their numerical 
discretization is well-conditioned [9]. But in other variants of 
impedance values this beneficial feature diminishes and 
algorithm gets ill-conditioned. The establishment of the 
classical left and right regularization of such operators [10] are 
problem specific and not always valid. For the class of 
problems considered here they were elaborated in [11] and 
called “Analytical Regularization Method (ARM)” which 
basically involves finding a canonical problem with 
singularity equivalence to the one under investigation, which 
has an analytical solution. This was mostly applied on PEC 
boundaries [12], [13]. 

According to [14], having handled this aspect of the 
stability problem translates to the fact that the necessity to 
establish an operator with bounded inverse regarding the 
integral equation formulations, has been worked out, but the 
necessity to work within a proper inner product space 
requiring “higher-order” choices of basis and testing 
functions which in turn results into a well-conditioned matrix 
operator for the problem has also got to be expanded on still.  

This actually points to usage of higher-order formulations to 
improve the accuracy control of the method next to its being 
scalable and fast [15]. An approach for splitting the kernels to 
accomplish the task has been outlined in [16]. Here/in [16], 
treatment involves evaluation of the integral kernels on 
same/different grids for integration and observation points 
analytically/numerically. Still benefiting from spectral 
accuracy, with grids getting denser, the instruments of the 
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former/latter lead to solutions with controlled/degraded 
accuracy especially when the kernel is hyper-singular. 

Rest of the text follows with formulation including posing 
of the boundary value problem, followed by details of the 
numerical calculation. Then the numerical results to 
demonstrate the above mentioned features will take place. 

II. FORMULATION 

A. Posing of the boundary value problem 
Let Ω denote the region out the infinitely smooth contour Γ 

on x-y plane. Let also S symbolize Single layer potential, and 
limits of four relevant boundary potentials to it on Γ, i.e. 
{S,R,V,D} be belonging to itself, its outer normal derivatives 
w.r.t integRation and obserVation points, and Double layer 
potential respectively [9]. They appear as elements when one 
expresses the scattering field which satisfies the homogenous 
Helmholtz equation via 3rd Green formula and then uses it to 
define an integral equation according to the boundary 
conditions on Γ for the solutions in Ω obeying Sommerfeld 
radiation condition [17]. 

Let us denote the block matrix operator K and block vectors 
X and G for unknown current densities and incident 
electromagnetic fields as follows [1] (  𝑻𝑻: transverse,
𝑳𝑳: longitudinal): 

 

𝑲𝑲 = � 𝑹𝑹 𝜶𝜶𝜶𝜶
𝜶𝜶−𝟏𝟏𝑫𝑫 −𝑽𝑽� ;      𝑿𝑿 = �

𝑻𝑻𝜷𝜷
𝑳𝑳𝜸𝜸
� ;  𝑮𝑮 = �

𝑻𝑻𝜸𝜸𝒊𝒊𝒊𝒊𝒊𝒊

𝑳𝑳𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊
�           (1) 

 
Transverse/longitudinal indicate directions that are parallel 

two orthogonal basis on cylindrical surface Γz∈(-∞,∞) 
respectively. The values for coefficients in (1) as well as 
integral equations on the boundary Γ with constant impedance 
η, according to incidence polarizations, are specified in the 
table below (m:magnetic, e:electric): 

 
 Impedance 

Relation  

α β γ 1st row 

of K  

2nd row 

of K 

TM Lγ =Tβ /η -jωµ m e EFIE MFIE 

TE Lγ = -Tβη jωε e m MFIE EFIE 

Table 1. Information to select an equation under specific excitation 

Let Γ now consist of a multitude of infinitely smooth 
contours, i.e. Γ = ⋃ Γ𝑖𝑖𝑁𝑁

𝑖𝑖=1  defining interfaces between regions 
bounded by impedance boundaries. Then for both 
polarizations mentioned above, with corresponding values of 
constitutive parameters outer sides of Γ𝑖𝑖 , the following block 
matrix representation of system of Fredholm integral 
equations of the second kind is valid where I is unit diagonal 
matrix operator: 

 

