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Abstract—This paper studies nonlinear vibrations and 

stability of a rotating drill string applied in shallow drilling. It 

is supposed that the drill string is under the effect of a variable 

compressive axial load with consideration of finite 

deformations. Taking the drill string as a pinned-pinned rod its 

lateral vibrations and resonance regimes on basic and higher 

(the third) frequencies are modelled. The classical Galerkin 

technique and the method of harmonic balance are utilized. 

The investigations show considerable nonlinear effects and 

bifurcation phenomena on the amplitude-frequency 

characteristics (AFC) of the drill strings that may indicate 

instability of the studied process. Instability zones of the 

resonance on the basic frequency, which correspond to a 

frequency range of bifurcation effects on the AFC, are 

determined. Numerical analysis of the mathematical model is 

performed and recommendations for choosing optimal 

constructive parameters of the drill strings and their operating 

regimes are provided. 

 

Keywords—Drill string, nonlinear model, lateral vibrations, 

resonance, stability. 

I. INTRODUCTION 

NE of the main problems of machine dynamics is a 

problem of dynamic stabilization of various mechanical 

structures. It is of utmost value for rod elements, including 

rotating drill strings applied in oil and gas extracting industry. 

Investigation of drilling system stability has a great 

importance for improvement of efficiency of drilling 

operations, protection of expensive drill string components and 

avoidance of damage to borehole walls. Torsional stick-slip 

oscillations, high-amplitude lateral vibrations and axial bit-

bounce motions of drill strings caused by their complicated 

dynamic behavior during the drilling process may cause severe 
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technical failures of the drilling equipment [1, 2]. In order to 

minimize dangerous vibrations of drill strings it is necessary to 

recommend such combinations of an external load, rotation 

speed of the drill string and other system parameters, under 

which resonance regimes of vibration are not observed. 

Furthermore, the drill string dynamics is highly nonlinear by 

its nature. It is due largely to flexibility of the drill string that 

can result in finite deformations of the string in view of its 

large length and effects of variable external loadings, in 

particular, the compressing axial force. Therefore, when 

investigating the drill string dynamics, it is necessary to 

consider its deformability to determine amplitudes of 

displacements with detecting dangerous resonant oscillating 

regimes of the drill string.  In Al-Hiddabi’s paper [3] research 

of nonlinear controller to decrease lateral and torsional 

vibrations accompanying the nonlinear drill string dynamics 

was carried out. It was established that application of the 

controller enabled one to eliminate torsional vibrations and 

considerably reduced lateral motions. 

Problems of analyzing dynamic stability of mechanical 

systems and modelling of resonance regimes of their nonlinear 

vibrations mostly reduce to determination of unknown 

functions of displacements iju , strains ij and stresses ij , 

satisfying boundary conditions given and minimizing some 

functional  , ,ij ij iju   . The classical Galerkin method [4, 

5], the Rayleigh-Ritz approach [6, 7] and the finite element 

method [8, 9] are widely used amongst different variation 

methods for solution of these problems. 

In [4] Vaz and Patel indicated that approximation by 

Galerkin's method could be successfully applied to research of 

the drill string dynamics. Importance of considering inertial 

forces to investigate stability of the drill string when 

performing drilling of vertical holes was also shown. 

Amongst the early works contributing significantly to the 

development of the theory of elastic systems dynamic stability 

it is worth indicating the classical books of Bolotin, Hayashi, 

Vol’mir, Timoshenko and others. In [10] problems of dynamic 

instability of rods, rod systems and shells, and methods of their 

analysis are studied. In the work [11] methods for definition of 

stability of nonlinear systems and oscillations are considered in 

depth, and also their comprehensive analysis is carried out. A 

great deal of attention is given to determine stability of 

periodic vibrations. Various problems on stability of rods, 

plates and shells, particularly, at their dynamic loading are 

studied in [12]. The general theory of bending and stability of 

thin-walled rods, stability of a flat form of bending of straight 
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and curvilinear beams, dynamic stability of homogeneous 

rectangular plates and circular cylindrical shells for various 

cases of external loadings and boundary conditions are 

presented in [13]. 

Some authors mainly focus only on stability of the drill 

string bottom-hole assembly (BHA) whereas research of 

stability of the whole drill string is still insufficiently studied. 

In [14] authors model stability of the lower part of a drill 

string, using the finite element method to integrate governing 

equations. 