〈�
1
2
𝑰𝑰 + 𝑯𝑯�𝒀𝒀 = 𝑩𝑩〉𝜐𝜐 ;   𝜐𝜐 = �1,𝑇𝑇𝑇𝑇 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑇𝑇𝐸𝐸 −𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 

2,𝑇𝑇𝑇𝑇 −𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑇𝑇𝐸𝐸 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
� 

𝑯𝑯 = �𝑲𝑲𝒊𝒊𝒊𝒊�𝑵𝑵×𝑵𝑵
;𝒀𝒀 = (𝑿𝑿𝒊𝒊)𝑵𝑵;  𝑩𝑩 = �𝑮𝑮𝒊𝒊�𝑵𝑵     (2) 

 
Here, υ is row selector from (1) according to Table 1, e.g. TE-
EFIE is formally obtained by neglecting 1st rows of the input 
blocks in < >υ (υ=2) and selecting data from 2nd row of Table 
1. The impedance relation in Table 1, leads to arrival at any of 
4 intended equations with single unknown on Γ. 

B. Canonical form of boundary potentials 
The integral equation in (2) is subject to discretization via 

Galerkin method assuming a smooth parametric representation 
of Γ𝑖𝑖(𝜃𝜃) where θ∈(-π,π]. These contours have to be 
isomorphic to the unit circle, evaluation of boundary potentials 
on which form the corresponding canonic local singular 
expansions in [11] and [18]. With 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗  time dependence, the 
Green’s function of 2D free space with wave number k and its 
local singular expansion is (c0,1,2 are some constants, see e.g. 
in [19]) 

 

𝒢𝒢2(𝑞𝑞, 𝑝𝑝) =
1
4𝑗𝑗
𝐻𝐻0

(2)(𝑘𝑘|𝑞𝑞 − 𝑝𝑝|) = 
1

2𝜋𝜋
𝑙𝑙𝑙𝑙|𝑞𝑞 − 𝑝𝑝|�1 + 𝑐𝑐0𝒪𝒪(|𝑞𝑞 − 𝑝𝑝|2)� + 𝒪𝒪�𝑐𝑐1 + 𝑐𝑐2𝒪𝒪(|𝑞𝑞 − 𝑝𝑝|2)�(3) 

 
On unit circle, the distance between two points is |𝑞𝑞 − 𝑝𝑝| =

�2𝑠𝑠𝑖𝑖𝑙𝑙 𝜃𝜃−𝜏𝜏
2
� with polar coordinates q=(1,θ), p=(1,τ). According 

to (3) natural logarithm of this distance is the canonical 
singularity and has the following Fourier series expansion 
analytically and relation with hyper-singularity via the 
parametric differentiation property as δ→0 (since x→0, 
2sin(x/2)=O(x) it also means (θ -τ)→0): 

 

𝛿𝛿 = 2𝑠𝑠𝑖𝑖𝑙𝑙 𝜃𝜃−𝜏𝜏
2

;
𝑎𝑎𝑙𝑙 = |𝑙𝑙|−1;

 
          

𝑙𝑙𝑙𝑙|𝛿𝛿| = − 1
2
∑ 𝑎𝑎𝑙𝑙𝑒𝑒𝑖𝑖𝑙𝑙 (𝜃𝜃−𝜏𝜏)∞
𝑙𝑙=−∞
𝑙𝑙≠0

;

1
𝛿𝛿2 = − 𝜕𝜕2

𝜕𝜕𝜃𝜃2 𝑙𝑙𝑙𝑙|𝛿𝛿|  = 1
2
∑ 𝑎𝑎𝑙𝑙−1𝑒𝑒𝑖𝑖𝑙𝑙 (𝜃𝜃−𝜏𝜏)∞
𝑙𝑙=−∞
𝑙𝑙≠0

 (4) 

 
Since the difference between evaluation of 𝒢𝒢2(𝑞𝑞, 𝑝𝑝) on unit 

circle and on any other Γ𝑖𝑖(𝜃𝜃) is a real-analytical function (a 
function converging to its Taylor series expansion at a point), 
the canonical integrals for the boundary potentials in Table 2 
can be suggested describing the singular behavior of their 
kernels while δ→0. 