Other authors in their research on stability of drill strings 

apply the Lagrange technique with restrictions on the degrees 

of freedom, widely used in machine dynamics. In [15] a 

nonlinear dynamic model of lateral and axial vibrations of a 

rotating drill string, developed by the use of the Lagrange 

approach, was investigated. Modelling results pinpointed that 

the parametric resonance and wirl vibration phenomena in 

drilling machines, resulting in high-amplitude lateral vibrations 

of the drill strings, might occur simultaneously at appropriate 

work regimes of drilling. 

Direct usage of the harmonic balance method for solution of 

nonlinear equations of vibration motion relative to one 

generalized time variable was shown in [16]. The authors 

presented benefits of application of the harmonic balance 

technique in combination with the nonlinear normal vibration 

modes approach and the modified Rauscher method under the 

analysis of multi-degree of freedom (DOF) systems having 

internal and external resonances. 

In this paper nonlinear vibrations and stability of rotating 

drill strings for shallow drilling under the assumption of 

finiteness of their deformations are investigated. Modelling of 

the nonlinear system of the drilling machine as a system with 

distributed parameters can allow to enhance description of the 

drill string dynamics and the results obtained herein.  

II. STATEMENT OF THE PROBLEM 

One of the major problems of the drill string dynamics are 

resonance phenomena and the need to eliminate the operating 

frequencies of drill string motion from resonance regions in 

order to maintain stability of drilling. 

Here the resonance phenomena of drill strings and their 

stability taking into account nonlinear complicating factors are 

examined. It is known that lateral vibrations of a drill string, 

modelled as a rotating elastic isotropic rod of symmetric cross-

section, make the main contribution to the general oscillatory 

process, whereas the contribution of longitudinal and torsional 

vibrations is negligible in comparison with lateral ones. The 

largest amplitudes of longitudinal and torsional vibrations are 

several orders of magnitude less than the amplitude of lateral 

vibrations. Therefore, a mathematical model of lateral 

vibrations of the elastic rod with initial curvatures to analyze 

the resonance phenomena of drill strings under the influence of 

an external compressive load is used here.  

Let us consider a global Cartesian coordinate system Oxyz. 

The axis of the drill string is assumed to be bent only in the 

Oyz-plane, i.e. flat bending of the elastic isotropic rod of 

length l with symmetric cross-section is examined (see Fig. 1). 

A nonlinear mathematical model of the drill string lateral 

vibrations, based on the V.V. Novozhilov theory of finite 

deformations [17], is: 
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where   is the mass density, A is the cross-section area of the 

drill string, ( , )v z t  is the displacement of the flexural center of 

the cross-section along the y-axis owing to bending, E is 

Young’s modulus, 

 

2
x

A z

I y dA   is the axial inertia moment, 

ν  is Poisson’s ratio,   is the angular speed of the rod. 

Boundary conditions for the rod with hinged ends are 

written as 
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Fig. 1 flat bending of a drill string under the effect of an axial 

compressive force 

 

The longitudinal compressive loading  ,N z t  is supposed 

to be periodically varying and is presented in the form: 

 

0 cos ,  tN N N t  (3) 

 

where 0N  and tN  denote constant and variable in time 
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components, respectively;   is the frequency of external 

effects. 

III. MODELLING OF THE RESONANCE REGIMES 

Modelling of the resonance in elastic systems can be 

reduced to investigation of the equations of motion in the 

following form [18]: 

 

 2
0 cos , 1,i i i i if f F t i n    f , (4) 

 

where       1 2, , , nf t f t f t


f =  is the vector of 

generalized (modal) parameters, 0i  is the ith natural 

frequency,  i f  is the nonlinear term of the ith equation of 

motion, and   is the frequency of external effects. 

Nonlinear systems like (4) are widely applied to model 

motion of separate or coupled elements of different 

constructions and machines, describing nonlinear oscillations 

of systems with one DOF or with discrete masses. Besides, 

such equations can be used to simulate nonlinear oscillations 

of systems with distributed parameters. 

Let us define the dimensionless time: 

 

0 ,  t  (5) 

 

where 0  is the frequency of the drill string natural 

vibrations. 

Then applying the Galerkin method, the lateral displacement 

( , )v z t  in the Oyz-plane is given by 
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The initial curvature of the drill string has a smooth form. 

Hence, it can be presented in the form of a periodic 

trigonometric function: 

 

 0 0 sin
z

v z f
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 (7) 

 

Considering the lateral vibrations of the drill string on the 

general form of bending of its axis, i.e. at 1n  in (6), and 

taking into account (5), (7) we obtain an ordinary differential 

equation for the generalized time function  f : 
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and 
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Hereinafter the index “1” of the function  f  is omitted. 