 
Boundar

y potential 
Canonical Parametric Integral 

Transform 
𝜶𝜶�𝜁𝜁(𝜃𝜃)� 

� 𝜁𝜁(𝜏𝜏) �
1

2𝜋𝜋 𝑙𝑙𝑙𝑙
|𝛿𝛿| + 𝑃𝑃𝑆𝑆(𝜃𝜃, 𝜏𝜏)� 𝑙𝑙(𝜏𝜏)𝑑𝑑𝜏𝜏

𝜋𝜋

−𝜋𝜋

 

𝑹𝑹�𝜉𝜉(𝜃𝜃)� 1
2 𝜉𝜉

(𝜃𝜃) + � 𝜉𝜉(𝜏𝜏) �
1

2𝜋𝜋𝑙𝑙(𝜏𝜏)𝑃𝑃𝑅𝑅(𝜃𝜃, 𝜏𝜏)� 𝑙𝑙(𝜏𝜏)𝑑𝑑𝜏𝜏
𝜋𝜋

−𝜋𝜋

 

𝑽𝑽�𝜁𝜁(𝜃𝜃)� 
−

1
2 𝜁𝜁

(𝜃𝜃) +
1

2𝜋𝜋𝑙𝑙(𝜃𝜃) � 𝜁𝜁(𝜏𝜏)𝑃𝑃𝑉𝑉(𝜃𝜃, 𝜏𝜏)𝑙𝑙(𝜏𝜏)𝑑𝑑𝜏𝜏
𝜋𝜋

−𝜋𝜋
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𝑫𝑫�𝜉𝜉(𝜃𝜃)� 1
2𝜋𝜋𝑙𝑙(𝜃𝜃)𝑙𝑙(𝜏𝜏) �

𝜕𝜕2

𝜕𝜕𝜃𝜃2 � 𝜉𝜉(𝜏𝜏)𝑙𝑙𝑙𝑙|𝛿𝛿|𝑙𝑙(𝜏𝜏)𝑑𝑑𝜏𝜏
𝜋𝜋

−𝜋𝜋

+ �𝜉𝜉(𝜏𝜏)𝑃𝑃𝐷𝐷(𝜃𝜃, 𝜏𝜏)𝑙𝑙(𝜏𝜏)𝑑𝑑𝜏𝜏
𝜋𝜋

−𝜋𝜋

� 

Table 2. The integral transforms via the boundary potentials 
Here 𝑙𝑙(𝜃𝜃) = �𝑥𝑥′(𝜃𝜃)2 + 𝑦𝑦′(𝜃𝜃)2 is the arc-length applies to 

each of the Γ𝑖𝑖(𝜃𝜃) parametrizations. The explicit form of the 
corresponding boundary potentials obeying the form in Table 
2 can be given starting from the following matrix equation that 
summarizes the kernels of boundary potentials: 

 

�

𝓚𝓚(𝜶𝜶)
𝓚𝓚(𝑹𝑹)
𝓚𝓚(𝑽𝑽)
𝓚𝓚(𝑫𝑫)

� =

⎣
⎢
⎢
⎡

1 𝑗𝑗𝑘𝑘⁄                0
   0                4𝑎𝑎 𝑗𝑗𝑘𝑘⁄
   0            −4𝑏𝑏 𝑗𝑗𝑘𝑘⁄
𝑘𝑘𝑎𝑎𝑏𝑏   (2𝑎𝑎𝑏𝑏 − 𝑐𝑐) 𝑘𝑘𝑅𝑅⁄ ⎦

⎥
⎥
⎤
�
𝑗𝑗𝑘𝑘𝒢𝒢2
𝑘𝑘
4𝑗𝑗
𝒢𝒢2
′ � ; 

  �

𝑎𝑎 = 𝑙𝑙�′ ∙ 𝑅𝑅�
𝑏𝑏 = 𝑙𝑙� ∙ 𝑅𝑅�
𝑐𝑐 = 𝑙𝑙�′ ∙ 𝑙𝑙�
𝑅𝑅 = |𝑞𝑞 − 𝑝𝑝|

;  
𝒢𝒢2(𝑞𝑞, 𝑝𝑝) = 1

4𝑗𝑗
𝐻𝐻0

(2)(𝑘𝑘𝑅𝑅)

𝒢𝒢′2(𝑞𝑞, 𝑝𝑝) = 𝑗𝑗𝑘𝑘
4
𝐻𝐻1

(2)(𝑘𝑘𝑅𝑅)
�   (5) 

 
Here 𝑙𝑙�′and 𝑙𝑙� are outward unit normals at integration and 

observation points respectively and  𝑅𝑅�  is the unit vector from 
integration point to observation point where k is the wave 
number of the observation domain. Let us add the following 
local singular expansion to (3) for 𝒢𝒢2

′ (𝑞𝑞, 𝑝𝑝) implicitly to cast 
the most dominant singularity in (5) (c3,4,5,6 are some 
constants, see e.g. [19]); 

 
𝒢𝒢2
′ (𝑞𝑞, 𝑝𝑝)

|𝑞𝑞 − 𝑝𝑝| = −
1

2𝜋𝜋|𝑞𝑞 − 𝑝𝑝|2 −
𝑘𝑘

2𝜋𝜋
𝑙𝑙𝑙𝑙|𝑞𝑞 − 𝑝𝑝| × 

× �𝑐𝑐3 + 𝑐𝑐4𝒪𝒪(|𝑞𝑞 − 𝑝𝑝|2)� + 𝑘𝑘𝒪𝒪�𝑐𝑐5 + 𝑐𝑐6𝒪𝒪(|𝑞𝑞 − 𝑝𝑝|2)�(6) 
 

Notice that when q=p, a=b=0 and c=1 in (5). Therefore on 
Γ, K(S) is weakly singular, K (R) and K (V) involve 
principle values equal to ½ with a smooth tail while K (D) 
has finite part in Hadamard sense, i.e. is hyper-singular with a 
weakly singular tail, also qualifying the kernels in Table 2 [1]. 
Rather than these direct values, it is important to show their 
limits while observation made approaches to Γ, exist [9] since 
those values are subject to boundary conditions. This was 
proven in [18] specifically for closed as well as open smoothly 
parametrized boundary contours, quite intricately for D as well 
as S, R, V where the task is much straightforward to 
accomplish (see Table 3). Looking at (3), (4) and (6), one can 
easily relate (5) to kernels in Table 2 as δ→0, when Γ is unit 
circle since 𝑙𝑙(𝜃𝜃) = 𝑙𝑙(𝜏𝜏) = 1. For arbitrary Γ𝑖𝑖(𝜃𝜃), one can also 
show that the local singular expansion of R2 performing it 
once for integration and once for observation points on R of 
(5) will lead to;  

 
𝑅𝑅2 = |𝑞𝑞(𝜃𝜃) − 𝑝𝑝(𝜏𝜏)|2 = |𝑞𝑞(𝜏𝜏 + 𝛿𝛿) − 𝑝𝑝(𝜏𝜏)||𝑞𝑞(𝜃𝜃) − 𝑝𝑝(𝜃𝜃 + 𝛿𝛿)| 

= �𝑙𝑙(𝜏𝜏)𝛿𝛿 + 𝒪𝒪�𝛿𝛿3 2⁄ �� �𝑙𝑙(𝜃𝜃)𝛿𝛿 + 𝒪𝒪�𝛿𝛿3 2⁄ �� 
                                           

= 𝑙𝑙(𝜃𝜃)𝑙𝑙(𝜏𝜏)𝛿𝛿2 + 𝒪𝒪(𝛿𝛿3),      𝛿𝛿 → 0   (7) 
 

This clarifies the transition from (5) to kernels in Table 2 
for arbitrary smooth Γ in the light shed from (3) to (7).  