Investigation of the resonance regimes of the drill string 

motion can be reduced to analysis of amplitude-frequency 

characteristics of their lateral vibrations. 

In nonlinear system (8) along with vibrations, which 

frequency coincides with frequency of the external force, 

higher and subharmonic oscillations can arise. The general 

method to solve such a system is expansion of the function 

 f  into the Fourier series with undefined coefficients. In 

the resonance case difference of phases between natural 

vibrations and external effects may have a great impact on the 

magnitude of amplitudes and the frequency of vibrations. 

A. Basic Resonance 

Considering the resonance on the basic frequency a solution 

of (8) can be approximated by a simple harmonic with 

frequency  : 

 

   0 1 1cosf r r      . (11) 

 

On substituting (11) into (8) and applying the method of 

harmonic balance, we obtain the following system of equations 

defining the dependence between the amplitudes 0 1,r r  and the 

frequency  : 
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where 
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Assuming that there is no constant component in the 

expression for the axial load  ,N z t  (3) and allowing for only 

the first term in the Fourier expansion, 

i.e.  1 1cos    f r , and taking into account resistance 

forces of the rock in (1), the nonlinear system (12) becomes 

identical to the amplitude-frequency dependence obtained in 

[19]. 

B. Resonance on Higher Frequencies 

In nonlinear dynamic systems in view of existence nonlinear 

quadratic or cubic terms the resonance on higher frequencies 

can occur. Therefore, to analyze the resonance phenomena in 

details an approximate solution of (8) is written as follows: 

 

     0 1 1 3 3cos cos 3 .f r r r            (14) 

 

Substituting (14) into (8), using the harmonic balance 

method and eliminating the unknown phase angles 1  and 3  

through some trigonometric transformations, we get a system 

of equations for the unknown amplitudes of vibrations 

0 1 3, ,r r r  and the frequency  : 
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The amplitude-frequency characteristics (12), (15) depend 

on geometrical and physical parameters of the dynamic 

system. It allows to examine the effects of these parameters on 

the resonance regimes of the drill string lateral vibrations to 

separate the resonant frequencies from drilling operating 

frequencies or to control them. 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

Numerical analysis of the basic and higher resonances of the 

nonlinear dynamic system (8), based on the amplitude-

frequency relations obtained above, is conducted in the 

Wolfram Mathematica computational package. The influences 

of the drill string length, thickness of its wall, angular speed of 

rotation, axial compressive load and the magnitude of its initial 

curvature on the branches of resonance curves are investigated. 

The dimensions and material properties of a pinned 

supported steel drill string are: 0.2mD   (outer diameter of 

the drill string), 0.12md   (inner diameter), 

52.1 10 МPа,E    37800kg m  , 0.28  . 

In Fig. 2-7 resonance curves for various values of the drill 

string length, namely 100ml   (tiny points), 250ml   and 

500ml   (bold points) with the angular speed of rotation 

1.05rad s   are shown. The constant and variable parts of 

the longitudinal compressive load  ,N z t  are given as 

0 1.7kHN  ,  0.5cos kHtN   , respectively. 

 

 
 

Fig. 2 Amplitude-frequency dependence  0r   for the case of basic 

resonance, 100ml   

 

 

 

Fig. 3 Amplitude-frequency dependence  0r   for the resonance on 

higher frequencies, 100ml   

 

As shown in Fig. 4, resonance curves ( 100ml  ) stretch out 

to the right because of existence of geometrical nonlinearity in 
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the system; meanwhile, shifting of the resonances curves 

towards the growth of external vibration frequency   takes 

place due to the initial curvature of the drill string axis. It is 

worth noting that the increase in the drill string length results 

in stretching the resonance curves out to the left, which is 

typical for mechanical systems with softening characteristics, 

and leads to instability of the system in the lower frequencies 

region. Moreover, the anomaly in the loop form for the simple 

harmonic appears at the range of amplitudes from 0.17 to 

0.23 m. 

 

 
Fig. 4 the influence of the drill string length on the resonance curves 

of its nonlinear lateral vibrations on the first harmonic, 0 0.3mf   

 

 

 
Fig. 5 resonance curves of 1st and 3rd harmonic vibrations of the drill 

string at the following values of parameters: 100ml  , 0 0.3mf   

 

Allowing for the third harmonic in the approximate solution 

(14), the increase in the external frequency   causes the 

sharp bias of the resonance curves  3r   in the higher 

frequencies direction, which corresponds to much smaller 

amplitudes compared to the resonance curves  1r   (Fig. 5). 