C. Values of boundary potentials on Γ 
The high-order discretization of (2) for the problems of 

interest, requires the integration of the kernels in (5) 
accurately. Achieving spectral accuracy leads to super-
algebraic convergence. The factorized representation of the 
kernels, consist of canonically singular parts multiplied by 
infinitely smooth parts (K 0) plus solely infinitely smooth 
parts (K 1), i.e. K=K 0+K 1. Canonical singularities 
appearing in Table 2, have the analytical expressions of their 
spectrum given in (4). In Table 3 K0 is given as defined 
above, in terms of these canonical singularities. Then the 
determination of the spectrum of K0, can be performed via 
Fast Fourier Transform (FFT) for the corresponding infinitely 
smooth part accurately and convolving them with spectrum of 
the singularities factorizing them either when δ≠0 or δ→0. 
Formally one can define K1=K-K0 and calculate the 
difference functions occurring by extraction of kernel K 0 
when δ≠0. Their limits when δ→0 are given also in Table 3. 
Then corresponding spectrum of it can be determined 
accurately by the well-known fast and scalable procedure i.e. 
FFT. Therefore, the samples for Fourier transform are 
involved analytically for the singularities and efficiently 
numerically for infinitely smooth parts as well as the finite 
limits in the kernels as δ→0 avoiding the big numbers that 
may occur during calculation. To specify, let us define the 
following short-hand notations for recurring expressions 
(𝜖𝜖 = 0.577215 …, Euler-Mascheroni constant): 

 

  
𝐽𝐽0̅(𝑥𝑥) = 𝐽𝐽1(𝑥𝑥) 𝑥𝑥⁄ ;           𝐽𝐽0̿(𝑥𝑥) = 𝐽𝐽0(𝑥𝑥) − 2𝐽𝐽0̅(𝑥𝑥);

�𝑃𝑃(𝜃𝜃)
𝑇𝑇(𝜃𝜃)�

(𝑖𝑖 ,𝑗𝑗 )

= �𝑥𝑥
(𝑖𝑖)(𝜃𝜃)𝑥𝑥(𝑗𝑗 )(𝜃𝜃) + 𝑦𝑦(𝑖𝑖)(𝜃𝜃)𝑦𝑦(𝑗𝑗 )(𝜃𝜃)
𝑥𝑥(𝑖𝑖)(𝜃𝜃)𝑦𝑦(𝑗𝑗 )(𝜃𝜃) − 𝑦𝑦(𝑖𝑖)(𝜃𝜃)𝑥𝑥(𝑗𝑗 )(𝜃𝜃)

�
   (8) 

 
Note that 𝐽𝐽0(𝑥𝑥) = 𝒪𝒪(1), 𝐽𝐽0̅(𝑥𝑥) = 𝒪𝒪(1 2⁄ )  and 𝐽𝐽0̿(𝑥𝑥) =

𝒪𝒪(𝑥𝑥). Indices (i, j) denote the order of the derivative of the 
Cartesian coordinate of the parametrization.  

 
𝓚𝓚 𝐥𝐥𝐥𝐥𝐥𝐥

𝜹𝜹→𝟎𝟎
𝓚𝓚𝟏𝟏 𝓚𝓚𝟎𝟎 

𝓚𝓚(𝜶𝜶) 1
4𝑗𝑗 −

𝜖𝜖 + 𝑙𝑙𝑙𝑙|𝑘𝑘𝑙𝑙 2⁄ |
2𝜋𝜋  −

1
2𝜋𝜋  𝑙𝑙𝑙𝑙|𝛿𝛿| 𝐽𝐽0(𝑘𝑘𝑅𝑅) 

𝓚𝓚(𝑹𝑹) 1
2𝜋𝜋𝑙𝑙(𝜏𝜏) �

𝑘𝑘𝑇𝑇(1,2)

2𝑙𝑙2 � 
𝑘𝑘𝑎𝑎
2𝜋𝜋  𝑙𝑙𝑙𝑙|𝛿𝛿| 𝐽𝐽1(𝑘𝑘𝑅𝑅) 

𝓚𝓚(𝑽𝑽)  1
2𝜋𝜋𝑙𝑙(𝜃𝜃) �

𝑘𝑘𝑇𝑇(1,2)