In addition, one more resonance curve  3r   appears to the 

left of the basic resonance (  changes from 0.5 to 0.7) due to 

the influence of the third harmonic on the oscillatory process. 

However, such a high value of the initial curvature of the 

drill string can be considered only in theoretical research, and 

if neither friction nor rigid contacts with borehole walls is 

taken into account. 

 

 
Fig. 6 the influence of the drill string length on the resonance curves 

of its nonlinear lateral vibrations on the first harmonic, 0 0.01mf   

 

 

 
Fig. 7 resonance curves of 1st and 3rd harmonic vibrations of the drill 

string at the following values of parameters: 250ml  , 

0 0.01mf   

 

When the value of the initial curvature 0 0.01mf  , no 

shifting of the resonance curves to a zone of higher frequencies 

of the external effect is observed, as illustrated in Fig. 6. 

As can be seen from Fig. 7, when the amplitude-frequency 

characteristics of the basic resonance drop down, oscillations 

on the third harmonic take place, that is the rise in amplitude-

frequency characteristics of the resonance on higher 

frequencies is observed in the bifurcation zones of the basic 

resonance. 

Fig. 8 demonstrate the impact of the increase in the drill 

string angular speed of rotation on the resonance phenomena 

arising in the considered dynamic system. The results show 

that the resonance appears in the system on lower frequencies 

of the external effect when the angular speed of rotation of the 

drill string ( 100ml  ) increases significantly. 

Resonance curves for different values of thickness of the 

drill string wall are illustrated in Fig. 9. Only the outer 

diameter of the drill string changes, the inner diameter remains 
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unchanged 0.12md  . It is obvious that the decrease in the 

drill string thickness results in reduction of its cross-section 

area A  and the value of its axial inertia moment xI . 

 

 
Fig. 8 the influence of the drill string angular speed of rotation on the 

resonance curves of its vibrations on the first harmonic at the 

following values of parameters: 100ml  , 0 0.02mf   

 

 

 
Fig. 9 the influence of the drill string wall thickness on the resonance 

curves of its vibrations on the first harmonic at the following values 

of parameters: 100ml  , 1.05 rad s  , 0 0.02mf   

 

If follows from Fig. 9 that the branches of the resonance 

curves stretch out towards higher frequencies   with 

diminution of the drill string outer diameter D . Hence, the 

less thickness of the drill string walls, the greater influence of 

the geometrical nonlinearity on the resonance curves of its 

lateral vibrations. 

Analysis of the resonance regimes of the drill string lateral 

vibrations depending on different values of the constant in 

time component 0N  of the axial compressive load  ,N z t  

affecting the drill string is also carried out. The system 

parameters are given as 100ml  , 0.18mD  , 

1.05 rad s  , 0 0.02mf  . 

Fig. 10-11 show that the increase in the axial compressive 

load up to 5.5kN  results in stretching the branches of the 

resonance curves out to the right with simultaneous 

considerable shift of the curves to the region of higher 

frequencies. Similar results were obtained at high value of the 

initial curvature 0f  (Fig. 4-5). 

 

 
Fig. 10 the impact of the axial compressive load on the resonance 

curves of the drill string nonlinear vibrations on the first harmonic 

 

 

 

 
Fig. 11 resonance curves of 1st and 3rd harmonic vibrations of the 

drill string under the effect of the axial force  , 5.5kNN z t   

 

Consequently, in the bifurcation points of the amplitude-

frequency characteristics of the drill string vibrations, 

presented on the constructed figures, one can determine 

instability zones of the resonance on basic and higher 

frequencies of the external effect. 

The results of this research  provide deeper insight into the 

nature of the drill string behaviour under the lateral vibrations 

with determination of their amplitude-frequency 

characteristics. 

V. STABILITY OF THE RESONANCE ON BASIC FREQUENCY 

In order to study stability of resonance on a basic frequency 

we carried out the analysis of stability of harmonic solution 

(11). Considering small deviation f  of the periodic 

equilibrium state )(0 f , an equation of the perturbed state of 

the dynamic state is found 
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This equation is known in literature as the Mathieu equation 

[11]. Stability of 0 ( )f   depends on the behaviour of the small 

parameter f  in time. This behaviour defines stability or 

instability of the basic resonance in accordance with the 

Lyapunov stability theory.  The solution 0 ( )f   is said to be 

unstable if the quantity f  increases indefinitely or “tends to 

infinity” at    , and the solution 0 ( )f   is said to be stable 

if the magnitude f  remains limited at    . 