2𝑙𝑙2 � −  
𝑘𝑘𝑏𝑏
2𝜋𝜋  𝑙𝑙𝑙𝑙|𝛿𝛿| 𝐽𝐽1(𝑘𝑘𝑅𝑅) 

𝓚𝓚(𝑫𝑫) 1
2𝜋𝜋𝑙𝑙(𝜃𝜃)𝑙𝑙(𝜏𝜏) �𝜋𝜋(𝑘𝑘𝑙𝑙)2 �

1
4𝑗𝑗
� −� 

�𝜖𝜖 + 1 2⁄ + 𝑙𝑙𝑙𝑙|𝑘𝑘𝑙𝑙 2⁄ |
2𝜋𝜋 �+

1
12 − 

��
𝑃𝑃(1,3)

6𝑙𝑙2
� �−
𝑃𝑃(2,2)

4𝑙𝑙2 −
�𝑇𝑇(1,2)�

2

𝑙𝑙4 �� 

−𝑘𝑘2𝑙𝑙𝑙𝑙|𝛿𝛿|
2𝜋𝜋 ×

�𝑎𝑎𝑏𝑏𝐽𝐽0̿(𝑘𝑘𝑅𝑅)�+𝑐𝑐𝐽𝐽0̅(𝑘𝑘𝑅𝑅)��
+

1
2𝜋𝜋𝑙𝑙(𝜃𝜃)𝑙𝑙(𝜏𝜏)

𝜕𝜕2

𝜕𝜕𝜃𝜃2 𝑙𝑙𝑙𝑙|𝛿𝛿|

 

Table 3. Infinitely smooth parts of kernels of boundary potential as 
δ→0 (K 1) and canonic singularity times infinitely smooth parts of 
kernels of boundary potential (K 0). 
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In the case of multiple interfaces, during forming a block 

row of (2), (θi,τj) parameters only require use of Table 3 when 
i=j. Otherwise when i≠j, using (5) without any singularity 
extraction will lead to infinitely smooth parts in the kernel 
subject to FFT procedure as all infinitely smooth parts. 

D. Discretization of boundary potentials 
Assuming a non-zero right hand side as well as the 

unknown currents in (2), all of these functions as well as the 
functions in Table 3, to form the transforms in Table 2, are 2π-
periodic to their parameters on Γ and have to be represented 
by corresponding single or double Fourier series. The 
transforms in Table 2 discretize the integrals owing to the 
orthogonality of complex exponentials in the given domain as 
described in [11] and [18]. Below in Table 4, one can formally 
find discrete version in other words Fourier spectrum 
truncated to integer M of Table 2, which is elaborated 
according to Table 3 (∗ represents convolution operation). The 
single/double index Fourier coefficients are for unknown 
current densities (𝓏𝓏)/infinitely smooth functions (ℊ,𝒿𝒿) in 
kernels (𝓚𝓚1,𝓚𝓚0) of Table 3 respectively. I as well as an and 
1/an are diagonal matrices values of which are unity, Fourier 
coefficients of ln|δ | and ∂2ln|δ |/∂θ 2 given in (4) ([…]<0> 
notation indicates entry is zero to location of zero indices). 
Notice that the last one is achieved evidently by differentiating 
after the integral transform as indicated in Table 2. 