According to the Floquet theory [11], the solution (17) is 

defined as: 

 

( )f e   . (18) 

 

Type of the quantity  t  indicates a zone of vibration 

instability. For the basic resonance 
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the generalized Hill equation in variations was obtained:   
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Studying the behavior of the Hill equation solution one can 

determine stable or unstable states of the system. In this case 

the resonance on the basic frequency is under consideration. 

VI. NUMERICAL ANALYSIS OF THE BASIC RESONANCE 

INSTABILITY ZONES 

When determining the first instability zone of the basic 

resonance it is supposed that a frequency of the small 

perturbation f  coincides with the frequency of the periodic 

solution (11). For that   in formula (18) is given in the form: 

 

 1 1cos .b      (22) 

 

Applying the method of harmonic balance, the characteristic 

determinant of the fourth order defining the boundaries of the 

first zone of instability on resonance curves on the basic 

frequency was constructed. In view of nonlinearity of the 

model it is necessary to construct the boundaries of the 

instability zones on the higher frequencies. Then, taking   as 

a series on multiple harmonics in the form 

 

   1 1 3 3cos cos 3b b          , (23) 

 

the characteristic determinant of the eighth order describing 

the third instability zone was obtained. 

Numerical analysis of the instability zones of the basic 

resonance of the drill string is conducted at the same parameter 

values that used when analyzing the resonance curves. 

It was established that geometrical nonlinearity of the 

system has a significant influence on stretching the 

characteristic curves out to the region of higher frequencies at 

relatively small length of the drill string ( 100ml  ). When 

increasing the drill string length, characteristic curves stretch 

out to the left ( 250ml  , 500ml  ), and unstable state of 

the system is observed on the lower frequencies of the external 

effect (Fig. 12). Similar results are obtained with increase in 

the rotation speed of the drill string (Fig. 13). 

 

 
Fig. 12 the influence of the drill string length on the boundaries of 

1st instability zone of the basic resonance 

 

 

 
Fig. 13 the influence of the drill string speed of rotation on the 

boundaries of 1st instability zone of the basic resonance 
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Change of the drill string wall thickness causes instability of 

the harmonic solutions at high amplitudes of vibrations 

(Fig. 14). 

 

 
Fig. 14 the influence of the drill string wall thickness on the 

boundaries of 1st instability zone 

 

More precise definition of the instability zones of the basic 

resonance (the third zone) is the evidence of essential 

correction to the earlier obtained results for the first instability 

zone. It also shows possibility of appearing the parametric 

resonance on multiple frequencies, which may occur in 

nonlinear systems (Fig. 15-16). 

 

 
Fig. 15 instability zones of the basic resonance at 100ml  , 

1.05 rad s  , 0.18mD   

 

Results of the numerical analysis for the boundaries of the 

first and the third instability zones of the resonance on the 

basic frequency bring into accord with the results of the 

numerical analysis of the amplitude-frequency characteristics 

of the drill string basic resonance, which are given above. 

 

 
Fig. 16 instability zones of the basic resonance at 250ml  , 

1.05 rad s  , 0.2mD   

VII. CONCLUSION 

As a result of the qualitative and quantitative analysis of 

the nonlinear model of the drill string motion it was 

established that emergence of the resonance on higher 

harmonics in the system has a considerable impact on stability 

of the oscillatory process. The rise in the amplitude-frequency 

characteristics of the resonance on the third harmonic in 

bifurcation zones of the amplitude-frequency characteristics of 

the basic resonance was observed. Especially sharp leap of the 

amplitude of the basic resonance takes place when the axial 

compressive load several times increases. 

It is worth indicating that the significant increase in the 

drill string length and the angular speed of its rotation causes 

occurrence of considerable nonlinear effects of the drill string 

amplitude-frequency characteristics, which is typical generally 

for the dynamic systems with softening characteristics. 

The results of this research show that geometrical 

nonlinearity of the models, describing the drill string 

dynamics, make a great contribution to the results of dynamic 

analysis of the drill string stability. 

By these reasons, modelling of resonance regimes of the 

drill string dynamics along with the analysis of its stability has 

a great importance for development of drilling equipment and 

improving its dynamic characteristics. In doing so, it is 

essential to take into account the geometrical nonlinearity of 

the system and the initial curvature of the drill string.  

Analysis of the instability zones of the basic resonance 

showed the possibility of the resonance occurrence on multiple 

frequencies (the third, in particular). At that, “jump” 

phenomena and the increase in the AFC on the third harmonic 

were observed. The investigations allowed to find the 

resonance zones on multiple frequencies when the basic 

resonance was studied. This correction for the range of 

resonance frequencies might enable to eliminate them from the 

drill string operating regimes. 
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