 
Boundary 

Potential 
Fourier Spectrum of Boundary Potential 

on Γ truncated to integer M 
S �− ��ℊ𝑠𝑠,−𝑙𝑙

(𝑆𝑆) �
𝑇𝑇×𝑇𝑇

+
2
𝜋𝜋

[𝑎𝑎𝑙𝑙]𝑇𝑇×𝑇𝑇
〈0〉 ∗ �𝒿𝒿𝑠𝑠,−𝑙𝑙

(𝑆𝑆) �
𝑇𝑇×𝑇𝑇

�� �𝓏𝓏𝑙𝑙
(𝑆𝑆)�

𝑇𝑇×1
 

R �
1
2
𝐸𝐸𝑇𝑇×𝑇𝑇 −

𝑖𝑖𝜋𝜋
2
��ℊ𝑠𝑠,−𝑙𝑙

(𝑅𝑅) �
𝑇𝑇×𝑇𝑇

+
2
𝜋𝜋

[𝑎𝑎𝑙𝑙]𝑇𝑇×𝑇𝑇
〈0〉 ∗ �𝒿𝒿𝑠𝑠,−𝑙𝑙

(𝑅𝑅) �
𝑇𝑇×𝑇𝑇

�� �𝓏𝓏𝑙𝑙
(𝑅𝑅)�

𝑇𝑇×1
 

V �
1
2
𝐸𝐸𝑇𝑇×𝑇𝑇 +

𝑖𝑖𝜋𝜋
2
��ℊ𝑠𝑠,−𝑙𝑙

(𝑉𝑉) �
𝑇𝑇×𝑇𝑇

+
2
𝜋𝜋

[𝑎𝑎𝑙𝑙 ]𝑇𝑇×𝑇𝑇
〈0〉 ∗ �𝒿𝒿𝑠𝑠,−𝑙𝑙

(𝑉𝑉) �
𝑇𝑇×𝑇𝑇

�� �𝓏𝓏𝑙𝑙
(𝑉𝑉)�

𝑇𝑇×1
 

D ��
1
𝑎𝑎𝑙𝑙
�
𝑇𝑇×𝑇𝑇

〈0〉

− ��ℊ𝑠𝑠,−𝑙𝑙
(𝐷𝐷) �

𝑇𝑇×𝑇𝑇
+

2
𝜋𝜋

[𝑎𝑎𝑙𝑙 ]𝑇𝑇×𝑇𝑇
〈0〉 ∗ �𝒿𝒿𝑠𝑠,−𝑙𝑙

(𝐷𝐷) �
𝑇𝑇×𝑇𝑇

�� �𝓏𝓏𝑙𝑙
(𝐷𝐷)�

𝑇𝑇×1
 

Table 4. The spectrum of boundary potentials being used during 
the formation of the right hand side of the matrix equations 

 
The specific composition of the matrix-vector 

multiplications in Table 4 are equated to corresponding 
Fourier coefficients of the excitation given in (1) on Γ𝑖𝑖(𝜃𝜃) 
which forms the right hand side in (2) after having selected the 
excitation polarization type in Table 1 as well as the equation 
to solve for, and composed the kernels according to (1). 

III. NUMERICAL RESULTS 
We will start with validations of the new established 

algorithms. This will be made by the method in [8] 
constructed for circular boundaries and involve the 
comparison of the Fourier coefficients of the unknowns on the 
boundaries. Then a combination of different smooth contours 
from [20] will be chosen and the solution performance in 
terms of convergence and numerical stability will be 
demonstrated on them. The numerical instability when the 
impedance values are either too big or too small will be 

witnessed numerically and the improvement via application of 
ARM will be presented where basically explained in the 
appendix. 

APPENDIX: ANALYTICAL REGULARIZATION METHOD 
The history and theoretical background of the ARM is 

thoroughly given in [11]. Basically it can be thought as an 
analytical preconditioning for the ill-posed systems and make 
them well-posed by finding a set of correctness that for Ax=b, 
x,b∈H, it is possible to find pair of spaces H1,H2: H1⊃H⊃H2 
that bounded inverse of A, A-1 exists [21]. Since the most 
suitable space representing the algebra in computers is l2, we 
have no choice but H1, H, H2 all have to be l2 the space of 
square summable sequences. Therefore the linear algebraic 
system of the first kind (LAES1: Ax=b, x,b∈l2) which is ill-
posed has to be converted to a linear algebraic equation of the 
second kind (LAES2: (I+H)y=g, y,g∈l2) where I is identity 
and H and A are compact operators in l2. The passage depends 
on finding the invertible left and right regularizing operators 
[10] that leads to LAR=I+H, by the definition of new 
unknown y=R-1x and new right hand side g=Lb. LAES2 with 
increasing truncation number of the infinite system, have 
uniformly bounded condition numbers thus leading to a 
numerically stable inversion procedure leading to guaranteed 
convergence unlike LAES1 where none of such features are 
under guarantee. 
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